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Abstract:
Denial of service (DoS) attacks are an increasing problem for network connected sys-

tems. Key establishment protocols are applications that are particularly vulnerable to
DoS attack as they are typically required to perform computationally expensive cryp-
tographic operations in order to authenticate the protocol initiator, and to generate the
cryptographic keying material that will subsequently be used to secure the communi-
cations between initiator and responder. The goal of denial of service resistance in key
establishment protocols is to ensure that attackers cannot prevent a legitimate initia-
tor and responder deriving cryptographic keys without expending resources beyond a
responder determined threshold. In this work we review the strategies and techniques
used to improve resistance to denial of service attacks. Three key establishment proto-
cols implementing denial of service resistance techniques are critically reviewed and the
impact of misapplication of the techniques on denial of service resistance is discussed.
Recommendations on effectively applying resistance techniques to key establishment
protocols are made.
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1 INTRODUCTION

Key establishment protocols enable two parties to authen-
ticate each other and establish cryptographic key mate-
rial using an adversarially controlled network. The cryp-
tographic keys derived from the key establishment proto-
col are then typically used to secure the communications
channel by providing confidentiality and integrity services
using IPsec [1] for example. The party that initiates the
key establishment protocol by transmitting the first mes-
sage is known as the initiator. The party that receives and
responds to the first message is known as the responder.

In addition to providing a mechanism for establishing
cryptographic keys, key establishment protocols may also
provide additional services including: identity protection
for the initiator or responder; plausible deniability, a prop-
erty that ensures that evidence of participation by a par-
ticular party in a protocol run is not generated by the pro-
tocol; and perfect forward secrecy, a property that ensures
compromise of long term keys cannot reveal previously ne-
gotiated session keys.

The need to secure the confidentiality and integrity of
communications highlights the threat from malicious enti-
ties active in the network. Increasingly, malicious network
entities are seeking not only to violate the confidentiality
and integrity of information, but also to deny or degrade
access to network services via denial of service (DoS) at-
tacks.

Denial of service attacks can be classified as flooding, or
logical (non-flooding). In flooding-based denial of service
attacks, the attacker generates spurious network traffic or
requests for service in order to exhaust available server
resources, thereby preventing access to the service by le-
gitimate clients. Directing a continuous stream of traffic
that exceeds the bandwidth available to a target service
is an example of a flooding attack. To successfully mount
a flooding-based attack the attacker must command re-
sources (processing, memory or network bandwidth) in ex-
cess of those provisioned at the target system. While the
resources required for an attacker to successfully mount a
flooding-based denial of service may be considerable, this
type of attack requires limited knowledge of the specific
service protocols or their implementation to be successful.

In logical attacks, rather than blindly trying to exhaust
server resources, the attacker exploits characteristics or
vulnerabilities of network protocols or applications in such
a way as to exhaust available resources. Exploiting vulner-
abilities in the target system1 or protocols employed by the
target system, such as with the TCP based SYN flooding
attacks [3] are examples of logical attacks. Logical attacks
require the attacker to have a greater understanding of the
protocols or applications to be targeted, but can dramat-
ically reduce the resources required to successfully attack
a service.

Needham [4] identified that attacks may be directed

1Errors in operating system handling of oversized ICMP echo re-
quests led to some systems to crash, freeze or reboot on receipt of a
“ping of death” [2].

at: (1) servers, henceforth referred to as responders; (2)
the network infrastructure, such as links, routers, domain
name servers; or (3) specific client systems, henceforth re-
ferred to as initiators. Having determined where an attack
is to be directed, an attacker can attempt either a flooding
or logical attack.

Key establishment protocols are applications that are
particularly vulnerable to logical denial of service attacks
as they are typically required to perform computationally
expensive cryptographic operations in order to authenti-
cate the protocol initiator, and to generate the crypto-
graphic keying material that will subsequently be used to
secure the communications between initiator and respon-
der. Additionally, key establishment protocols are openly
specified, providing attackers with the opportunity to eas-
ily search for denial of service vulnerabilities in the protocol
specifications.

Assuming the presence of malicious network entities, key
establishment protocols must adopt strategies and tech-
niques to ensure that they are not susceptible to denial of
service attacks. The ability of a key establishment proto-
col to withstand attempts to exhaust responder resources
via denial of service attack is termed the denial of service
resistance of the protocol. The goal of denial of service re-
sistance in key establishment protocols is to ensure that at-
tackers cannot prevent a legitimate initiator and responder
deriving cryptographic keys without expending resources
beyond a responder determined threshold.

While we recognize that to be effectively managed denial
of service must be addressed at the link, network, operat-
ing system, and application layers, we focus our attention
in this work specifically on the denial of service resistance
techniques employed at the application layer by key estab-
lishment protocols. While either the initiator or responder
may be the target of a denial of service attack, in this paper
we only consider malicious initiators and the techniques
used to defend responders against attack. The reason for
focusing on responders is that responders typically handle
requests for service from many initiators, so the impact of
denial of service attacks against a responder is significant.
The effect of a denial of service attack targeted at an initia-
tor is far more localised, only impacting the specific target
of the attack.

Even though numerous strategies and techniques are
available to improve the resistance a protocol has to denial
of service attack, they are not always applied correctly
resulting in protocols that do not effectively improve their
resistance to denial of service attack. The contributions
of this work include:

• a review of the strategies and techniques used to im-
prove resistance to denial of service attack;

• the critical analysis of protocols implementing denial
of service resistance techniques with discussion of the
impact of misapplication of the techniques on denial
of service resistance; and
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• recommendations on effectively applying denial of
service resistance techniques to key establishment
protocols.

Owing to space constraints, we only present a subset of
protocols that can serve as exemplars for the techniques
identified.

The remainder of the paper is structured as follows: Sec-
tion 2 identifies the strategies used to increase resistance to
denial of service attack; Section 3 presents the techniques
used to implement denial of service resistance strategies;
Section 4 details three protocols that implement denial of
service resistance strategies, critically discussing the appli-
cation of the techniques; and Section 5 presents conclusions
and directions for future work.

2 DOS-RESISTANCE STRATEGIES

A responder in a key establishment protocol will have ac-
cess to finite processing, storage, and network resources in
order to complete its functions. Unless these resources are
committed diligently, they may be exhausted by malicious
initiators and the responder will have insufficient resources
remaining to process legitimate incoming requests.

The requirement for key establishment protocols to
exhibit denial of service resistance is well recognized
by the protocol engineering community and a number
of design strategies have emerged that promote the
judicious allocation of resources when processing initiator
requests [5, 6]. The proposed strategies can be broadly
classified into three types.

1. Counterbalancing memory expenditure By en-
suring that initiators must commit their memory re-
sources to maintaining protocol state until the respon-
der has some assurance that a denial of service attack
is not underway reduces the vulnerability of the re-
sponder to state or memory-based denial service at-
tacks and increases the memory resources an attacker
will need to attack the responder.

2. Counterbalancing computational expenditure
By counterbalancing computational expenditure at
the responder, the protocol designer can ensure
that the computational resources of an initiator
will be exhausted before those of the responder.
Achieving this goal may require artificially increasing
the computational expenditure of the initiator to
ensure the survivability of the responder [5], or
having the initiator perform computations on behalf
of the responder, thereby reducing the relative cost
of computation to the responder.

3. Gradual authentication While initiators must be
authenticated at some point during the protocol ex-
ecution, immediate and strong authentication of re-
quests merely aggravates the denial of service prob-
lem. The suggested strategy for balancing the need
for authentication and computational expenditure is
to use weak and computationally cheap authentica-
tion when the protocol is initiated and gradually in-
crease the strength of authentication as the protocol
proceeds [6]. The strategy of gradual authentication
can be used to detect attacks (based on IP spoofing
for example), verify the computational and memory
commitments of the initiator, and link messages from
the same source (even though the exact identity of
that source may be unknown).

The protocols discussed in Section 4 provide examples
of how gradual authentication can be implemented in
key establishment protocols.

Combining the strategies of counterbalancing computa-
tional expenditure, counterbalancing memory expenditure,
and gradually authenticating requests ensures that mali-
cious initiators are unable to prevent the establishment of
cryptographic keys between legitimate initiators and re-
sponders, unless they are prepared to expend significant
resources of their own.

3 DOS-RESISTANCE TECHNIQUES

Having identified the strategies employed to make respon-
ders in a key establishment protocol more resistant to de-
nial of service attacks in Section 2, we now describe the
specific techniques used. The techniques described may be
considered primitives, some of which are capable of imple-
menting more than one strategy and some of which can
be combined to meet more complex goals such as grad-
ual authentication. For each technique identified, we dis-
cuss its construction, the DoS resistance strategies it is
capable of supporting, and how it might be combined with
other techniques. Protocols implementing the techniques
are critically discussed in Section 4.

3.1 Cookies

Cookies are time variant, unpredictable data issued by the
responder on receipt of a request for service that allow the
responder to remain stateless and initiate gradual authen-
tication of the initiator. First introduced in Photuris [7]
and subsequently extended for resisting SYN flooding DoS
attacks [8], cookies are now widely used.

Typically a cookie is constructed by taking some con-
nection specific parameters and transforming them with a
time variant local secret; a keyed hash of the initiator IP
address and nonce for example. It is vitally important that
the responder store no state when constructing cookies. In
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order to remain stateless and thereby prevent memory ex-
haustion, any relevant state required by the responder can
also be encoded in the cookie and returned with the next
message from the initiator. An approach for making pro-
tocols stateless is presented by Aura and Nikander [9].

On receipt of a valid cookie, the responder is able to re-
construct and validate any state encoded in the cookie and
has weak assurance that it is in round trip communication
with the initiator. Round trip communication implies that
the initiator is not using a spoofed address. This assurance
can only be considered weak, as an adversary with control
of an intermediary link, between a claimed address and the
responder, would be able to receive cookies for any address
they wished to claim.

Unless cookies are carefully constructed the responder
may remain vulnerable to attack even if cookies are used.
Simpson [10] identified a state exhaustion attack, called a
“cookie crumb” attack, in the ISAKMP implementation
of cookies. In contrast to remaining stateless when con-
structing cookies, ISAKMP cookies required the storage
of a small amount of state on each connection request.
Even though the state information stored per request is
very small (a “crumb”) it is easy for an attacker to initiate
a large number of requests, exhausting available memory
resources.

In addition to ensuring that no state is stored on the
construction of a cookie, Karn and Simpson [7] identified
that the technique used for generating cookies must also
satisfy the following three requirements.

• The cookie must depend on the participating entities.

• It must not be possible for anyone other than the is-
suing entity to generate a cookie that will be accepted
by that entity.

• The cookie generation and verification methods must
be computationally efficient.

The first requirement prevents an attacker from obtain-
ing valid cookies, intended for other initiators, and using
those cookies to generate a large number of requests with
spoofed IP addresses. The second requirement secures the
cookie generating process. The use of a secret value in gen-
erating the cookie prevents others from forging cookies and
making this value time variant ensures that cookies must
be used within a predetermined time frame, preventing the
hoarding of valid cookies. Finally, the third requirement
prevents DoS attacks directed at the cookie mechanism
itself.

3.2 Proofs of Work

Proofs of work, or puzzles, are hard but tractable problems
that allow an initiator to prove to a responder that a verifi-
able level of computational effort has been expended. They
permit the responder to gain some assurance of the initia-
tor’s willingness to commit resources to the protocol and

provide a mechanism for counterbalancing computational
expenditure in the event that the responder is exposed to
a denial of service attack.

The concept was first proposed by Dwork and Naor [11]
to control junk email by having recipients only accept
emails if they were accompanied by a correct puzzle so-
lution. It has since been extended to protect authentica-
tion protocols [12,13] and permit clients to bid for limited
service resources [14] using the difficulty of the puzzle as
currency. Jakobsson and Juels [15] formalised the notion
of reusable proofs of work, where the computational effort
expended by the prover in generating the puzzle solution
can be reused for some useful function, and provided a
working example of a reusable proof of work.

Puzzles serving as proofs of work can be constructed
from a number of underlying problems, which introduce
a minimal and configurable overhead for legitimate initia-
tors but result in a significant computational burden for
attackers who wish to send large numbers of requests to a
responder.

Properties of a good puzzle include [12,13]:

• generation and verification is inexpensive for
the responder;

• level of difficulty can easily be adjusted from
trivial to impossible;

• solutions should not require specialised
client hardware;

• solutions cannot be precomputed;

• issuing a puzzle does not require the respon-
der to store any state;

• knowledge of the solution to one client’s puz-
zle is of no benefit in solving other puzzles,
so that the same puzzle may be provided to
numerous clients; and

• initiators can reuse a puzzle by creating
new instances of it.

3.2.1 Hash-based puzzles

Juels and Brainard [12] describe the construction of client
puzzles to protect TCP and SSL against connection de-
pletion (SYN flooding) attacks. In their proposal, when a
server becomes heavily loaded (inferred from buffer occu-
pancy), connections are only accepted if they are accompa-
nied by a proof of work. The puzzle (shown in Figure 1(a))
is constructed by hashing session parameters (M ), the cur-
rent time (t), and a responder secret (s). The n-bit out-
put of this hash operation (X) becomes the preimage to
another application of a hash function, whose output (Y )
forms part of the puzzle. The initiator is provided the par-
tial preimage X ′ (X with k-bits masked out), and the hash
digest Y . In order to solve the puzzle, the initiator must
test all k possible preimages until the correct output is
achieved. On average this will take 2k−1 hash operations.
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hash(t||M ||s) = X

hash(X) = Y

X ′ = X & 00, 01, ..., 0k−11k1k+11n−1

puzzle = (X ′, Y )
solution = p

verification : hash(p||X ′) ?= hash(t||M ||s)

(a) Juels and Brainard Construction

hash(NR||X) = 000, ..., 000︸ ︷︷ ︸
k−bits

||, ...

(b) Aura et al. Construction

Figure 1: Hash-Based Puzzle Constructions

To verify the solution (p), the responder checks the time
value t is recent, and then confirms, with a single hash
operation, that the proposed solution is correct:

hash(p||X ′) ?= hash(t ,M , s)

An alternative construction is proposed by Aura et
al. [13] and is shown in Figure 1(b). In this proposal the
puzzle consists of a time variant responder nonce (NR) and
a difficulty parameter (k). To solve the puzzle the initiator
must find the value X, that when hashed with the respon-
der nonce (NR) produces a digest output whose first k-bits
are zeros.

The responder verifies the puzzle solution by checking
that NR is recent and that the solution (X) when hashed
with the nonce produces an output with the first k-bits as
zero.

Signed puzzles The construction of Aura et al. [13] was
designed specifically for use in authentication protocols.
The construction does not include any initiator specific
parameters, allowing the responder to sign a single puz-
zle and issue it to multiple initiators. Conversely, the in-
clusion of initiator specific parameters in the Juels and
Brainard [12] construction would make the signing of puz-
zles prohibitively expensive.

Puzzles, reachability and statelessness To operate
effectively as a replacement for cookies (providing weak
authentication of initiator reachability and stateless
connections) proofs of work must be constructed so that:

• the IP address of the initiator must be part of the
puzzle construction, and

• required state information is also encoded in the
puzzle.

If the puzzle construction is unable to meet these re-
quirements, then the puzzle cannot replace the functions

of a cookie in the protocol. If we reconsider the puzzle
construction of Aura et al. [13], which does not include
the IP address of the initiator in the puzzle construction,
it would be possible for a malicious initiator to receive a
puzzle challenge on one IP address and construct puzzle
solutions for any number of spoofed IP addresses. Ad-
mittedly, the initiator would have to generate a unique
solution for each address it wished to claim, but in spite of
receiving a valid puzzle solution, the responder would have
no assurance that the initiator was actually reachable at
the claimed IP address. In order to gain assurance that
an initiator is able to send and receive messages from a
claimed IP address, protocols using the Aura et al. puzzle
construction as a proof of work should also use a cookie.
The Juels and Brainard [12] puzzle includes the IP address
of the initiator in its construction, so protocols using this
construction are able to use the puzzle as a replacement
for a cookie.

3.2.2 Other constructions

While the hash-based construction is prevalent in in-
teractive protocols owing to its simple construction and
cheap verification, other puzzle constructions have been
proposed to accommodate: non-interactive protocols
such as email; puzzles that are intended to act as time
capsules with solutions taking years, not milliseconds;
and techniques for supporting the outsourcing of puzzle
constructions.

• Signature-based puzzles: The puzzle proposed
Dwork and Naor [11] could be constructed from a
weakened Fiat-Shamir signature, or from the broken
Ong-Schnorr-Shamir signature scheme. The initiator
is required to forge a verifiable signature as a proof
of work to the responder. Matsuura and Imai [16]
present an alternative form of signature-based proof
of work in which verification of the responder signa-
ture by the initiator requires the calculation of an
intermediate value. This value is presented by the
initiator to the responder as proof that the signature
verification, and the associated modular exponentia-
tions, have been performed (See Section 4.1 for the
details).

• Time-Lock puzzles: Proposed by Rivest et al. [17],
time-lock puzzles are based on the notion that a
client has to spend a predetermined amount of
computation time performing repeated squaring to
find a solution. The server calculates the number
of squaring operations which a client can perform,
and determines the amount of time it wants a client
to spend solving the puzzle. Time-lock puzzles are
inherently sequential and non-parallelisable.

• Diffie-Hellman puzzles: Waters et al. [18] in-
vestigate numerous techniques for outsourcing the
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generation of puzzles in order to remove the com-
putational burden of puzzle generation from the
responder. One of their proposals is based on a Diffie-
Hellman construction, in which given a generator g,
and a random value a in the range r to r + k, the
puzzle issued to the initiator contains the values ga

and r. The initiator searches for a solution by trying
each candidate value in the range r to r + k until it
finds c, such that gc = ga. To bind the solution to
a specific server, the initiator calculates ya, where
y is the responder’s Diffie-Hellman public key. The
responder verifies the solution with a single modular
exponentiation, raising the challenge value to the
exponent (x) of its private key i.e. gax. The system
described by Waters et al. [18] limits puzzles to a
given timeslot. The solutions for a given timeslot
are all precomputed by the responder, so puzzle
verification is performed by a table lookup - not an
online modular exponentiation.

Proofs of work can be viewed as a way for an initiator
to make a payment to a responder for the services it will
provide. The computational effort expended in generating
the proof of work can be: (1) wasted; (2) reused by the
initiator in completing the protocol; (3) reused by the ini-
tiator for some other purpose; (4) reused by the responder
in completing the protocol; or (5) reused by the responder
for some other purpose.

The client puzzles employed by the protocols identified
in the following section, are typically non-reusable proofs of
work, so the computational effort expended in generating
the proof of work is wasted. We will see however, that the
modified version of Internet Key Exchange (IKE) proposed
by Matsuura and Imai [16] adopts a reusable proof of work
based on signature verification of the responder, an action
that a legitimate initiator will have to perform in order to
complete the protocol.

As identified earlier, Jakobsson and Juels [15] describe a
proof of work in which the computational effort expended
in generating the proof of work is reused by the respon-
der for another application. There are currently no ex-
amples of key establishment protocols implementing this
type of reusable proof of work and unless an initiator im-
plicitly trusts the responder to delegate its computational
resources, initiators must be aware that the computational
effort expended in generating a proof of work may be
reused for malicious purposes.

Even though proofs of work are increasingly being
adopted by protocols to aid in the counterbalancing
computational expenditure and as a way of authenticating
the willingness of an initiator to commit resources to
having the protocol proceed, their use still faces numerous
issues.

• Hash-based constructions meet many of the de-
sirable properties of proofs of work (puzzles), but
they also have the property that exhaustive search-

ing of a preimage search space is a parallelisable
task. Using such a technique in the presence of
an adversary with access to distributed computing
resources may leave the protocol exposed to denial
of service. Adopting alternate puzzle construc-
tions, such as time lock puzzles, that are inherently
sequential and non-parallelisable may need to be
considered for protocols that are to be used in an
environment where the adversarial model assumes
that significant resources are available to the attacker.

• Proofs of work based on processor bound functions
result in puzzle constructions that can be solved in
negligible time on a modern desktop computer, but
may take an inordinately long time on light weight
devices such as mobile phones or personal digital
assistants. Given an effective strategy for authenti-
cating the platform that a puzzle was being issued
to, could allow the responder to tune the difficulty
of the puzzle. As there is no way to authenticate
the platform a puzzle is being issued to, alternative
constructions based on memory bound functions are
being investigated [19, 20]. Memory bound functions
should exhibit a more uniform response time across
a range of devices, as the difference in memory
access speeds between light weight and more powerful
devices is far less significant than the difference
between processor speeds.

3.3 Client-Aided Computation

An alternative approach to artificially increasing compu-
tational expenditure at the initiator with puzzle construc-
tions is to have the initiator perform computations that
ease the computational burden of the responder. Client
aided computations will most likely be performed before
the initiator is fully authenticated, and as the initiator can-
not be trusted at this time the type of computations that
can be offloaded to the initiator are restricted to those that
can be verified as correct.

Currently, the only protocol implementing client aided
computation is the client aided RSA implementation of the
SSL protocol proposed by Castellucia et al. [21] which is
described in Section 4.3.

3.4 Gradual Authentication

While the expense of strongly authenticating initiators us-
ing digital signatures will be dependent on many param-
eters, the computational expense of a signature verifica-
tion will not always be prohibitively expensive. Rabin
signatures [22] with a public exponent of 2 or RSA sig-
natures [23] with a public exponent of 3 can be verified
with only one or two modular multiplications respectively.
While the cost of signature verification with these param-
eters is low, signature generation is somewhat more ex-
pensive, which may not be suitable for all deployment sce-

6



narios. Other signature schemes, RSA with larger pub-
lic exponents for example, increase the cost of signature
verification, requiring the responder to perform expensive
modular exponentiations. While newly proposed key es-
tablishment protocols can be specified to accommodate
cheap signature verification for responders the requirement
to improve resistance to denial of service attack remains for
already deployed protocols and protocols, that for other
reasons are restricted in the choice of signature schemes
they must implement. Gradual authentication provides a
mechanism for weakly authenticating an initiator, prior to
performing stronger and more expensive cryptographic au-
thentication.

The idea of combining weak and strong authentication
was first introduced by Meadows [6] and is proposed as
a technique to increase resistance to denial of service at-
tacks by combining weak authentication when the protocol
is initiated and moving to strong authentication as it com-
pletes.

Cookies and client puzzles can be considered forms of
weak authenticators. Cookies provide some assurance that
the initiator is able to send and receive packets from the
claimed address–implying that the request is not part of a
connection depletion attack, which typically relies on using
random spoofed addresses. Receipt of a correct solution to
a client puzzle provides some assurance to the responder
that the initiator is willing to expend her own resources in
order to get the protocol to proceed.

Other cryptographic techniques, such as the use of mes-
sage authentication codes and release of hash digest preim-
ages, that allow the responder to cheaply verify messages
are being adopted by recently proposed protocols such as
Just Fast Keying (JFK) as discussed in Section 4.

While the use of techniques such as cookies, client puz-
zles, and releasing hash preimages do not meet strong no-
tions of authentication, when generated using cryptograph-
ically sound primitives they can be combined in ways which
enable a responder to discount a range of denial of service
attacks and present a number of hurdles that must be over-
come by an attacker intent on disrupting the protocol exe-
cution. A key characteristic of the techniques used in grad-
ual authentication is that they are all cheap for the respon-
der to verify, while their fabrication is relatively expensive
for an attacker. Even when signature schemes that min-
imise verification costs to a responder are adopted, the cost
of verifying gradual authenticators such as client-puzzles is
still cheaper, costing only a single hash operation.

Key establishment protocols must complete with strong
authentication of the initiator. Having weakly authenti-
cated the initiator, the responder is able to commit to the
computational expenditure associated with strong authen-
tication with increased assurance that a denial of service
attack is not underway. The gradual authentication tech-
nique is employed by the modified Internet Key Exchange
(IKE) and the Just Fast Keying (JFK) protocols, discussed
in more detail in Section 4.

Table 1: Protocol Notation
Messages Notation

I The principal who initiates the request message
known as Initiator or client

R The principal who responds to the request message
known as Responder or server

ID Identity of the principal
IP Network address of principal
H(M) Unkeyed cryptographic hash of the message M

HK(M) Keyed cryptographic hash of the message M , with
key K

EKs{M} Symmetric encryption of message M
with the secret key Ks

{M}Ke

Ka
Encryption of M using symmetric key Ke,
followed by MAC generation with symmetric key Ka.

P [M ] Asymmetric encryption of the message M
by the public key P belonging to the principal

S[M ] Digital signature of message M
with the private key S belonging to the principal

g group generator of order q
N Nonce of principal; a random bit string
KR,s The responder/server secrets
saI Cryptographic and service properties of the security

association (SA) that the initiator wants to establish
saR SA information that the responder may need to give

to the initiator
Ks Session key generated by key establishment protocol

which is used to secure ongoing communications
grpinfoR All groups supported by the responder

x ∈R A
Assigns to x an element of the setA chosen uniformly
at random

N = PQ An RSA modulus

4 DOS RESISTANCE IN KEY ESTABLISHMENT

The process of authenticating initiators and generating
cryptographic keys to secure ongoing communications re-
quires responders to commit significant resources in order
to have the protocol execute to completion. Unless key
establishment protocols manage the commitment of their
resources they will be susceptible to denial of service at-
tacks.

In this section, we identify and discuss three protocols
that implement strategies and techniques to improve their
resistance to denial of service attacks. There are relatively
few examples of key establishment protocols implement-
ing denial of service resistance techniques, with our survey
of the literature only identifying seven protocols (see Ta-
ble 2 in Section 5 for a summary list). The three protocols
presented in this section were selected as they provide con-
crete examples of the range of denial of service resistance
techniques being applied to key establishment. The modi-
fied internet key exchange protocol proposed by Matsuura
and Imai [16] adopts all three strategies for improving de-
nial of service resistance and includes an elegant proof of
work that is reused by the client to complete the proto-
col execution. The Just Fast Keying (JFK) protocol [24]
demonstrates new techniques for gradually authenticating
initiators, and the client-aided RSA proposal by Castel-
luccia et al. [21] is the first key establishment protocol to
adopt client aided computation in order to counterbalance
computational expenditure.
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For the protocols presented in this section, we focus on
those elements of the protocol that implement denial of
service resistance techniques. Our representation of the
protocols is simplified, with references to header informa-
tion and certificate requests, that are not relevant to the
discussion of denial of service resistance, deliberately omit-
ted. For complete descriptions of the protocols, the reader
is referred to the full protocol specifications.

We present the notation used for the remainder of this
section in Table 1.

4.1 Modification of Internet Key Exchange Resis-
tant against DoS

The Internet Key Exchange (IKE) protocol [25] was de-
signed to perform mutual authentication and establish a
shared secret key for use in an IPsec security association.
As originally specified, the aggressive, signature based au-
thentication mode of IKE was vulnerable to CPU and
memory exhaustion denial of service attacks. In order to
address these vulnerabilities Matsuura and Imai [16] pro-
posed modifications to improve the protocol’s resistance to
both computational and memory based denial of service at-
tacks. The modified protocol is presented in Figure 2 and
adopts techniques that counterbalance computational and
memory expenditure, and implement gradual authentica-
tion.

4.1.1 Counterbalancing memory expenditure

To address memory based denial of service attacks, this
modified version of IKE stores no state after the first mes-
sage. Unlike the original cookie construction that was vul-
nerable to a cookie crumb attack, the cookie in the modi-
fied proposal is constructed as a hash over request specific
parameters, responder secret s, random fresh material a
and Diffie-Hellman exponent r. The session specific se-
cret parameters a and r are not stored by the responder,
instead the protocol remains stateless by sending an en-
crypted copy of these parameters to the initiator.2 In ad-
dition to allowing the responder to remain stateless, the
cookie acts as a reachability test for the initiator, provid-
ing assurance that a spoofed address is not being used.

4.1.2 Counterbalancing computational expendi-
ture

Computational denial of service attacks against the origi-
nal aggressive mode of IKE with signature authentication
resulted from the responder generating an expensive sig-
nature on the receipt of an unauthenticated message 1 and
the expensive verification of a signature on message 3. To
address these vulnerabilities Matsuura and Imai [16] spec-
ify the use of a signature scheme that permits expensive
components of the signature generation to be precomputed

2While not specifically indicated in the protocol specification, we
suspect that not only the exponent, but the actual Diffie-Hellman
value gr must be securely sent to the initiator, otherwise the respon-
der would have to recalculate the value on receipt of message 3.

and has a signature verification procedure that permits the
recovery of random fresh material (a) used in the genera-
tion of the signature. The initiator then uses the recovery
of the random fresh material a to provide proof to the re-
sponder that the signature in message 2 has been verified.

The expense of generating the signature sigR is reduced
but not eliminated in message 2 of the proposed IKE mod-
ification. The verification of the initiator signature (sigI)
is only performed after verifying that the initiator has in-
curred the computational expenses associated with verify-
ing sigR (as explained next).

In order to construct a message 3 that is accepted as
genuine by the responder, the initiator must verify sigR.
Verification of sigR, reveals the value a′, which the initiator
then uses to construct the proof of work HASH ∗

I .
On receipt of message 3, the responder first validates the

cookie and secondly verifies the proof of work by recovering
a and verifying the modified initiator hash. Finally the re-
sponder can verify the signature of the initiator, with con-
fidence that the initiator has already committed resources
to the protocol execution.

While Matsuura and Imai’s modified version of IKE [16]
introduces an elegant proof of work based on verification
of sigR, it suffers from being an untunable parameter that
provides no mechanism for the responder to increase the
computational effort that must be expended by the initia-
tor in order to provide the proof of work. Additionally, the
technique is restricted to specific signature schemes with
the Shortened DSS and the Schnorr signature schemes sug-
gested by Matsuura and Imai [16] as capable of supporting
precomputation and providing recovery of a.

4.1.3 Gradual authentication

In addition to counterbalancing computational and mem-
ory expenditure, this modified IKE allows the responder to
gradually authenticate the initiator. Before verifying sigI

the responder has assurance that the initiator is not using
a spoofed address, is willing to commit memory to having
the protocol proceed, and has committed the computa-
tional resources required to verify the responder signature
sigR.

While the proposal represents an improvement over the
original protocol, the responder is still required to commit
computational resources to generate a signature on receipt
of the first unauthenticated message leaving the responder
susceptible to a flood of message ones.

4.2 Just Fast Keying

The Just Fast Keying (JFK) protocol was developed by
Aiello et al. [24] as a key agreement protocol providing
identity protection and capable of operating in a hostile en-
vironment such as the Internet. The protocol implements
several techniques to counterbalance computational and
memory expenditure, and to gradually authenticate initia-
tor requests. The protocol variant implementing identity
protection for the initiator is depicted in Figure 3.
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I R

r, xR ∈R [1, 2, . . . , q − 2]
a = gxR

1) i ∈R [1, 2, . . . , q − 2] saI , g i ,NI , IDI−−−−−−−−−−−−−−−−−−−−−−→ Cookie = H (s, saR, IPI ,NI ,NR, a, r)
HASHR = H (NI ||NR||gi||gr

Cookie||IDR)
s2 = H (HASHR||a)
s1 = SR · s2 + xR mod q

saR, gr ,NR, IDR, sigR = (s1 , s2 )

2) HASHR = H (NI ||NR||gi||gr Cookie,EKR
{a||r ||gr}, sigR←−−−−−−−−−−−−−−−−−−−−−−

Cookie||IDR)
a ′ = gs1 P−s2

R

s2
?= H(HASHR||a′)

HASH ∗
I = H (H (NI ,NR),

g i , gr ,Cookie, a ′, saR, IDI )
Ks = H (NI ,NR, g ir )
sigI = SI [HASH ∗

I ] IDI ,NI ,HASH ∗
I ,

Cookie,EKR{a||r ||gr},

3) saR, gr ,NR, sigI−−−−−−−−−−−−−−−−−−−−−−→ decrypt EKR
{a||r ||gr}

Cookie ?= H (s, saR,

IPI ,NI ,NR, a, r)

HASH ∗
I

?= H (H (NI ,NR),
g i , gr ,Cookie, a, saR, IDI )

verify sigI
Ks = H (NI ,NR, g ir )

Figure 2: Modified aggressive mode of IKE Protocol [16]

The responder periodically selects a Diffie-Hellman ex-
ponential (gr) and generates a signature over this value and
information on the groups it supports. The designers of the
protocol allow the responder to reduce computational ex-
penditure, at the expense of perfect forward secrecy, by
reusing this Diffie-Hellman value with multiple initiators.

4.2.1 Counterbalancing memory expenditure

On receipt of the first message from an initiator, the re-
sponder remains stateless and weakly authenticates the
reachability of the initiator by generating a cryptographic
cookie (Cookie = HHKR

(gr, NR, N ′
I , IPI)), that is re-

turned by the initiator in message 3. The secret key HKR

is a time variant local secret that limits the period of time
a cookie will be accepted.

4.2.2 Counterbalancing computational expendi-
ture

While the protocol permits reuse of the responder exponen-
tial to reduce computational expenditure at the responder,
no mechanism to increase computational expenditure at
the initiator is provided. The absence of a proof of work
from this recently proposed protocol is conspicuous and
exposes the responder to a computational denial of service
in the presence of an initiator willing to reveal their IP
address. The initiator could engage the responder with a
legitimate message 1, then fabricate a bogus message 3 at
a minimal computational cost. The responder would have
to perform a modular exponentiation before being able to
determine that the received message was bogus. The ad-
dition of a proof of work, in the form of a client puzzle,
would allow the responder to increase the computational
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I R

i ∈R [1, 2, . . . , q − 2] r ∈R [1, 2, . . . , q − 2]
sigR1 = SR[gr , grpinfoR]

1) N ′
I = H (NI )

N ′
I , g

i , ID ′
R−−−−−−−−−−−−−−−−−−−−−−→ Cookie = H (gr ,NR,N ′

I , IPI )
N ′

I ,NR, gr , grpinfoR,

2) verify sigR1
IDR,Cookie, sigR1←−−−−−−−−−−−−−−−−−−−−−−

Ke = Hg ir (N ′
I ,NR, ′1 ′)

Ka = Hg ir (N ′
I ,NR, ′2 ′)

Ks = Hg ir (N ′
I ,NR, ′0 ′)

sigI = SI [N ′
I ,NR, g i , gr ,

IDR, saI ]
E1 = {IDI , saI , sigI }Ke

Ka

NI ,NR, g i , gr ,

3) Cookie,E1−−−−−−−−−−−−−−−−−−−−−−→ N ′
I = H (NI )

Cookie ?= H (gr ,NR,

N ′
I , IPI )

Ke = Hg ir (N ′
I ,NR, ′1 ′)

Ka = Hg ir (N ′
I ,NR, ′2 ′)

Ks = Hg ir (N ′
I ,NR, ′0 ′)

verify and decrypt E1
verify sigI
sigR2 = SR[N ′

I ,NR, g i , gr ,

IDI , saI , saR]
E2 = {sigR2 , saR}Ke

Ka

4) verify and decrypt E2 E2←−−−−−−−−−−−−−−−−−−−−−−
verify sigR2

Figure 3: JFKi Protocol [24]

expenditure of an initiator attempting to mount such an
attack - with verification of the puzzle solution only costing
a single hash operation.

4.2.3 Gradual authentication

In message 3, the initiator releases the preimage (NI) to
the nonce (N ′

I) provided in message 1. This binds message
1 and 3 to the same initiator. The initiator must also
derive the Diffie-Hellman key (gir) and the encryption and
authentication keys (Ke,Ka) used to protect the contents
of message 3.

On receipt of message 3, the responder conducts a range
of checks that gradually authenticate the message, prior to
conducting an expensive signature verification to strongly
authenticate the initiator. First, the responder validates
the nonce NI . Then the cookie is verified to weakly assure

the responder that the initiator is reachable at the claimed
address. Once these checks complete successfully, the re-
sponder then decrypts and verifies the contents of message
3. Finally, the initiator’s signature is verified.

The encryption and authentication (via a message au-
thentication code) of message 3 provides the responder
assurance that the initiator is willing to commit compu-
tational resources to having the protocol proceed. Unlike
a proof of work however, the decryption and MAC verifi-
cation require the responder to incur an equivalent compu-
tational cost to the initiator (that of a modular exponen-
tiation) so there is no counterbalancing of computational
effort. This technique does provide gradual authentica-
tion however, as a failure to correctly decrypt or verify the
MAC of a received message 3 allows the responder to de-
tect a possible attack before committing the resources for
an expensive signature verification.
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4.3 Client-Aided RSA SSL / TLS

Castelluccia et al. [21] observed that the computational ex-
penditure of a responder in the SSL / TLS protocol could
be reduced through the adoption of client aided compu-
tation. In the SSL / TLS protocol a responder receives a
public key encrypted copy of an initiator selected session
secret and has to perform an expensive RSA decryption
operation in order to generate session keys.

Fortunately, work had already been done on implement-
ing server aided signature generation for resource con-
strained smart cards [26, 27] and Castelluccia et al. were
able to apply the same techniques to have the initiator
aid the responder in decrypting the initiator selected ses-
sion secret. They termed this approach client-aided RSA
(CA-RSA). The details of the CA-RSA protocol, which is
designed to be compatible with existing SSL/TLS deploy-
ments, are presented in Figure 4.

In the SSL three way handshake protocol adopting CA-
RSA, the first client hello message remains unchanged.
The server hello message includes the server’s certificate
and the vector D = (d1,d2,. . .,dk). The initiator aids
responder computation by performing calculations with
these values. The client randomly chooses the secret value
x, which is used to compute the SSL session key. The
secret value x is encrypted with the server’s public key
component e: y = xe (mod N). Next, the client uses D
to create a new vector Z by computing zi = ydi (mod
N), for 1 ≤ i ≤ k. The client then returns the vector Z
and the encrypted session key seed y to the responder in
the client key exchange message. Once the server receives
this message it uses the elements of vector Z to recover
x, by computing the values Mp =

∏k
i=1 zfi

i (mod P ) and
Mq =

∏k
i=1 zgi

i (mod Q). Finally, the responder recovers
x by calculating Mpnp + Mqnq (mod N), which is much
less computationally expensive than performing the mod-
ular exponentiation yd (mod N). The responder can now
derive the session key Ks.

4.3.1 Counterbalancing memory expenditure

As with the unmodified version of TLS, CA-RSA does not
make use of cookies to counterbalance memory expendi-
ture. The puzzle construction adopted by the protocol
is inadequate to replace the function of a cookie for al-
lowing the protocol responder to remain stateless or serve
as a reachability test. Two consequences of this are that
the responder must store state on each connection request,
making it vulnerable to a memory-based denial of service
attack, and secondly, the responder has no way of assessing
whether the initiator is using a spoofed IP address.

4.3.2 Counterbalancing computational expendi-
ture

Recognising that while CA-RSA eases responder compu-
tational burden it cannot be used as a proof of work, the
protocol is supplemented by the addition of a Juels and

Brainard [12] style client puzzle to ensure that the respon-
der only attempts to decrypt values from initiators who
can provide a proof of work. Unfortunately the puzzle
construction specified is in violation of the guidelines spec-
ified by Juels and Brainard and is constructed by hashing
a random value. A puzzle construction that does not in-
clude time, or rely on a time variant responder secret or
any connection specific parameters, introduces numerous
problems. Firstly, the responder will be unable to know
whether the puzzle solution it is verifying is to a puzzle that
it issued3 or if it is a puzzle that has been solved previously
unless it stores state. As mentioned earlier, storing state
leaves the responder vulnerable to memory-based denial of
service attacks. Secondly, the failure to make puzzles time
variant provides no mechanism for a responder to defend
itself against an initiator that hoards puzzles, generating
solutions at its convenience, and then flooding the respon-
der with legitimate puzzle solutions. Finally, the failure
to encode connection specific parameters into the puzzle,
or to make use of cookies, prevents the responder remain-
ing stateless after message 1 and results in the responder
having no assurance that the initiator is reachable at the
IP address claimed. Storing state without confirmation of
initiator reachability exposes the responder to anonymous
memory-based flooding denial of service attacks.

4.3.3 Gradual authentication

Assuming that the responder maintains the significant
amount of state required to keep track of issued puzzles,
the receipt of a valid puzzle solution could provide some
assurance that the initiator has committed computational
resources to having the protocol proceed.

While this protocol attempts to counterbalance com-
putational expenditure, the combination of a poorly con-
structed proof of work, a failure to counterbalance memory
expenditure leaves the protocol vulnerable to denial of ser-
vice attacks. To counterbalance memory expenditure, the
responder should adopt the use of cookies, or use a puzzle
construction that is consistent with meeting the functional
requirements of a cookie.

5 CONCLUSIONS AND FUTURE WORK

Key establishment protocols are particularly vulnerable to
denial of service attacks owing to the significant resources
they must expend in authenticating initiators and generat-
ing the cryptographic keys used for securing ongoing com-
munications. The goal of denial of service resistance in
key establishment protocols is to ensure that attackers can-
not prevent a legitimate initiator and responder deriving
cryptographic keys without expending resources beyond a
responder determined threshold.

3If an initiator can choose its own puzzles to solve independently
of the responder, there would be a great risk of the initiator precom-
puting a large number of puzzle solutions to use in a denial of service
attack.
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I R

e, d,N : RSA parameters
fi, gi ∈R {0, 1}c

D = (d1 , d2 , . . . , dk ) s.t.

d ≡
k∑

i=1

fidi mod P − 1 and

d ≡
k∑

i=1

gidi mod Q− 1

np = Q(Q−1 mod P )
nq = P (P−1 mod Q)

1) IDI ,NI , saI−−−−−−−−−−−−−−−−−−−−−−→ s ∈R {0, 1}a

t = H (s)
puzzle = (t , s(b)) ;
s(b) = last b bits of s

IDI , IDR,NI ,NR, saR,

2) J s.t. H(J ||s(b)) = t
puzzle, (e,N ),D

←−−−−−−−−−−−−−−−−−−−−−−
x ∈R {0, 1}48

Ks = H(x,NI , NR)
y = xe mod N

zi = ydi mod N

Z = (z1 , z2 , . . . , zk )
IDI , IDR,NI ,NR,

3) saR, J , y ,Z−−−−−−−−−−−−−−−−−−−−−−→ H(J ||s(b))
?= H(s)

Mp =
∏k

i=1 zfi

i mod P

Mq =
∏k

i=1 zgi

i mod Q

x = yd =
Mpnp + Mqnq mod N

Ks = H(x,NI , NR)

4) ServerF inish←−−−−−−−−−−−−−−−−−−−−−−

Figure 4: CA-RSA Protocol [21]

In this paper we have explored the strategies and tech-
niques that permit responders to counterbalance memory
expenditure, counterbalance computational expenditure,
and to gradually authenticate initiators, thereby deter-
mining the level of resources an attacker must commit to
disrupting the key establishment protocol and improving
the responders resistance to denial of service attacks. The
adoption of denial of service resistance techniques in three
key establishment protocols was critically analysed with
misapplication of techniques identified and recommenda-
tions for more effectively applying the techniques made.

Cookies were identified as a technique that can counter-
balance memory expenditure and initiate gradual authen-
tication. Correctly constructed cookies allow the protocol
responder to remain stateless and serve as a reachability
test, providing the responder with assurance that an ini-
tiator is able to send and receive messages from a claimed

address. Cookie generation must not lead to any state cre-
ation, as this will expose the responder to a “cookie crumb”
attack.

Proofs of work are hard but tractable problems that can
be used by an initiator to prove to a responder that a
verifiable level of computational effort has been expended.
Proofs of work can be used to counterbalance computa-
tional expenditure at the responder and authenticate the
commitment of initiator to expending resources to hav-
ing the protocol proceed. While proofs of work can be
constructed from a range of underlying problem, proofs
of work based on hash-based constructions are the most
prevalent as they are simple to construct and can be veri-
fied cheaply. The requirements for overloading cookie func-
tionality into a hash-based client puzzle were presented
with the observation that puzzles based on the Aura et
al. [13] construction cannot implement the required func-
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Table 2: DoS Resistance Techniques in Protocols
Key Exchange Mechanisms Strategies
Protocol

Modified IKE Cookie Counterbalancing Memory

PoW Counterbalancing CPU

Cookie → HASH∗
I → Signature Gradual Auth.

JFK Cookie Counterbalancing Memory

Nonce → Cookie → MAC → Signature Gradual Auth.

CA-RSA Client-Aided Comp. Counterbalancing CPU

PoW Counterbalancing CPU

PoW → Decrypt secret seed Gradual Auth.

Photuris [7] Cookie Counterbalancing Memory

Cookie → EK{message} → Signature Gradual Auth.

HIP [28] Cookie Counterbalancing Memory

PoW Counterbalancing CPU

Cookie → PoW → Signature Gradual Auth.

IKEv2 [29] Cookie Counterbalancing Memory

Cookie → MAC → Signature Gradual Auth.

Lee & Fung [30] PoW Counterbalancing Memory

PoW Counterbalancing CPU

PoW → Signature Gradual Auth.

tionality, so must be supplemented by a cookie.
We note that the number of key establishment proto-

cols implementing denial of service resistance techniques
is limited, with our review of the literature revealing only
seven protocols (Table 2 presents a summary). Of those
protocols implementing denial of service resistance tech-
niques only two, Host Identity Protocol (HIP) and Mod-
ified IKE, use techniques supporting all three strategies:
counterbalancing computational expenditure; counterbal-
ancing memory expenditure; and gradual authentication.
The protocols implementing all three strategies do not ap-
pear to be significantly more complex than the protocols
implementing only a subset of the strategies.

The notion of gradual authentication was introduced as
a strategy for allowing responders to gain assurance that
an attack is not underway and that an initiator is willing
to commit computational and memory resources to hav-
ing the protocol proceed. Specific techniques for gradually
authenticating initiators were presented and discussed. A
common characteristic of each of the techniques is that
they all afford the responder the ability to cheaply ver-
ify some aspect of a received message, while fabrication
of a message that can pass the responders check is expen-
sive for an attacker. The adversarial models under which
each technique is secure, however, are yet to be rigorously
analysed. Formalising the adversarial models under which
techniques used for gradual authentication may be consid-
ered secure is an area for future work.

To exhibit strong denial of service resistance charac-
teristics, we recommend that protocols must adopt tech-
niques to implement all available strategies, including:
counterbalancing computational expenditure; counterbal-

ancing memory expenditure; and gradually authenticating
requests. Addressing only a subset of these, counterbalanc-
ing computational expenditure while storing state prema-
turely for example, will result in protocols that potentially
have residual denial of service vulnerabilities.

Responders should always gain assurance that an initia-
tor is reachable at a claimed address, either via cookies or
correctly constructed puzzles. Failure to test reachability
leaves the responder vulnerable to attacks from spoofed
source addresses.

Finally, there would appear to be a pressing need for de-
veloping techniques for quantifying the denial of service re-
sistance a protocol exhibits and how this level of resistance
changes with the addition or substitution of techniques.
Meadows’s cost-based framework [6] for analysing denial
of service resistance appears to be a promising approach.
Adoption of the framework and analysis of its suitability
for informing protocol design choices with respect to the
selection of denial of service resistance techniques is also
an area of future work.
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