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Abstract 

The responses of denitrifiers and denitrification ability to dissolved oxygen (DO) concent in different layers of surface 

lake sediments are still poorly understood. Here, the optimal denitrification condition was constructed based on 

response surface methodology (RSM) to analyze the denitrification characteristics of surface sediments. The aerobic 

zone (AEZ), hypoxic zone (HYZ), up-anoxic zone (ANZ-1) and sub-anoxic zone (ANZ-2) were partitioned based on the 

oxygen contents, and sediments were collected using a customized-designed sub-millimeter scale sampling device. 

Integrated real-time quantitative PCR, Illumina Miseq-based sequencing and denitrifying enzyme activities analysis 

revealed that denitrification characteristics varied among different DO layers. Among the four layers, the DNA abun-

dance and RNA expression levels of norB, nirS and nosZ were the highest at the aerobic layer, hypoxic layer and up-

axoic layer, respectively. The hypoxia and up-anaerobic layer were the active nitrogen removal layers, since these two 

layers displayed the highest DNA abundance, RNA expression level and enzyme activities of denitrification functional 

genes. The abundance of major denitrifying bacteria showed significant differences among layers, with Azoarcus, 

Pseudogulbenkiania and Rhizobium identified as the main nirS, nirK and nosZ-based denitrifiers. Pearson’s correlation 

revealed that the response of denitrifiers to environmental factors differed greatly among DO layers. Furthermore, 

napA showed higher DNA abundance and RNA expression level in the aerobic and hypoxic layers than anaerobic lay-

ers, indicating that aerobic denitrifiers might play important roles at these layers.
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Introduction

Increased nitrogen (N, often in the form of nitrate) load-

ing into aquatic environments has negative ecological 

and economic consequences on biodiversity and water 

quality (Dodds et  al. 2009; Cardinale 2011). Denitrifi-

cation processes in aquatic ecosystems act as a nitrate 

sink, transforming nitrate into gaseous products  (N2, 

NO,  N2O), which are then emitted into the atmosphere 

(Korom 1992; Verhoeven et  al. 2006). Various meta-

bolic enzymes, including nitrate reductases (Nar), nitrite 

reductases (Nir), nitric oxide reductases (Nor), and 

nitrous oxide reductases (Nos), catalyze the denitrifica-

tion process (Zumft 1997). The denitrification functional 

genes narG, napA, nirS, nirK, norB and nosZ have com-

monly been used as biomarkers to elucidate the abun-

dance, richness, and diversity of denitrifier communities 

(Tatti et al. 2015; Zhang et al. 2015; Yang et al. 2018).

Conventional biological denitrification requires 

hypoxic conditions with dissolved oxygen (DO) concen-

tration less than 0.2 mg/L (Seitzinger et al. 2006). Since 

it was first discovered in the 1980s (Robertson and Kue-

nen 1984), aerobic denitrification at DO levels of 5.0–

6.0  mg/L has attracted much attention because of its 

potential to overcome the disadvantages of conventional 

biological denitrification (Bai et al. 2019; Guo et al. 2016; 

Kim et al. 2008). Fluctuating oxygen concentrations, sup-

ply of nitrate, organic matter and other properties endow 

surface sediments (a few millimeters) a preferential 

place for denitrification (Santschi et  al. 1990; Seitzinger 

et  al. 2006). The denitrification characteristics in differ-

ent habitats are always different, however, there is usually 

only one analysis method applied to investigate these (Yu 

et al. 2014; Saarenheimo et al. 2015; Tatti et al. 2015; Mao 

et  al. 2017). Nevertheless, few studies have provided an 

integrated analysis of gene abundance, gene expression, 

enzyme activity and denitrifier community structure on 

a vertical scale within the micro-layers of lake sediment 

surfaces.

The global sedimentary denitrification rate has been 

found to be much lower (approximately 200 Tg  a−1) 

than that of many existing measurement-based esti-

mates (Devol 2015). This discrepancy may be as a result 

of scarcity of comprehensive measurements approaches. 

Hence, a comprehensive characterization of the denitri-

fication process in lake surface sediments is needed to 

accurately evaluate the rate of denitrification yields and 

denitrification traits. Investigations are also important to 

understand the effects of DO content, temperature, pH 

and carbon source on denitrification (Strong et al. 2011; 

Kraft et  al. 2014). Previous research have not reach a 

consensus in relation to that the effects of DO contents 

on different types of denitrification (Körner and Zumft 

1989; Dalsgaard et  al. 2014). Apart from DO, sediment 

physicochemical factors are also considered as impor-

tant factors regulating lake denitrification (Saunders and 

Kalff 2001; Bruesewitz et al. 2011). However, there is little 

information regarding the interaction between denitrifi-

cation characteristics and environmental factors among 

different DO sublayers.

Up to date, most studies utilized single-factor experi-

ments; however, simultaneous changes in multiple 

environmental factors may impact nitrogen removal 

efficiency (Su et  al. 2015). The conventional approach 

of assessing one factor at a time is not appropriate for 

this particular bioprocess because of potential interac-

tions between independent variables. To overcome this 

problem, integration of multiple variables coupled with 

response surface methodology (RSM) should be used 

(Su et  al. 2015). In the present study, surface sediments 

of a eutrophic lake and simulated artificial lake water 

were used to construct microcosms incubations. The 

optimal denitrification condition was constructed by 

adjusting the temperature, pH and organic carbon con-

tent (i.e., sawdust). Under the optimal conditions, differ-

ent DO layers were sampled via a customised-designed 

sub-millimeter device to compare DNA abundance, RNA 

expression level and enzyme activity of denitrification 

enzymes. Moreover, the relationship between the sedi-

ment chemical factors and the denitrification processes 

within the vertical microecology was investigated. These 

results will help optimize conditions for nitrate removal 

from eutrophic water, and provide references for accurate 

assessment of denitrification ability of surface sediments.

Materials and methods

Preparation of sediments

Surface sediments were collected in October 2018 from 

Lake Dianchi, a eutrophic lake located in Kunming, P. 

R. China (24°40′–25°02′N, 102°36′–103°40′E), using the 

method described by Tian et al. (2015). Surface sediments 

were sealed in sterile plastic bags, transported to the lab-

oratory, homogenized and then used for experiments.

Experimental design for determination of nitrate removal 

rate under various conditions

Three temperatures (5 °C, 15 °C and 25 °C), three pH val-

ues (5.5, 7.0 and 8.5) and three sawdust contents (0.1, 0.3 

and 0.5  mg/110  g of sediment) were set in the present 

study. Response Surface Methodology (RSM) combined 

with the Box-Behnken Design (BBD) were applied to test 

the effects of these three factors on nitrate removal rate. 

In total, 17 rounds of assays were conducted. Detailed 

settings of environmental conditions for each round 

of tests are listed in Additional file 1: Tables S1, S2. For 

assays, PVC cylinders (30 mm in diameter × 110 mm in 

height) were used to mimic aquatic ecosystems. In each 
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cylinder, 110  g of sediments were placed at the bot-

tom and then 30  mL of artificial lake water [48.6  mg/L 

 NaNO3, 5.1  mg/L  MgSO4·7H2O, 3.8  mg/L  NH4Cl, 

5.6 mg/L  K2HPO4, 4.4 mg/L  KH2PO4 and 0.1 mL/L trace 

elements (Nancharaiah et  al. 2008)] was gently added 

above sediments. The apparatus was incubated at cor-

responding temperature under dark in an incubator 

(Hengfeng Medical Devices Co., Ltd. China). For each 

condition, 21 PVC cylinders were prepared. Five millilitre 

of water was sampled to determine nitrite content from 

three cylinders each day as three replicates. Content of 

nitrite in overlying water was immediately analyzed by 

ICS5000 chromelenon7 (Thermofisher, USA).

The experiments were continued until the nitrite con-

tent in water was below 1  mg/L. All experiments were 

finished within 7 days. The denitrification efficiency was 

calculated as the daily decrease of nitrite content from 

the initial value to the final value (the nitrite content 

observed below 1 mg/L for the first time).

Sample preparation for determination of microbe indices 

under the optimal condition

To investigate expression levels of denitrification-related 

genes in different layers of sediments under the opti-

mal environmental conditions, a special sub-millimeter 

sampling device was designed in the present study to 

accurately collect sediment samples at different depths 

(Fig.  1a). A series of different-sized microporous plates 

(0.2 mm thick, containing 256 pores with 3 mm diame-

ter) were filled with sediments and then piled up. The size 

of upper plate was smaller than the lower one, forming 

a trapezoid structure. The upmost and nethermost plate 

was 8 cm × 8 cm and 11 cm × 11 cm in size, respectively. 

Overall, 20 microporous plates were stacked at the bot-

tom of glass tanks (32 cm length × 20 cm width × 10 cm 

height), and then immersed in artificial lake water (total 

water depth was 8 cm). These tanks were incubated under 

dark at 25  °C in incubators. After stabilized for 2  days, 

changes of DO content in sediments along with depth 

were determined using an oxygen microsensor (Fig. 1b). 

Based on the DO contents, four layers of sediments were 

defined, including aerobic zone (AEZ, 0–1.8 mm depth, 

DO: 0.2–5.9  mg  L−1), hypoxic zone, HAZ (1.8–2.2  mm 

depth, DO: 0–0.2  mg  L−1); up-anoxic zone (ANZ-1, 

2.2–2.6 mm depth, DO: 0 mg L−1) and sub-anoxic zone 

(ANZ-2, 2.6–3.0 mm depth, DO: 0 mg L−1). After incu-

bation for 5  days, sediments were collected from these 

zones and stored at − 80 °C for biochemical and molecu-

lar analyses.

Analyses of chemical parameters in sediments

NH4
+–N,  NO3

−–N and  NO2
−–N were extracted from 

sediments using 2 mol/L KCL solution at a ratio of 1: 5 

(sediment: water) and measured using ICS5000 chrome-

lenon7 (Thermofisher, USA). Frozen dried sediments 

were sieved and then analyzed for total organic carbon 

Fig. 1 a Design of the sampling device used in the present study. b Dissolved oxygen profiles at different layers of sediments. AEZ aerobic zone, 

HYZ hypoxic zone, ANZ-1 up-anoxic zone, ANZ-2 sub-anoxic zone



Page 4 of 10Hong et al. AMB Expr           (2019) 9:129 

contents (TOC) using an Elementar vario TOC system 

(Elementar, Germany) and TN was analyzed by hydro-

chloric acid photometry method. All parameters were 

measured in triplicates.

Determination of activities of denitrification enzymes 

and electron transport system (ETS)

Methods for detecting denitrification enzyme activities 

and electron transport system (ETS) activity followed 

Su et al. (2019). Briefly, 5 g of sediments were suspended 

in 100 mM phosphate-buffered saline (PBS, pH 7.8) and 

then sonicated at 4 °C for 5 min to break cells. After cen-

trifugation at 16,000 rpm for 10 min at 4  °C, the super-

natants were collected for determination of NAR, NIR 

and NOS activities. The assay mixture (3  mL) included 

10  mM PBS buffer (pH 7.8), 5  mM  Na2S2O4, 10  mM 

methyl viologen, 1  mM denitrifying electron accep-

tor  (NO3
−,  NO2

− or  N2O) and 1 mL of enzyme extract. 

After incubation at 25  °C under anaerobic conditions 

for 30  min, the increased or decreased  NO2
− concen-

tration was determined at 540  nm to calculate NAR 

and NIR activities. The reduced  N2O concentration was 

detected by a microsensor (MMM-Meter, Unisense, 

Denmark) to calculate NOS activities. Reduction from 

2-(p-iodophenyl)-3-(p-nitrophenyl)-5- phenyl tetrazo-

lium chloride (INTC) to formazan caused by enzyme 

extract was determined to express ETS activity.

Nucleic acid extraction and real‑time quantitative PCR 

(RT‑qPCR)

DNA was extracted from approximately 0.8  g of each 

sediment sample using an E.Z.N.A. Soil DNA Kit (Omega 

Bio-Tek, Norcross, GA, USA) according to the manufac-

turer’s instructions. Total RNA was extracted using the 

acid guanidium thiocyanate-phenol–chloroform (AGPC) 

method (Choi et  al. 2018). After extraction, RNA was 

reversely transcribed into cDNA using Superscript II 

reverse transcriptase (Life Technologies Corporation, 

USA) in accordance with manufacturer’s instructions. 

Nucleic acid quality and concentration were examined by 

1% agarose gel electrophoresis and spectrophotometry, 

respectively.

DNA levels and RNA transcriptional levels of 16  s 

rRNA, narG, norB, nirS, nirK, nosZ and napA were 

examined in the extracted DNA and RNA using the RT-

qPCR method and then expressed as copies per gram of 

sediment.

The primers and conditions for RT-qPCR are provided 

in Additional file 1: Table S3. RT-qPCR experiments were 

performed on Bio-Rad qPCR machine (Hercules, CA, 

USA) using SYBR Green as the signal dye. Each 20-μL 

reaction mixture contained 1 μL of template DNA, 10 μL 

of iTaq Universal SYBR Green Supermix (Bio-Rad), 1 μL 

of 10 µM each primer, and 7 μL of water. Standard curves 

for each gene were obtained by tenfold serial dilution 

of standard plasmids containing target functional gene. 

Positive (plasmid DNA only) and negative (nuclease-free 

water) controls were prepared simultaneously. The ratio 

of DNA level to RNA transcriptional level for each gene 

was calculated and expressed as ratio of RNA to DNA 

(RNA: DNA).

High‑throughput sequencing

PCR products of nirS, nirK and nosZ were amplified from 

DNA samples. The primers and conditions are presented 

in Additional file  1: Table  S3. Amplicons were puri-

fied, pooled in equimolar concentrations for paired-end 

sequencing (2 × 300 bp) on an Illumina MiSeq platform 

(Illumina, San Diego, CA, USA) by LC-Bio Technology 

Company (Hangzhou, China) according to standard pro-

tocols. Operational taxonomic units (OTUs) were clus-

tered with 97% similarity cutoff using UCHIME (version 

7.1, http://drive 5.com/upars e/), which also identified and 

removed chimeric sequences. Representative sequences 

were selected for each OTU, and taxonomy informa-

tion of each representative sequence was obtained using 

the RDP Classifier (http://rdp.cme.msu.edu/) by blast-

ing against the functional gene database (FGR, Fish et al. 

2013). Beta diversity was calculated by analysis of similar-

ities (ANOSIM) with weighted Unifrac in the R “vegan” 

package (v3.2.3).

Statistical analysis

Analysis of Variance (ANOVA) and Pearson’s correlation 

analysis were conducted using SPSS 16.0 software. Statis-

tical significance was set at the P level of < 0.05. Figures 

were drawn using the Origin 8.0 program.

Results and discussion

Optimal environmental conditions for denitrification 

of water

Previous studies have investigated the effects of environ-

mental factors on sediment denitrification (Huang et al. 

2017; Myrstener et  al. 2016; Saarenheimo et  al. 2015). 

However, few studies have applied RSM to evaluate the 

interactive effects of environmental factors (temperature, 

pH and availability of organic C) on nitrate removal. In 

the present study, the interaction of temperature, sawdust 

content and pH on the removal of nitrate nitrogen caused 

by surface sediments were analyzed based on RSM. Addi-

tional file  1: Table  S2 presents the determined nitrate 

removal rate under various conditions and Fig. 2 shows 

the response surface of the nitrate removal efficiency 

at different sawdust contents, pH values and tempera-

tures. These results suggested that sawdust content, pH 

http://drive5.com/uparse/
http://rdp.cme.msu.edu/


Page 5 of 10Hong et al. AMB Expr           (2019) 9:129 

and temperature all significantly and positively affected 

nitrate removal rate in water (Fig. 2a, c).

ANOVA for response surface quadratic model revealed 

that F-value of the model was equal to 4.03 and the P 

value of the lack of fit was higher than 0.05 (Additional 

file  1: Table  S4), suggesting that the as-obtained model 

was statically significant (Additional file  1: Table  S4), 

which could be used to predict the optimal denitrifica-

tion conditions. Besides, ANOVA revealed that temper-

ate, sawdust content and their interaction all significantly 

affected nitrate removal efficiency (P = 0.0083, Additional 

file  1: Table  S4). High temperature should accelerate 

growth of microorganisms and increase denitrification 

activities, thus increasing nitrate removal efficiency. In 

the present study, addition of sawdust promoted nitrate 

removal efficiency, which was consistent with previous 

findings (Wang and Chu 2016). The contribution of the 

three tested variables to denitrification efficiency fol-

lowed the order temperature > sawdust content > pH, and 

the optimum condition for maximum nitrate removal 

were predicted as temperature = 25 °C, pH = 8.5 and saw-

dust content = 0.5 mg/110 g of sediment.

Abundance, transcriptional levels, enzyme activities 

of denitrifiers in surface sediments

Under the optimal nitrate removal condition, denitri-

fier abundance (at DNA level), transcriptional levels (at 

RNA level) and enzyme activities were compared among 

different layers of surface sediments (AEZ, HAZ, ANZ-1 

and ANZ-2). All the tested genes were detected in all 

samples at both DNA and RNA levels, suggesting that 

the whole denitrification process took place in all these 

layers of sediments. However, the abundance and tran-

scriptional levels of different denitrifying genes differed 

among layers. The order of the denitrifying gene abun-

dance in AEZ, HAZ, ANZ-1 and ANZ-2 was norB > nirS 

> narG > nosZ > nirK, nirS > narG > nosZ > norB > nirK, nos

Z > narG > nirS > nirK > norB, narG > nirS > nosZ > nirK > n

orB, respectively (Fig. 3a).

In addition, since napA is an indicator gene of aerobic 

denitrification (Marchant et al. 2017), we also compared 

its distribution among the four sediment layers. In this 

study, the DNA abundance and RNA transcriptional level 

of napA in the aerobic and hypoxic regions were signifi-

cantly higher than those in the anoxic regions (Fig. 3b). 

Therefore, accurate understanding of the range of aerobic 

denitrification layer and activities of aerobic denitrifica-

tion bacteria.

Denitrification was restricted to a narrow zone imme-

diately below the aerobic–anaerobic interface in sedi-

ments and biofilms (Deutzmann et  al. 2014). Previous 

studies have investigated areas of denitrification using 

microsensors to detect oxygen and nitrate concentrations 

in sediments. However, little information is available 

regarding determination of the dominant denitrification 

region in lake surface sediments based on abundance, 

Fig. 2 Removal efficiency of nitrate under different conditions. a Changes of nitrate removal efficiency in response to treatments with different 

sawdust contents and pH; b changes of nitrate removal efficiency in response to treatments with different temperatures and pH; c changes of 

nitrate removal efficiency in response to treatments with different sawdust contents and temperature
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expression, community composition and enzymatic 

activities of denitrifier functional genes (Christensen 

et al. 1989; Nielsen et al. 1990a, b). In the present study, 

among the four sediment layers, RNA transcriptional 

levels of narG, nirS, nirK, norB and nosZ were relatively 

higher in HYZ and ANZ-1 than those in AEZ and ANZ-2 

(Fig. 3a). Besides, enzyme activities of NIR and NOS also 

showed similar trends. These results indicated that the 

hypoxic layer and the up-anaerobic layer were the active 

nitrogen removal layers.

Comparison of the DNA abundance and RNA tran-

scriptional level of denitrification genes between the 

up- (HYZ-1) and sub-anoxic layers (HYZ-2) revealed 

a decreasing trend with depth, which might be due to 

the decreased total bacteria in the sub-anoxic layers. 

Lower copy number of 16S rRNA and EST activity were 

observed in HYZ-2 (Fig.  3b). This phenomenon was 

consistent with the decreases of total bacteria abun-

dance with depth in other sediments (Qin et al. 2018). 

These findings further demonstrated that not all anoxic 

vertical profiles were active denitrification regions.

Fig. 3 a Copies of 16S rRNA, narG, nirK, nirS, norB and nosZ genes per gram of sediment at DNA level, RNA level and their ratios (ratio of copies at 

RNA level to that at DNA level for each gene, RNA: DNA). b Copies of napA gene per gram of sediment, activities of electron transport system (ETS) 

and denitrifying enzymes at different layers of sediments. Error bars indicate standard errors of three replicates. NAR nitrate reductase, NIR nitrite 

reductase, NOS nitric oxide reductase, AEZ aerobic zone, HYZ hypoxic zone, ANZ-1 up-anoxic zone, ANZ-2 sub-anoxic zone
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Vertical distribution for representative denitrifier 

communities in surface sediments

Blasting of nirS, nirK and nosZ sequences to FGR data-

bases enabled taxonomic analyses of the denitrifier 

communities among different sediment layers, which 

has also been applied in other studies (such as Yang 

et al. 2018). ANOSIM revealed significant differences in 

denitrifier community structure among vertical profiles 

(nirS, R2 = 0.35, P = 0.02; nirK, R2 = 0.37, P = 0.04; nosZ, 

R2 = 0.67, P = 0). In total, 11,171, 7007 and 3063 OTUs 

were identified for nirS-type, nirK-type and nosZ-type 

denitrifiers, respectively. Dominant nirS, nirK and nosZ 

OTUs were identified to be the genera Azoarcus, Rhizo-

bium and Pseudogulbenkiania in the four sediment 

layers (Fig.  4a–c), respectively. Each layer showed sig-

nificant differences in the types and abundances of den-

itrifiers (Additional file  1: Table  S5). Furthermore, in 

the aerobic layer, comparison of the abundance of the 

top five genus among nirS-type, nirK-type and nosZ-

type denitrifiers revealed higher abundance of Dechlo-

romonas and Azoarcus in AEZ than those in other three 

layers, and higher abundance of Pseudogulbenkiania 

than that in hypoxic layer. Previous studies reported a 

high abundance of Dechloromonas in agricultural soils 

and reservoirs (Coyotzi et  al. 2017; Yu et  al. 2014), as 

well as high levels of Azoarcus in oilfields, wastewa-

ter treatment plants, soils and sediments (Song et  al. 

2000; Wang et al. 2014a; Nazina et al. 2017), and high 

abundance of Pseudogulbenkiania in freshwater sedi-

ments and rice paddy soils (Tago et al. 2011; Guo et al. 

2018). In addition, most of the isolated denitrifier 

strains in these genera were anaerobic strains. How-

ever, there was no much information pertaining to the 

isolation of aerobic denitrifier strains (Achenbach et al. 

2001; Ishii et al. 2016; Yücel et al. 2019). These results 

indicated that a lot of aerobic denitrifier strains have 

not been isolated from the aerobic layer, which might 

be used for in situ restoration of eutrophic lake.

The abundance of Azoarcus was higher than other 

genera in the hypoxic layer. Previous studies showed 

that bacteria in the genus Azoarcus could use many aro-

matic hydrocarbons as carbon sources during denitrifi-

cation processes (Zhou et al. 1995; Springer et al. 1998; 

Lee et  al. 2013). Therefore, the genus Azoarcus might 

be the dominant denitrifying bacteria for nitrogen 

removal in low-DO sediment areas. Analysis of nosZ 

gene sequences showed that the abundance of Pseu-

dogulbenkiania was higher than those of other bacte-

ria in the anoxic layer. Previous studies presented some 

isolated strains of Pseudogulbenkiania and showed 

strong denitrification and  N2O reduction activities in 

rice paddy soils (Tago et al. 2011; Yoshida et al. 2012). 

Therefore, Pseudogulbenkiania might be the most 

important  N2O reducing microbes in the anoxic layer 

of surface sediments.

Fig. 4 Community structures in different layers of sediments based on sequence analysis of nirS (a), nirk (b) and nosZ (c). d Pearson correlation 

matrix between DNA abundance, RNA transcriptional level of denitrification genes and sediment physicochemical factors. AEZ aerobic zone, HYZ 

hypoxic zone, ANZ-1 up-anoxic zone, ANZ-2 sub-anoxic zone
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Relationship between denitrification traits and sediment 

physicochemical factors

To date, several studies have investigated the spatial 

changes of denitrifier traits in sediments (Devol 2015; 

Mao et  al. 2017; Zhang et  al. 2015). However, little is 

known about the relationship between denitrifier traits 

and physicochemical factors in surface sediments. In the 

present study, one-way ANOVA showed that the TN con-

tent (P < 0.01), TOC content (P < 0.01),  NH4
+–N content 

(P < 0.01), and  NO3
−–N content (P < 0.01) differed signifi-

cantly among AEZ, HAZ, ANZ-1 and ANZ-2 (Additional 

file  1: Table  S6). Pearson’s correlation revealed that the 

 NH4
+–N,  NO3

−–N and TOC content was significantly 

positively correlated with DNA abundance and RNA 

transcriptional level of denitrification genes (Fig.  4d). 

These results indicated that the response of denitrifiers 

to physicochemical factors varied in different DO layers. 

Similarly, Wang et  al. (2014b) also revealed that phys-

icochemical factors markedly affected the distribution 

of denitrification bacteria in bay sediments (Wang et al. 

2014b). Besides, different genes revealed inconsistent 

relationship between physicochemical factors and the 

abundance of denitrification genes. Similar inconsistence 

was also reported in marine sediments (Gao et al. 2017).

In summary, following the RSM experiments, the opti-

mal environmental conditions for best nitrate removal 

in water was predicted as 25C, pH 8.5 with 0.5 mg saw-

dust/110 g of sediment. Under the optimal environmen-

tal conditions, DNA abundance, RNA transcriptional 

levels and enzyme activities were compared among dif-

ferent layers of surface sediments, revealing that the 

activities of denitrification enzymes and key denitrifiers 

varied among layers with different DO contents. The as-

obtained relationship between denitrification and envi-

ronmental factors improved the understanding of their 

roles in geobiochemical cycles of Nitrogen.

Additional file

Additional file 1. Additional tables.
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