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Denial-of-Service Vulnerability of Hash-based
Transaction Sharding: Attack and

Countermeasure
Truc Nguyen and My T. Thai

Abstract—Since 2016, sharding has become an auspicious solution to tackle the scalability issue in legacy blockchain systems.
Despite its potential to strongly boost the blockchain throughput, sharding comes with its own security issues. To ease the process of
deciding which shard to place transactions in, existing sharding protocols use a hash-based transaction sharding in which the hash
value of a transaction determines its output shard. Unfortunately, we show that this mechanism opens up a loophole that could be
exploited to conduct a single-shard flooding attack, a type of Denial-of-Service (DoS) attack, to overwhelm a single shard that ends up
reducing the performance of the system as a whole.
To counter the single-shard flooding attack, we propose a countermeasure that essentially eliminates the loophole by rejecting the use
of hash-based transaction sharding. The countermeasure leverages the Trusted Execution Environment (TEE) to let blockchain’s
validators securely execute a transaction sharding algorithm with a negligible overhead. We provide a formal specification for the
countermeasure and analyze its security properties in the Universal Composability (UC) framework. Finally, a proof-of-concept is
developed to demonstrate the feasibility and practicality of our solution.

Index Terms—Blockchain, denial-of-service, trusted execution environment, flooding

✦

1 INTRODUCTION

Sharding, an auspicious solution to tackle the scalability
issue of blockchain, has become one of the most trend-
ing research topics and been intensively studied in recent
years [1], [2], [3], [4], [5], [6], [7], [8], [9]. In the context
of blockchain, sharding is the approach of partitioning the
set of nodes (or validators) into multiple smaller groups
of nodes, called shard, that operate in parallel on disjoint
sets of transactions and maintain disjoint ledgers. By paral-
lelizing the consensus work and storage, sharding reduces
drastically the storage, computation, and communication
costs that are placed on a single node, thereby scaling the
system throughput proportionally to the number of shards.
Previous studies [2], [3], [5] show that sharding could po-
tentially improve blockchain’s throughput to thousands of
transactions per second (whereas the current Bitcoin system
only handles up to 7 transactions per second and requires
60 minutes confirmation time for each transaction).

Despite the incredible results in improving the scalabil-
ity, blockchain sharding is still vulnerable to some severe
security problems. The root of those problems is that, with
partitioning, the honest majority of mining power or stake
share is dispersed into individual shards. This significantly
reduces the size of the honest majority in each shard, which
in turn dramatically lowers the attack bar on a specific
shard. Hence, a blockchain sharding system must have
some mechanisms to prevent adversaries from gaining the
majority of validators of a single shard, this is commonly
referred to as single-shard takeover attack.

• T. Nguyen and My T. Thai are with the Department of Computer &
Information Science & Engineering, University of Florida, Gainesville,
FL, 32611.
E-mail: truc.nguyen@ufl.edu and mythai@cise.ufl.edu

In this paper, we take a novel approach by exploiting
the inter-shard consensus to identify a new vulnerability of
blockchain sharding. One intrinsic attribute of blockchain
sharding is the existence of cross-shard transactions that,
simply speaking, are transactions that involve multiple
shards. These transactions require the involved shards to
perform an inter-shard consensus mechanism to confirm the
validity. Hence, intuitively, if we could perform a Denial-of-
Server (DoS) attack to one shard, it would also affect the
performance of other shards via the cross-shard transac-
tions. Furthermore, both theoretical and empirical analysis
[2], [5] show that most existing sharding protocols have
99% cross-shard transactions. This implies that an attack
on one shard could potentially impact the performance of
the entire blockchain. In addition, with this type of attacks,
the attacker is a client of the blockchain system, hence, this
attack can be conducted even when we can guarantee the
honest majority in every shard.

Although existing work does have some variants of
flooding attacks that try to overwhelm the entire blockchain
by having the attacker generate a superfluous amount of
dust transactions [10], [11], it is unclear how we could
conduct this attack in a sharding system. In fact, we em-
phasize that a conventional transactions flooding attack on
the entire blockchain (as opposed to a single shard) would
not be effective for two reasons. First, blockchain sharding
has high throughput, hence, the cost of attack would be
enormous to generate a huge amount of dust transactions
that is sufficiently much greater than the system throughput.
Second, more importantly, since the sharding system scales
with the number of shards, it can easily tolerate such attacks
by adding more shards to increase throughput.

To bridge this gap, we propose a single-shard flood-
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ing attack to exploit the DoS vulnerability of blockchain
sharding. Instead of overwhelming the entire blockchain,
an attacker would strategically place a tremendous amount
of transactions into one single shard in order to reduce the
performance of that shard, as the throughput of one shard is
not scalable. The essence of our attack comes from the fact
that most sharding proposals use hash-based transaction
sharding [1], [2], [3], [6]: a transaction’s hash value is used to
determine which shard to place the transaction (i.e., output
shard). Since that hash value (e.g., SHA-256) of a transaction
is indistinguishable from that of a random function, this
mechanism can efficiently distribute the transactions evenly
among the shards and thus widely adopted. Therefore, an
attacker can manipulate the hash to generate an excessive
amount of transactions to one shard.

As we argue that using hash values to determine the
output shard is not secure, we propose a countermeasure
to efficiently eliminate the attack for the sharding system.
By not using the transaction’s hash value or any other
attributes of the transaction, we can delegate the task of
determining the output shard to the validators, then the
adversary cannot carry out this DoS attack. However, this
raises two main challenges: (1) what basis can be used to
determine the output shard of a transaction, and (2) how
honest validators can agree on the output of (1). For the first
challenge, we need a transaction sharding algorithm to decide
the output shard for each transaction. OptChain [5] is an
example algorithm where it aims to minimize the number
of cross-shard transactions and also balance the load among
the shards. For the second challenge, a naive solution is
to have the validators reach on-chain consensus on the
output shard of every transaction. However, that would be
very costly and reject the main concept of sharding, that
is, each validator only processes a subset of transactions to
parallelize the consensus work and storage.

To overcome the aforementioned challenge, we establish
a system for executing the transaction sharding algorithm
off-chain and attesting the correctness of the execution. As
blockchain validators are untrusted, we need to guarantee
that the execution of the transaction sharding algorithm is
tamper-proof. To accomplish this, we leverage the Trusted
Execution Environment (TEE) to isolate the execution of the
algorithm inside a TEE module, shielding it from potentially
malicious hosts. With this approach, we are not imposing
any significant on-chain computation overhead as compared
to the hash-based transaction sharding and also maintain
the security properties of the blockchain. Moreover, this
solution can be easily integrated into existing blockchain
sharding proposals, and as modern Intel CPUs from 2014
support TEE, the proposed countermeasure is compatible
with current blockchain systems.

Contribution. Our main contributions are as follows:
• We identify a new attack on blockchain sharding that

exploits the loophole of using hash-based transaction
sharing, namely single-shard flooding attack.

• To evaluate the potential impact of this attack on the
blockchain system, we develop a discrete-event simula-
tor for blockchain sharding that can be used to observe
how sharding performance changes when the system is
under attack. Not only for our attack analysis purposes,
this simulator can also assist the research community

in evaluating the performance of a sharding system
without having to set up multiple computing nodes.

• We propose a countermeasure to the single-shard flood-
ing attack by executing transaction sharding algorithms
using TEE. Specifically, we provide a formal specifi-
cation of the system and formally analyze its security
properties in the Universal Composability (UC) frame-
work with a strong adversarial model.

• To validate our proposed countermeasure, we develop
a proof-of-concept implementation of the system and
provide a performance analysis to demonstrate its fea-
sibility.

Organization. The rest of the paper is structured as follows.
Some background and related work are summarized in Sec-
tion 2. Section 3 describes in detail the single-shard flooding
attack with some preliminary analysis to demonstrate its
practicality. In Section 4, we present the construction of our
simulator and conduct some experiments to demonstrate
the damage of the attack. The countermeasure is discussed
in Section 5 with a formal specification of the system. Sec-
tion 6 gives a security analysis of the countermeasure along
with a performance evaluation on the proof-of-concept im-
plementation. Finally, Section 7 concludes our paper.

2 BACKGROUND AND RELATED WORK

Blockchain sharding. Several solutions [1], [2], [3], [4], [5],
[6], [7], [8], [9] suggest partitioning the blockchain into
shards to address the scalability issue in Bitcoin blockchain.
Typically, with sharding, the blockchain’s state is divided
into multiple shards, each has its own independent state
and transactions and is managed by the shard’s validators.
By having multiple shards where each of them processes
a disjoint set of transactions, the computation power is
parallelized, and sharding in turn helps boost the system
throughput with respect to the number of shards. Some
main challenges of a sharding protocol include (1) how to
securely assign validators to shards, (2) intra-shard consen-
sus, (3) assigning transactions to shards, and (4) processing
cross-shard transactions. Our proposed attack exploits the
third and fourth challenges of sharding that deal with
transactions in a sharding system.

In a simple manner, a transaction is cross-shard if it
requires confirmations from more than one shard. In the Un-
spent Transaction Outputs (UTXO) model used by Bitcoin,
each transaction has multiple outputs and inputs where an
output dictates the amount of money that is sent to a Bitcoin
address. Each of the outputs can be used as an input to
another transaction. To prevent double-spending, an output
can be used only once. Denote tx as a transaction with
two inputs tx1 and tx2, this means tx uses one or more
outputs from transaction tx1 and tx2. Let S1, S2, and S3 be
the shards containing tx1, tx2, and tx, respectively, we refer
S1 and S2 as the input shards of tx, and S3 as the output
shard. If these three shards are the same, tx is an in-shard
transaction, otherwise tx is cross-shard.

To determine the output shard of a transaction, most
sharding protocols use the hash value of the transaction to
calculate the ID of the output shard. By leveraging the hash
value, the transactions are effectively assigned to shards in
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Fig. 1: Processing cross-shard transaction tx. tx has input
shards S1, S2, and output shard S3. tx has to wait to be
confirmed in S1, S2 before it can be validated in S3.

a uniformly random manner. However, we show that this
mechanism can be manipulated to perform a DoS attack.

To process cross-shard transactions, several cross-shard
validation mechanisms have been proposed [2], [3], [4]. A
cross-shard validation mechanism determines how input
and output shards can coordinate to validate a cross-shard
transaction. This makes the process of validating cross-shard
transactions particularly expensive since the transaction
must wait for confirmations from all of its input shards be-
fore it can be validated in the output shard. Fig. 1 illustrates
this process. Our attack takes advantage of this mechanism
to cause a cascading effect that creates a negative impact on
shards that are not being attacked.

Denial-of-service and flooding attacks. Denial-of-
service (DoS) is commonly defined as an intentional attack
on availability and it has been around for decades [12]. In
general, it is hard to defend against the DoS attacks and
we typically can only mitigate them. A common mitigation
technique is based on anomaly detection to filter out DoS
attack packets [13], [14], [15].

In the context of Bitcoin, DoS typically takes the form
of a flooding attack that overwhelms the system with a
flood of transactions. Over the years, we have observed
the economic impact of this attack as Bitcoin has been
flooded with dust transactions by malicious users to make
legitimate users pay higher mining fees [16]. There exist
some variants of flooding attack that aim to overwhelm
an entire blockchain system [10], [11], not a single shard.
The main concept of the attack is to send a huge amount
of transactions to overwhelm the mempool, fill blocks to
their maximum size, and effectively delay other transac-
tions. Typically, unconfirmed transactions are stored in the
mempools managed by blockchain validators. In contrast to
the limited block size, the mempool size has no size limit.

This kind of attack requires the attacker to flood the
blockchain system at a rate that is much greater than the sys-
tem throughput. Intuitively, such an attack is not effective
on a sharding system because its throughput is exceedingly
high. In this paper, we show how attackers can manipulate
the transaction’s hash to overwhelm a single shard, thereby
damaging the entire blockchain through cascading effects
caused by cross-shard transactions.

Blockchain on Trusted Execution Environment (TEE).
A key building block of our countermeasure is TEE.
Memory regions in TEE are transparently encrypted and
integrity-protected with keys that are only available to
the processor. TEE’s memory is also isolated by the CPU

hardware from the rest of the host’s system, including high-
privilege system software. Thus the operating system, hy-
pervisor, and other users cannot access the TEE’s memory.
Among available implementations of TEE, Intel SGX [17]
supports generating remote attestations that are used to
prove the correct execution of programs running inside TEE.

There has been a recent growth in adopting TEEs to
improve blockchains [18], [19], [20], [21], but not sharding
systems. Teechain [19] proposes an improvement over the
off-chain payment network in Bitcoin using TEE to enable
asynchronous blockchain access. BITE [18] leverages TEE
to further enhance the privacy of Bitcoin’s clients. In [20],
[21], the authors develop secure and efficient smart contract
platforms on Bitcoin and Ethereum, respectively, using TEE
as a module to execute the contract’s code.

We argue that TEE can be used to develop an effi-
cient countermeasure for the single-shard flooding attack
in which transaction sharding algorithms can be securely
executed inside a TEE module. However, since existing
solutions are designed to address some very specific issues
such as smart contracts or payment networks, applying
them to blockchain sharding systems is not straightforward.

3 SINGLE-SHARD FLOODING ATTACK

In this section, we describe our proposed single-shard flood-
ing attack on blockchain sharding starting with the threat
model and detail on performing the attack. Then, we present
some preliminary analysis of the attack to illustrate its
potential impact and practicality.

3.1 Threat Model

Attacker. We use Bitcoin-based sharding systems, such as
OmniLedger, RapidChain, and Elastico, as the attacker’s tar-
get. We consider an attacker who is a client of the blockchain
system such that:

1) The attacker possesses enough amount of Bitcoin ad-
dresses to perform the attack. In practice, Bitcoin ad-
dresses can be generated at no cost.

2) The attacker has spendable bitcoins in its wallet and
the balance is large enough to issue multiple trans-
actions between its addresses for this attack. Each of
the transactions is able to pay the minimum relay fee
minRelayTxFee. We will discuss the detailed cost in
the next section.

3) The attacker is equipped with software that is capable
of generating transactions at a rate that is higher than
a shard’s throughput, which will be discussed in the
subsequent section.

4) Since this is a type of DoS attack, to prevent it from
being blocked by the blockchain network, the attacker
can originate the attack from multiple sources. The
attacker can also leverage some kind of anonymous
communication when connecting to the Bitcoin net-
work to prevent the network packets from revealing
the attacker’s identity. Therefore, we assume that the
attacker can remain anonymous and untraceable.

Goals of attacks. By employing the concept of flooding
attack, the main goal of the single-shard flooding attack is
to overwhelm a single shard by sending a huge amount
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of transactions to that shard. The impact of this attack
has been widely studied on non-sharded blockchains like
Bitcoin such that it can reduce the system performance
by delaying the verification of legitimate transactions and
eventually increase the transaction fee.

Furthermore, with the concept of cross-shard transac-
tions where each transaction requires confirmation from
multiple shards, an attack to overwhelm one shard could
affect the performance of other shards and reduce the
system’s performance as a whole. For example, in Fig. 1,
if S1 were under attack, the transaction validation would
also be delayed in S3. Previous work [2] shows that placing
transactions using their hash value could result in 99.98% of
cross-shard transactions. Since the throughput of one shard
is limited, under our attack, it could effectively become the
performance bottleneck of the whole system. Therefore, to
make the most out of this scheme, the attacker would target
the shard that has the lowest throughput in the system.

How to perform attack. In most Bitcoin-based sharding
systems, such as OmniLedger, RapidChain, and Elastico, the
hash of a transaction determines which shard to put the
transaction in. Specifically, the ending bits of the hash value
indicate the output shard ID. The main idea of our attack
is to have the attackers manipulate the transaction’s hash in
order to place it into the shard that they want to overwhelm.
To accomplish this, we conduct a brute-force generation
of transactions by alternating the output addresses of a
transaction until we find an appropriate hash value.

Let T be the shard that the attacker wants to overwhelm.
We define a "malicious transaction" as a transaction whose
hash was manipulated to be put in shard T . Denote tx as a
transaction, tx.in is the set of input addresses, and tx.out is
the set of output addresses. We also denote O as the set of
attacker’s addresses, I ⊆ O as the set of attacker’s addresses
that are holding some bitcoins. Let H(·) be the SHA-256
hash function (its output is indistinguishable from that of a
random function), Algorithm 1 describes how to generate a
malicious transaction in a system of 2N shards.

Starting with a raw transaction tx, the algorithm ran-
domly samples a set of input addresses for tx.in from I
such that the balance of those addresses is greater than
the minimum relay fee. It then randomly samples a set of
output addresses for tx.out from O and set the values for
tx.out so that tx can pay the minimum relay fee. The hash
value of the transaction is determined by double hashing
the transaction’s data using the SHA-256 function. It checks
if the final N bits indicate T (& denotes a bitwise AND), if
that is true, it outputs the malicious tx that will be placed
into shard T . Otherwise, it re-samples another set of output
addresses for tx.out from O.

3.2 Preliminary Analysis

3.2.1 Capability of generating malicious transactions
In this section, we demonstrate the practicality of the attack
by assessing the capability of generating malicious trans-
actions on a real machine. Suppose we have 2N shards
and a transaction tx, that means we will use N ending
bits of H(tx) to determine its shard. Suppose we want
to put all transactions into shard 0, we need to generate
some malicious transactions tx such that the last N bits of

Algorithm 1 Generate a malicious transaction
Input: I,O, N, T
Output: A malicious transaction tx

1: tx← raw transaction
2: tx.in

$←I
3: while H(H(tx)) & (1256−N ∥ 0N ) ̸= T do
4: tx.out

$←O
5: Set values for tx.out to satisfy the minRelayTxFee.
6: end while
7: Ret tx

TABLE 1: Capability of generating malicious tx with respect
to the no. of shards on an Intel Core i7 laptop with 8 threads.

No. of shards No. of malicious tx per sec

2 823,512
4 412,543
8 205,978
16 103,246
32 52,361
64 26,939

H(tx) must be 0. We calculate the probability of generating a
malicious transaction as follows. As a SHA-256 hash has 256
bits, the probability of generating a hash with N ending zero
bits will be 2256−N

2256 = 1
2N . Therefore, we expect to obtain 1

malicious transaction per generating 2N transactions. That
means if we have 16 shards, we can obtain 1 malicious tx
(i.e., the last 4 bits are zero) per generating 16 transactions.

To see the capability of generating malicious transac-
tions, we conduct an experiment on an 8th generation Intel
Core i7 laptop. The program to generate transactions is
written in C++ and runs with 8 threads. When the number
of shards is 64, the program can generate up to 1,644,736
transaction hashes per second, of which there are 26,939
malicious transactions (8 ending bits are zero). In short,
within 1 second, a laptop can generate about 26,939 ma-
licious transactions, which is potentially much more than
the throughput of one shard. Table 1 shows the number of
malicious transactions generated per second with respect
to the number of shards. Note that, in practice, an attacker
can easily produce much higher numbers by using a more
highly capable machine with a faster CPU.

3.2.2 Cost of attacks

The default value of minRelayTxFee in Bitcoin is 1,000
satoshi per kB, which is about $0.10 (as of Feb 2020). Taking
into account that the average transaction size is 500 bytes,
each transaction needs to pay $0.05 as the minRelayTxFee.
Our experiments below show that generating 2,500 mali-
cious transactions is enough to limit the throughput of the
whole system by that of the attacked shard. Hence, the
attacker needs about $125 to perform the attack effectively.
Furthermore, by paying the minimum relay fee without
paying the minimum transaction fee, the malicious trans-
actions will still be relayed to the attacked shard’s mempool
but will not be confirmed, thereby retaining the starting
balance.
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Fig. 2: Affected transactions by the single-shard flooding
attack

3.2.3 Cascading effect of the single-shard flooding attack
We estimate the portion of transactions that are affected
by the attack. A transaction is affected if one of its input
shards or the output shard is the attacked shard. In [9],
the authors calculate the ratio of transactions that could be
affected when one shard is under attack. Specifically, when
considering a system with n shards and transactions with m
inputs, the probability of a transaction to be affected by the
attack is 1− (n−1

n )m+1. The result is illustrated in Fig. 2. As
can be seen, a typical transaction with 2 or 3 inputs has up to
70% chance of being affected with 4 shards. However, with
16 shards about 20% of the transactions are still affected.
Note that this number only represents the transactions that
are "directly" affected by the attack, the actual number is
higher when considering transactions that depend on the
delayed transactions.

Even though the analysis shows that the number of
affected transactions is less at 16 shards than at 4 shards,
in fact, the attack does much more damage to the 16-shard
system. The intuition of this scenario is that as we increase
the number of shards, we also increase the number of input
shards per transaction. Since a transaction has to wait for
the confirmations from all of its input shards, an affected
transaction in the 16-shard system takes more time to be
validated than that in the 4-shard system. The experiments
in the next section will illustrate this impact in more detail.

4 ANALYZING THE ATTACK’S IMPACTS

In this section, we present a detailed analysis of our attack,
especially how it impacts the system performance as a
whole. Before that, we describe the design of our simulator
that is developed to analyze the performance of a blockchain
sharding system.

4.1 Simulator

Our implementation was based on SimBlock [22], a discrete-
event Bitcoin simulator that was designed to test the per-
formance of the Bitcoin network. SimBlock is able to sim-
ulate the geographical distribution of Bitcoin nodes across
six regions (North America, South America, Europe, Asia,
Japan, Australia) of which the bandwidth and propagation
delay are set to reproduce the actual behavior of the Bitcoin
network. Nevertheless, SimBlock fails to capture the role of

Fig. 3: UML class diagram of the simulator

transactions in the simulation, which is an essential part in
evaluating the performance of blockchain sharding systems.

Our work improves SimBlock by taking into consider-
ation the Bitcoin transactions and simulating the behavior
of sharding. Fig. 3 shows a simple UML class diagram de-
picting the relations between components of our simulator.
As can be seen later, our simulator can be easily used to
evaluate the performance of any existing or future sharding
protocols.

Transactions. The sole purpose of SimBlock was only to
show the block propagation so the authors did not consider
transactions. To represent Bitcoin transactions, we adopt the
Transaction-as-Nodes (TaN) network proposed in [5]. Each
transaction is abstracted as a node in the TaN network, there
is a directed edge (u, v) if transaction u uses transaction v
as an input. In our simulator, each transaction is an instance
of a Transaction class and can be directly obtained from the
Bitcoin dataset. At the beginning of the simulation, a Client
instance loads each transaction from the dataset and sends
them to the network to be confirmed by Nodes. Depend-
ing on the transaction sharding algorithm, each transaction
could be associated with one or more shards.

Furthermore, our simulator can also emulate real Bitcoin
transactions in case we need more transactions than what
we have in the dataset or we want to test the system with
a different set of transactions. With regard to sharding, the
two important factors of a transaction are the degree and the
input shards. From the Bitcoin dataset of more than 300 mil-
lion real Bitcoin transactions, we fit the degree distribution
with a power-law function as in Fig. 4a (black dots are the
data, and the blue line is the resulting power-law function).
The resulting function is y = 106.7x−2.3. Fig. 4b shows
the number of input shards with 16 shards (using hash-
based transaction sharding) that is also fitted with a power-
law function. The resulting function is y = 107.2x−2.2.
Hence, the Client can use these distributions to sample the
degree and input shards when generating transactions that
resemble the distribution of the real dataset.

Sharding. After the simulator generates Node instances,
each of them is distributed into an instance of Shard. All
nodes in a shard share the same ledger and a mempool of
unconfirmed/pending transactions. In the class Node, we
implement a cross-shard validation algorithm that decides
how nodes in different shards can communicate and confirm
cross-shard transactions. In the current implementation, we
use the mechanism proposed in [3] to process cross-shard
transactions.

For each Node instance, upon receiving a transaction,
it will relay the transaction to the destination shard. When
the transaction reaches the shard, it will be stored in the



6

(a) Degree distribution of the Bit-
coin transactions. Fitted power-
law y = 106.7x−2.3.

(b) Distribution of Bitcoin trans-
actions’ number of input shards.
Fitted power-law y = 107.2x−2.2.

Fig. 4: Bitcoin transactions. The black dots are the data, the
blue line shows a fitted power-law function

mempool of the Node instances in that shard. Each transac-
tion in the mempool is then validated using an intra-shard
consensus protocol.

Use cases of the simulator. Besides being used to test
the impact of our proposed attack, researchers can also
use the simulator to evaluate the performance of multiple
blockchain sharding systems. By far, most experiments on
blockchain sharding have to be run on numerous rented
virtual machines [1], [2], [3], [4], this is notably costly and
complicated to set up. Without having to build the whole
blockchain system, our simulator is particularly useful when
researchers need to test various algorithms and system
configurations on blockchain long before deploying the real
system.

By using simulation, various setups can be easily eval-
uated and compared, thereby making it possible to recog-
nize and resolve problems without the need of performing
potentially expensive field tests. By exploiting a pluggable
design, the simulator can be easily reconfigured to work
with different algorithms on transaction sharding, cross-
shard validation, validators assignment, and intra-shard
consensus protocol.

4.2 Experimental Evaluations

Our experiments are conducted on 10 million real Bitcoin
transactions by injecting them into the simulator at some
fixed rates. We generate 4000 validator nodes and randomly
distribute them into shards. In the current Bitcoin setting,
the block size limit is 1 MB, and the average size of a transac-
tion is 500 bytes, hence, each block contains approximately
2000 transactions. We evaluate the system performance with
4, 8, 12, and 16 shards, which are the number of shards that
were used in previous studies [2], [3], [5].

4.2.1 Throughput
The experiment in this section illustrates how malicious
transactions affect the system throughput. In order to find
out the best throughput of the system, we gradually increase
the transaction rate (i.e., the rate at which transactions are
injected into the system) and observe the final throughput
until the throughput stops increasing. At 16 shards, the best
throughput is about 4000 tps, which is achieved when the
transaction rate is about 5000 tps. For this experiment, we
fix the rate at 5000 tps so that the system is always at its best
throughput with respect to the number of shards.

(a) Impact on system throughput (b) Impact on system latency

Fig. 5: Impact on system throughput and latency

To perform the attack, the attacker runs Algorithm 1 to
generate some portions of malicious transactions into shard
0. For example, if 10% of transactions are malicious, then at
each second, 500 transactions will be put into shard 0, and
the rest 4,500 txs are distributed into shards according to
their hash value. The results are shown in the Fig. 5a.

At 0%, the system is not under attack, the system
achieves its best throughput with respect to the number of
shards. The horizontal dashed line illustrates the through-
put of 1 shard, which is the lower bound of the system
throughput. As can be seen, when we increase the number
of malicious transactions, the system throughput rapidly
decreases. This behavior can be explained as we have
multiple cross-shard transactions that are associated with
the attacked shard, their delays could produce a severe
cascading effect that ends up hampering the performance
of other shards. Thus, the throughput as a whole is dimin-
ished. Moreover, we can observe that higher numbers of
shards are more vulnerable to the attack. With 16 shards,
the performance reduces exponentially as we increase the
portion of malicious transactions to 50%. Specifically, with
only 20% malicious transactions, the throughput was re-
duced by more than half. This behavior confirms our prior
preliminary analysis.

Another interesting observation is that at 50% malicious
transactions, the throughput nearly reaches its lower bound,
hence, the sharding system would not be any faster than us-
ing only 1 shard. At this time, the attacker has accomplished
its goal, that is, making the attacked shard the bottleneck of
the whole system. 50% malicious transactions translates to
2,500 malicious transactions that are sent to the system at
each second, previous experiments and analysis in Table 1
show that a normal laptop could easily generate more than
100,000 malicious transactions per second.

4.2.2 Latency
We analyze the impact of the single-shard flooding attack
on the system latency, which is the average amount of time
needed to confirm a transaction. To avoid backlog when the
system is not under attack, for each number of shards, the
transaction rate is set to match the best system throughput.
The results are shown in the Fig. 5b. In the same manner as
the previous experiment, the attack effectively increases the
latency of the system as a whole. We shall see in the next
experiment that the attack creates a serious backlog in the
mempool of the shards, thereby increasing the waiting time
of transactions and eventually raising the average latency.
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(a) Number of shards = 16 (b) 20% malicious transactions

Fig. 6: Impact on the attacked shard’s queue size

This experiment also corroborates the experiment on
system throughput as greater numbers of shards are also
more vulnerable to the attack. With 16 shards, although it
provides the fastest transaction processing when the system
is not under attack, nevertheless, it becomes the slowest one
even with only 10% of malicious transactions. Additionally,
when the attacker generates 20% malicious transactions,
the latency is increased by more than 10 times. Therefore,
we can conclude that although adding more shards would
help improve the system performance, under our attack, the
system would become more vulnerable.

4.2.3 Queue/Mempool size
In the following experiments, we investigate the impact of
this single-shard flooding attack on the queue (or mempool)
size of shard 0, which is the shard that is under attack. This
gives us insights into how malicious transactions cause a
backlog in the shard. Firstly, we fix the number of shards
and vary the portion of malicious transactions. Fig. 6a illus-
trates the queue size over time of shard 0 with a system of 16
shards where each line represents the portion of malicious
transactions. When the system is not under attack, the queue
size is stable with less than 15,000 transactions at any point
in time. As we put in only 10% malicious transactions, the
queue size reaches more than 2 million transactions.

Note that under our attack, the transactions are in-
jected into shard 0 as a rate that is much higher than its
throughput, thus, the queue will keep on increasing until all
transactions have been injected. At this point, transactions
are no longer added to the shard and the shard is still
processing transactions from the queue, hence, the queue
size decreases. This explains why the lines (i.e., queue size)
go down towards the end of the simulation.

The result also demonstrates that the congestion gets
worse as we increase the malicious transactions. Due to the
extreme backlog, transactions have to wait in the mempool
for a significant amount of time, thereby increasing their
waiting time. This explains the negative impact of malicious
transactions on system throughput and latency.

Next, we observe the queue size with different numbers
of shards. Fig. 6b presents the impact of the attack with 20%
malicious transactions at different numbers of shards. As
can be seen, when we increase the number of shards, the
backlog of transactions builds up much faster and greater
due to the fact that we are having more cross-shard transac-
tions. This result conforms to our previous claim that greater
numbers of shards are more vulnerable to the attack.

4.2.4 Summary

The experiments presented in this section have shown that
our attack effectively reduce the performance of the whole
system by attacking only a single shard. By generating ma-
licious transactions according to Algorithm 1, the attacker
easily achieves its goal of limiting the system performance
to the throughput of one shard. Our preliminary analysis
in Section 3.2 shows that the attacker is totally capable of
generating an excessive amount of malicious transactions
at low cost, thereby demonstrating the practicality of the
attack.

5 COUNTERMEASURE

As we have argued that using hash values to determine the
output shards is susceptible to the single-shard flooding at-
tack, we delegate the task of determining the output shards
without using hash values to the validators. To achieve that
task, we consider the validators running a deterministic
transactions sharding algorithm. The program takes the
form of Sout = txsharding(tx, st) in which it ingests as
inputs a blockchain state st and the transaction tx, and
generates the output shard ID Sout of tx calculated at state
st. Moreover, the algorithm txsharding is made public. The
requirement for txsharding is that it is deterministic and has
a load-balancing mechanism to balance the load among the
shards. Finally, we assume that txsharding does not use a
transaction’s hash as the basis for determining its output
shard.

A simple approach to implement txsharding is to devise
an algorithm in which, for each input tx, Sout is determined
by choosing the shard that is currently having the least num-
ber of transactions. In other words, txsharding always dis-
tributes the transactions into shards evenly, thereby balanc-
ing the load among the shards. For an optimal txsharding,
Nguyen et al. [5] proposes OptChain, a transactions place-
ment algorithm that can both balance the load and min-
imize the number of cross-shard transactions. A technical
overview of Optchain is given in Appendix B. With the
load-balancing mechanism of txsharding, the attacker can
no longer flood any one shard with a superfluous amount of
transactions due to the fact that the transactions are always
distributed evenly into shards.

However, the main challenge is how to run txsharding
so that we can prevent adversaries from manipulating its
output. By the nature of blockchain, the validators are
untrusted, a straw-man approach is to run txsharding on-
chain and let the validators reach consensus on the output of
txsharding. Hence, the validators would have to reach con-
sensus on every single transaction. Nonetheless, this alone
dismisses the original idea of sharding, which is to improve
blockchain by parallelizing the consensus work and storage,
i.e., each validator only handles a disjoint subset of trans-
actions. To avoid costly on-chain consensus on the output
of txshading, we need to execute the algorithm off-chain
while ensuring that the operation is tamper-proof in the
presence of malicious validators. To tackle this challenge, in
this work, we leverage the Trusted Execution Environment
(TEE) to securely execute the transaction sharding algorithm
on the validators.
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TEE in a computer system is realized as a module that
performs some verifiable executions in such a way that
no other applications, even the OS, can interfere. Simply
speaking, a TEE module is a trusted component within an
untrusted system. In this work, we consider using TEE that
supports issuing remote attestations proving the integrity of
the software running inside the TEE module. Intel SGX [17]
is one of the most commonly used implementations of TEE
in which remote attestation is well-supported. However,
TEE does not offer satisfactory availability guarantees as
the hardware could be arbitrarily terminated by a malicious
host or simply by losing power.

In the proposed countermeasure, validators are
equipped with TEE modules that assist clients in deter-
mining the transactions’ output shard with an attestation
to prove the correctness of execution (most modern Intel
CPUs from 2014 support Intel SGX). When a client issues
a transaction to a validator, the validator will run its TEE
module to get the output shard of that transaction, together
with an attestation to prove the code’s integrity and the
correctness of the execution. The attestation is a digital sig-
nature generated by the TEE’s private key (Section 5.2). The
client can verify the computation using the attestation and
then send the transaction with the attestation to the system
in the same manner as issuing an ordinary transaction. With
this concept, we can rest assured that an attacker cannot
manipulate transactions to overwhelm a single shard. Ad-
ditionally, we do not need the whole blockchain validators
to reach consensus on a transaction’s output shard, this
computation is instead done off-chain by one or some small
amount of validators. Its realization, however, encounters
some challenges when using TEE in an untrusted network:

• A malicious validator can terminate the TEE at its
discretion, which results in losing its state. The TEE
module must be designed to tolerate such failure.

• Although the computation inside the TEE is trusted
and verifiable via attestation, a malicious validator can
deceive the TEE module by feeding it with fraudulent
data.

To overcome these challenges, we aim to design a state-
less TEE module where any persistent state is stored in the
blockchain. To obtain the state from the blockchain, the TEE
module acts as a blockchain client to query the block head-
ers from the blockchain, thereby ensuring the correctness
of the data (this is how we can exploit the immutability
of blockchain to overcome pitfalls of TEE modules). With
this design, even when some TEE modules are arbitrarily
shut down, the security properties of the protocol are not
affected.

5.1 System Overview and Security Goals
In this section, we present an overview of our system for the
countermeasure and establish some security goals.

5.1.1 System overview
Our system considers two types of entities: clients and
validators

• Clients are the end-users of the system who are respon-
sible for generating transactions. The clients are not re-
quired to be equipped with a TEE-enabled platform. In
fact, the clients in our system are extremely lightweight.

Fig. 7: System overview

• Validators in each shard maintain a distributed append-
only ledger, i.e. a blockchain, of that shard with an
intra-shard consensus protocol. Validators require a
TEE-enabled platform to run the transaction sharding
algorithm.

For simplicity, we assume that a client has a list of TEE-
enabled validators and it can send requests to multiple
validators to tolerate certain failures. Each TEE-enabled
validator has txsharding installed in its TEE module. We
also assume that the TEE module in each of the validators
constantly monitors the blockchain from each shard, so that
it always has the latest state of the shards.

Denoting ENCk(m) as the encryption of message m
under key k and DECk(c) as the decryption of ciphertext c
under key k, the steps for computing the output shard for a
transaction is as follows (Fig. 7):

1) Client C sends the transaction tx to a TEE-enabled val-
idators. C obtains the public key pkTEE of a validator’s
TEE, computes inp = ENCpkTEE

(tx), and sends inp to
the validator.

2) The validator loads inp into its TEE module and starts
the execution of txsharding in TEE.

3) The TEE decrypts the inp using its private key, and
executes the txsharding using tx and the current state
st of the blockchain. Then, the output Sout is gen-
erated together with the state st upon which Sout is
determined, and a signature σTEE proving the correct
execution.

4) The validator then send (Sout, st, σTEE , htx) to C
where htx is the hash of the transaction. C verifies
σTEE before sending (σTEE , tx) to the blockchain
network for final validation. If C sends a request to
more than one validator, C would choose the Sout that
reflects the latest state.
Note that C could choose an outdated Sout, however,
other entities can validate if a pair (Sout, st) is indeed
the output of a TEE. The blockchain system can simply
reject transactions whose Sout was computed based on
an outdated st

5) Upon receiving (σTEE , tx), the validators again verify
σTEE before proceeding with relaying and processing
the transaction.

5.1.2 Adversarial model and Security goals
In the threat model in Section 3.1, the attacker only plays the
role of a client, however, we stress that the countermeasure
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must not violate the adversarial model of blockchain, which
is working with malicious validators. Thus, in designing
the countermeasure system, we extend the previous threat
model as follows.

In the same manner as previous work on TEE-enabled
blockchain [19], [20], we consider an adversary who con-
trols the operating system and any other high-privilege
software on the validators. Attackers may drop, interfere,
or send arbitrary messages at any time during execution.
We assume that the adversary cannot break the hardware
security enforcement of TEE. The adversary cannot access
processor-specific keys (e.g., attestation and sealing key)
and it cannot access TEE’s memory that is encrypted and
integrity-protected by the CPU.

The adversary can also corrupt an arbitrary number of
clients. Clients are lightweight, they only send requests to
the validator the get the output shard of a transaction.
They can verify the computation without TEE. We assume
honest clients trust their platforms and software, but not
that of others. We consider that the blockchain will perform
prescribed computation correctly and is always available.

With respect to the adversarial model, we define the
security notions of interest as follows:

1) Correct execution: the output of a TEE module must
reflect the correct execution of txsharding with respect
to inputs tx and st, despite malicious host.

2) The system is secure against the aforementioned single-
shard flooding attack.

3) Stateless TEE: the TEE module does not need to retain
information regarding previous states or computations.

5.1.3 Blockchain sharding configuration

For ease of presentation, we assume a sharding system
that resembles the OmniLedger blockchain [3]. Suppose the
sharding system has n shards, for each i ∈ {1, 2, ..., n}, we
denote BCi and BHi as the whole ledger and block headers
of shard Si, respectively. Furthermore, we assume that each
shard Si keeps track of its UTXO database, denoted by
Ui. Given a shard Si, each validator in Si monitors the
following database: BCi, BHj ̸=i, and U1,2,...,n.

As we use an Omniledger-like blockchain, each shard
elects a leader who is responsible for accepting new trans-
actions to the shard. For simplicity, we consider that the
sharding system provides an API validate(tx) that takes
a transaction tx as the input and performs the transaction
validation mechanism on tx. validate(tx) returns true if tx
is successfully committed to the blockchain, otherwise, it
returns false.

Additionally, we consider the system uses a signature
scheme Σ(G,Sig, V f) that is assumed to be EU-CMA se-
cure (Existential Unforgeability under a Chosen Message
Attack). ECDSA is a suitable signature scheme in practice
[23]. Moreover, the hash function H(·) used by the system
is also assumed to be collision resistant: there exists no
efficient algorithm that can find two inputs a ̸= b such that
H(a) = H(b).

Finally, we assume that each TEE generates a pub-
lic/secret key pair and the public key is publicly available to
all entities in the network. In practice, the public keys could
be stored in a global identity blockchain.

Functionality Fblockchain

Store DB = {DBi|i ∈ {1, 2, ..., n}}, each DBi is an ap-
pended database indexed by htx.

• On input read(id, htx) from Pi: return DBid[htx] or ⊥
if not exists.

• On input write(id, tx) from Pi:
1) If validate(tx) = 0 then output reject().
2) Otherwise, DBid = DBid ∥ tx and output accept()

Fig. 8: Ideal blockchain Fblockchain

5.2 Modeling Functionality of Blockchain and TEE

We specify the ideal blockchain Fblockchain as an ap-
pended decentralized database as in Fig. 8. Fblockchain

stores DB = {DBi|i ∈ {1, 2, ..., n}} which represents a set
of blockchains that are held by shard 1, 2, ..., n, respectively.
Each blockchain DBi is indexed by the transactions’ hash
value htx. We assume that by writing to the blockchain of
a shard, all validators of the shard reach consensus on that
operation.

We specify the ideal TEE FTEE that models a TEE
module in Fig. 9, following the formal abstraction in
[24]. On startup, FTEE generates a public/secret key pair
(pkTEE , skTEE). Then, it publishes pkTEE together with a
remote attestation proof proving the integrity of the code
in TEE, including the key generation code. With the public
key, other entities in the network are able to verify messages
signed by FTEE ’s secret key. Since pkTEE is bound to the
TEE code, signatures under skTEE can be used to prove
the integrity of the execution output. Therefore, they can be
used as attestations for the correct execution of TEE.

In practice, TEE platforms like Intel SGX perform the
remote attestation as follows. Suppose the execution on TEE
results in an output and an attestation σTEE , as indicated
in [20], the validator sends σTEE to the Intel Attestation
Service (IAS) provided by Intel. Then IAS verifies σTEE and
replies with π = (b, σTEE , σIAS), where b indicates whether
σTEE is valid or not, and σIAS is a signature over b and
σTEE by the IAS. Since π is basically a signature, it can be
verified without using TEE or having to contact the IAS.

A TEE module is an isolated software container that
is installed with a program that, in this work, is a trans-
action sharding algorithm. FTEE abstracts a TEE module
as a trusted third party for confidentiality, execution, and
authenticity with respect to any entities that is a part of the
system. prog is a program that is installed to run in a TEE
module; the input and output of prog are denoted by inp
and outp, respectively.

On initialization, the TEE module needs to download
and monitor Ui for i ∈ 1, 2, .., n. These data are encrypted
using the TEE’s secret key and then stored in the host
storage, which is also referred to as sealing. In this way, the
TEE will make sure that its data on the secondary storage
cannot be tampered with by a malicious host. To ensure that
the TEE always uses the latest version of the sealed UTXO
database, rollback-protection systems such as ROTE [25] can
be used.
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Functionality FTEE

• On initialization
– Generate (pkTEE , skTEE)

• On input install(prog) from Pk:
– if prog is not stored then store(prog)

• On input resume(inpc) from Pk:
1) If prog is not stored than return ⊥.
2) outp = prog(inpc)
3) σ = Σ.Sig(skTEE , (prog, outp))
4) Return (σ, outp) to Pk

Fig. 9: Ideal TEE FTEE

Program prog run in the TEE module

Input: inpc
1) Request the current state st from the sealed database
2) tx← DECskTEE

(inpc)
3) Sout = txsharding(tx, st)
4) Return (Sout, st,H(tx))

Fig. 10: Program prog run in the TEE module

Fig. 10 defines the program prog that is installed in
the TEE module to be used in this work. As can be seen,
the program decrypts the encrypted input inpc using the
secret key skTEE . txsharding is implemented inside prog
to securely execute the transaction sharding algorithm. The
program returns the output shard Sout, the state st upon
which Sout was computed, and the hash of the transaction
htx. This hash value is used to prevent malicious hosts from
feeding the TEE module with fake transactions, which will
be discussed in more detail in the next subsection.

Upon running prog with the input inpc, the TEE module
obtains the signature σTEE over the output of prog and the
code of prog using its private key. Finally, the TEE module
returns to the host validator σTEE , and the output outp from
prog.

5.3 Formal Specification of the Protocol
Our proposed system supports two main APIs for the end-
users: (1) newtx(tx) handles the secure computation of a
transaction tx, and (2) read(id, htx) returns the transaction
that has the hash value htx from shard id.

The protocol for validators is formally defined in Fig. 11,
which relies on FTEE and Fblockchain. The validator ac-
cepts two function calls from the clients: request(txc)
and process(Sout, σTEE , tx). request(txc) takes as input
a transaction that is encrypted by the public key of TEE
and sends txc to the TEE module. For simplicity, we as-
sume that the validator is TEE-enabled, if not, the validator
simply discards the request(txc) function call. Since txc is
encrypted by pkTEE , a malicious host cannot tamper with
the transaction. The validator waits until the TEE returns an
output and relays that output to the function’s caller.

Note that as the output of the TEE includes the transac-
tion’s hash htx, the client can check that the TEE indeed

Protocol for validators

• On input request(txc) from Ci:
1) Send resume(txc) to FTEE

2) Wait to receive (σTEE , (Sout, st, htx)) from FTEE

3) Return (st, Sout, σTEE , htx)

• On input process(Sout, σTEE , tx) from Ci:
1) Assert σTEE is valid, if failed then return ⊥
2) Send write(Sout, tx) to Fblockchain

3) Wait to receive output from Fblockchain

4) Return the received output to Ci

Fig. 11: Protocol for validators

Protocol for clients

• On input newtx(tx) from environment Z :
1) txc ← ENCpkTEE

(tx)
2) Send request(txc) to validator Pk

3) Receive (st, Sout, σTEE , htx)
4) Assert H(tx) = htx

5) Assert σTEE using (st, Sout, txsharding,H(tx)), if
fail then return ⊥

6) Send process(Sout, σTEE , tx) to Sout

7) Wait to receive accept() or ⊥ from Pk

8) Forward the received data to Z
• On input read(id, idx) from environment Z :

1) Send read(idx) to Fblockchain[id] and relay output to
Z

Fig. 12: Protocol for clients

processed the correct transaction tx originated from the
client. This is possible because of the end-to-end encryption
of tx between the client and the TEE. Furthermore, since
σTEE protects the integrity of Sout, the client can verify that
Sout was not modified by a malicious validator.

The function process(Sout, σTEE , tx) receives as input
the transaction tx, σTEE , and output shard Sout of tx.
The validator also verifies σTEE before making a call to
Fblockchain to start the transaction validation for tx.

Fig. 12 illustrates the protocol for the clients. To deter-
mine the output shard of a transaction tx, a client invokes
the API newtx(tx). First, to ensure the integrity of tx, the
client encrypts tx using the pkTEE and sends txc to a TEE-
enabled validator Pk. Upon receiving (st, Sout, σTEE , htx)
from Pk, the client checks if the hash of tx is equal to
htx. This prevents a malicious validator from feeding a fake
transaction to the TEE module to manipulate Sout. The client
also verifies if the attestation σTEE is correct. Afterward,
the client sends the transaction together with Sout and the
attestation to the validators of the transaction’s input and
output shards for final validation. newtx(tx) finally outputs
any data received from the validators. The API read(id, htx)
can be called when the client wants to obtain the transaction
information from the blockchain. The function also returns
any data received from Fblockchain.
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6 SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

This section presents a detailed security analysis of the pro-
posed countermeasure under the UC-model and evaluates
the performance of the proof-of-concept implementation.

6.1 Security Analysis
We first prove that the proposed protocol (1) only requires a
stateless TEE and (2) is secure against the single-shard flood-
ing attack, and then prove the correct execution security. By
design, the txsharding installed in the TEE depends solely
on the transaction tx, and the state st of the blockchain for
computation. As tx is the input and st can be obtained
by querying from the UTXO database, the TEE does not
need to keep any previous states and computation, thus, it
is stateless.

When the system makes decision on the output shard of
a transaction, it relies on the txsharding program which is
assumed to not base its calculation on transactions’ hash
value. Therefore, as txsharding also balances the load
among the shards, no attackers can manipulate transactions
to overwhelm a single shard, hence, the countermeasure is
secure against the single-shard flooding attack.

The correct execution security of our system is proven in
the Universal Composability (UC) framework [26]. We refer
the readers to Appendix A for our proof.

6.2 Performance Evaluation
This section presents our proof-of-concept implementation
as well as some experiments to evaluate its performance. As
our countermeasure is immune to the single-shard flooding
attack, our goal is to evaluate the overhead of integrating
this solution into sharding. We implement the proof-of-
concept using Intel SGX which is available on most modern
Intel CPUs. With SGX, each implementation of the TEE
module is referred to as an enclave. The proof-of-concept was
developed on Linux machines in which we use the Linux
Intel SGX SDK 2.1 for development. We implement and test
the protocol for validators using a machine equipped with
an Intel Core i7-6700, 16GB RAM, and an SSD drive.

As we want to demonstrate the practicality of the coun-
termeasure, the focus of this evaluation is three-fold: pro-
cessing time, communication cost, and storage. The process-
ing time includes the time needed for the enclave to monitor
the block headers as well as to determine the output shard of
a transaction requested by a client. The communication cost
represents the network overhead incurred by the interaction
between clients and validators to determine the output
shards. Additionally, we measure the amount of storage
needed when running the enclave.

In our proof-of-concept implementation, we use
OptChain [5] as txsharding. As OptChain determines the
output shard based on the transaction’s inputs, when ob-
taining the state from the UTXO database, we only need
to load those transaction’s inputs from the database. Our
proof-of-concept uses Bitcoin as the blockchain platform.

Processing time. We calculate the processing time for
determining the output shard by invoking the enclave with
10 million Bitcoin transactions (encrypted with the TEE
public key) and measure the time needed to receive output

from the enclave. This latency includes (1) decrypting the
transaction, (2) obtaining the latest state from the UTXO
database in the host storage and (3) running txsharding.
We observe that the highest latency recorded is only about
214 ms and it also does not vary much when running with
different transactions. Considering that the average latency
of processing a transaction in sharding is about 10 seconds
[5], our countermeasure only imposes an additional 0.2
seconds for determining the output shard.

For a detailed observation, we measure the latency sep-
arately for each stage. The running time of txsharding is
negligible as the highest running time recorded is about 0.13
ms when processing a 10-input transaction at 16 shards.
Decrypting the transaction is about 0.579 ms when using
2048-bit RSA, and a query to the UTXO database to fetch
the current state takes about 213.2 ms. Hence, fetching the
state from the UTXO database dominates the running time
due to the fact that the database is stored in the host storage.

Another processing time that we consider is the time
needed for updating the UTXO database when a new block
is added to the blockchain. With an average number of
2000 transactions per block, each update takes about 65.7
seconds. But this latency does not affect the performance
of the system since we can set up two different enclaves
running in parallel, one for running txsharding, and one for
monitoring the UTXO database. Therefore, the time needed
to run txsharding is independent of updating the database.

Communication cost. Our countermeasure imposes
some communication overhead over hash-based transaction
sharding since the client has to communicate with the
validator to determine the output shard. Specifically, the
overhead includes sending the encrypted transaction to the
validator and receiving a response. The response comprises
the state (represented as the block number), output shard ID,
attestation, and a hash value of the transaction. The commu-
nication overhead sums up to about 601 bytes needed for the
client to get the output shard of a transaction. If we consider
a communication bandwidth of 10 Mbps, the transmission
time would take less than half a millisecond.

Storage. According to the proposed system for the coun-
termeasure, the enclave needs to store the UTXO database
in the host storage, which is essentially the storage of the
validator. As of Feb 2020, the size of Bitcoin’s UTXO set
is about 3.67 GB, which means that an additional 3.67 GB is
needed in the validator’s storage. However, considering that
the validator’s storage is large enough to store the whole
ledger, which is about 263 GB as of Feb 2020, the extra data
trivially accounts for 1.4%.

Summary. By evaluating a proof-of-concept of our coun-
termeasure, the result in this section shows that our system
imposes negligible overhead compared to the hash-based
transaction sharding, which is susceptible to the single-
shard flooding attack. Particularly, by incurring insignifi-
cant processing time, communication cost, and storage, our
proposed countermeasure demonstrates the practicality as
it can be integrated into existing sharding solutions without
affecting the system performance.

7 CONCLUSION

In this paper, we have identified a new attack in existing
sharding solutions. Due to the use of hash-based transaction
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sharding, an attacker can manipulate the hash value of
a transaction to conduct the single-shard flooding attack,
which is essentially a DoS attack that can overwhelm one
shard with an excessive amount of transactions. We have
thoroughly investigated the attack with multiple analyses
and experiments to illustrate its damage and practicality.
Most importantly, our work has shown that by overwhelm-
ing a single shard, the attack creates a cascading effect that
reduces the performance of the whole system.

We have also proposed a countermeasure based on TEE
that efficiently eliminates the single-shard flooding attack.
The security properties of the countermeasure have been
proven in the UC framework. Finally, with a proof-of-
concept implementation, we have demonstrated that our
countermeasure imposes negligible overhead and can be
integrated into existing sharding solutions.
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Fcm: Ideal functionality of the countermeasure

• On Initialization:
1) DBi = ∅,∀i ∈ [N ]

• On input newtx(tx) from any party Pi:
1) relay input to A
2) Request current state st from the UTXO database
3) Sout = txsharding(tx, st)
4) DBSout

= DBSout
||tx

5) Send delayed accept() to Pi

• On input read(id, htx) from any party Pi:
1) If DBid[htx] is not available then return ⊥
2) Otherwise, return DBid[htx]

Fig. 13: Ideal functionality of the countermeasure

APPENDIX A
PROOF OF CORRECT EXECUTION IN THE UC
FRAMEWORK

In the UC framework, a real world involves parties running
the proposed protocol, namely Πcm. On the other hand, an
ideal world consists of parties that interact with an ideal
functionality Fcm, a trusted third party that implements the
APIs of the proposed protocol, i.e., newtx(·) and read(·).
Fig. 13 shows the definition of Fcm. Any adversary A in the
real world is introduced in the ideal world by a simulator S
with an adversary model defined in Section 5.1.2.

To prove that the proposed protocol Πcm achieves cor-
rect execution security, we show that: (1) Fcm achieves the
correct execution security in the ideal world; and (2) the real
and ideal worlds are indistinguishable to an external envi-
ronment Z . This implies that any attack violating security
goals in the real world is translatable to a corresponding
attack in the ideal one. This proves that the real world
protocol also achieves the correct execution security.

In Fcm, whenever a party triggers newtx(tx) with a
transaction tx, the execution of txsharding is performed
internally by the ideal functionality Fcm based on tx and
the current state st to determine Sout. Since Fcm is trusted
under UC, txsharding is guaranteed to be correctly exe-
cuted. Furthermore,Fcm also validates the transaction in the
blockchain and returns only accept() or ⊥ to the party, an
adversary does not have control over the output shard Sout,
hence, the adversary cannot tamper with Sout. Therefore,
Fcm achieves correct execution security.

Let A be an adversary against the proposed protocol.
Per Canetti [26], we say that Πcm UC-realizes Fcm if there
exists a simulator S , such that any environment Z cannot
distinguish between interacting with the adversary A and
Πcm or with the simulator S and the ideal functionalityFcm.
By that definition, we prove the following theorem:

Theorem 1. The protocol Πcm in the (FTEE ,Fblockchain)
hybrid model UC-realizes the ideal functionality Fcm.

Proof. We prove the indistinguishability between the real
and ideal worlds through a series of hybrid steps as com-
monly done in previous work [19], [20]. These hybrid
steps start at H0 - the real-world execution of Πcm in the

(FTEE ,Fblockchain) hybrid model, and finally becomes the
execution in the ideal world. The indistinguishability is
proven in each step.

Hybrid H0 is the real-world execution where parties run
Πcm in the (FTEE ,Fblockchain) hybrid model.

Hybrid H1 behaves in the same manner as H0, except
that S emulates FTEE and Fblockchain. First, S generates a
key pair (pkTEE , skTEE) and publishes pkTEE . Whenever
A interacts with FTEE , S records messages sent by A and
emulatesFTEE ’s behavior. Likewise, S emulatesFblockchain

by storing DB internally. As the view of A in H1 is iden-
tically simulated in H0, Z cannot distinguish between H1

and the execution H0.
Hybrid H2 proceeds as H1. However, every time A

communicates with Fblockchain, S identically emulates
Fblockchain’s behavior for A. As the view of A in H2 are
simulated when interacting with the ledger, then environ-
ment Z cannot distinguish between H2 and H1.

Hybrid H3 modifies H2 as follows. When A triggers
FTEE with a message install(prog), S records a tuple
(σTEE , outp) for all subsequent resume(·) calls, where outp
is the output of prog and σTEE is an attestation under
skTEE over outp and prog. S keeps a set of all such tuples.
Whenever A sends a tuple (σTEE , outp) that has not been
recorded by S to Fblockchain or an honest party, S simply
stops the execution.

We can prove that Z cannot distinguish between H3

and H2 as follows. In H2, if A sends forged attesta-
tions/signatures to Fblockchain or an honest party, signature
verification by Fblockchain or the honest party will fail with
negligible probability (as we assume the signature scheme
Σ is EU-CMA secure). If Z can distinguish H2 from H3, we
can construct an adversary using Z and A to win the game
of signature forgery.

Hybrid H4 proceeds as H3 with one modification:
S emulates the new transaction processing. Specifically,
honest parties send newtx to Fcm. S emulates messages
from FTEE and Fblockchain as in H3, i.e., recording tuples
(σTEE , outp). If the party is corrupted, S sends newtx(tx)
to Fcm as Pi. It can be seen that the view of A is the same as
in H2, as S can identically emulate FTEE and Fblockchain.

It can be seen that H4 is identical to the ideal protocol.
In H4, while S interacts with Fcm, it emulates A’s view of
the real-world. Now, S only needs to output to Z what A
outputs in the real-world. Thus, there exists no environment
Z that can distinguish between interaction between A and
Πcm, from interaction between S and Fcm.

APPENDIX B
TECHNICAL OVERVIEW OF OPTCHAIN

Nguyen et al. [5] proposes a transaction placement algo-
rithm to improve the throughput of sharding blockchain,
called OptChain. OptChain introduces a new sharding
paradigm, in which cross-shard transaction are minimized
while maintaining the load balancing among shards, result-
ing in almost twice faster confirmation time and throughput.
Specifically, they form an optimization problem in which the
algorithm determines the best shard to submit a transaction
in order to minimize cross-shard transactions while guaran-
teeing the temporal balance, thereby shortening the confir-
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mation time and boosting the overall system throughput. To
achieve that, the algorithm optimizes the following goals:

1) Minimizing cross-shard transactions: Reduce the num-
ber of cross-shard transactions by grouping related
transactions into a same shard.

2) Maintaining temporal balancing: To distribute load
evenly among shards to increase parallelism and reduce
queuing time.

On the one hand, by treating transactions as a stream of
nodes in online directed acyclic graph (DAG), they propose
a lightweight and on-the-fly PageRank score calculation to
quantitatively measure transactions’ relationship to each
shard. This is referred to as the Transaction-to-Shard (T2S)
score. The T2S score between a transaction u and a shard
Si measures the probability that a random walk from the
node u ends up at some node in Si, i.e., how likely the
transaction should be placed into the shard without causing
further cross-shard transactions.

On the other hand, they provide an estimation on the
expected latency if putting a transaction into a given shard,
which is called the Latency-to-Shard (L2S) score. The L2S
score estimates the processing delay when placing the trans-
action into a shard.

The decision making of which shard to place a trans-
action into is guaranteed to balance both the T2S and
L2S scores. With this mechanism, OptChain has been
shown to outperform Omniledger, which uses transactions’
hash values to determine their output shard. Furthermore,
OptChain’s throughput can be scaled up linearly with the
number of shards while still keeping almost the same aver-
age transaction confirmation delay.
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