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Abstract

Denoising autoencoders (DAE) are trained to reconstruct
their clean inputs with noise injected at the input level, while
variational autoencoders (VAE) are trained with noise in-
jected in their stochastic hidden layer, with a regularizer that
encourages this noise injection. In this paper, we show that
injecting noise both in input and in the stochastic hidden
layer can be advantageous and we propose a modified vari-
ational lower bound as an improved objective function in this
setup. When input is corrupted, then the standard VAE lower
bound involves marginalizing the encoder conditional distri-
bution over the input noise, which makes the training crite-
rion intractable. Instead, we propose a modified training cri-
terion which corresponds to a tractable bound when input is
corrupted. Experimentally, we find that the proposed denois-
ing variational autoencoder (DVAE) yields better average log-
likelihood than the VAE and the importance weighted autoen-
coder on the MNIST and Frey Face datasets.

Introduction

Variational inference (Jordan et al. 1999) has been a core
component of approximate Bayesian inference along with
the Markov chain Monte Carlo (MCMC) method (Neal
1993). It has been popular to many researchers and practi-
tioners because the problem of learning an intractable pos-
terior distribution is formulated as an optimization problem
which has many advantages compared to MCMC; (i) we can
easily take advantage of many advanced optimization tools
(Kingma and Ba 2014a; Duchi, Hazan, and Singer 2011;
Zeiler 2012), (ii) the training by optimization is usually
faster than the MCMC sampling, and (iii) unlike MCMC,
where it is difficult to decide when to finish the sampling,
the stopping criterion of variational inference is more clear.

One remarkable recent advance in variational inference
is to use the inference network (also known as the recog-
nition network) as the approximate posterior distribution
(Kingma and Welling 2014; Rezende and Mohamed 2014;
Dayan et al. 1995; Bornschein and Bengio 2014). Unlike
the traditional variational inference where different vari-
ational parameters are required for each latent variable,
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in the inference network, the approximate posterior distri-
bution for each latent variable is conditioned on an ob-
servation and the parameters are shared among the latent
variables. Combined with advances in training techniques
such as the re-parameterization trick and the REINFORCE
(Williams 1992; Mnih and Gregor 2014), it became possi-
ble to train variational inference models efficiently for large-
scale datasets.

Despite these advances, it is still a major challenge to
obtain a class of variational distributions which is flexible
enough to accurately model the true posterior distribution.
For instance, in the variational autoencoder (VAE), in or-
der to achieve efficient training, each dimension of the latent
variable is assumed to be independent each other and mod-
eled by a univariate Gaussian distribution whose parameters
(i.e., the mean and the variance) are obtained by a nonlin-
ear projection of the input using a neural network. Although
VAE performs well in practice for a rather simple problems
such as generating small and simple images (e.g., MNIST),
it is desired to relax this strong restriction on the variational
distributions in order to apply it to more complex real-world
problems. Recently, there have been efforts in this direction.
(Salimans, Kingma, and Welling 2015) integrated MCMC
steps into the variational inference such that the variational
distribution becomes closer to the target distribution as it
takes more MCMC steps inside each iteration of the varia-
tional inference. Similar ideas but applying a sequence of in-
vertible and deterministic non-linear transformations rather
than MCMC are also proposed by (Dinh, Krueger, and Ben-
gio 2015) and (Rezende and Mohamed 2015).

On the other hand, the denoising criterion, where the input
is corrupted by adding some noise and the model is asked
to recover the original input, has been studied extensively
for deterministic generative models (Seung 1998; Vincent
et al. 2008; Bengio et al. 2013). These studies showed that
the denoising criterion plays an important role in achieving
good generalization performance (Vincent et al. 2008) be-
cause it makes the nearby data points in the low dimensional
manifold to be robust against the presence of small noise
in the high dimensional observation space (Seung 1998;
Vincent et al. 2008; Rifai 2011; Alain and Bengio 2014;
Im, Belghazi, and Memisevic 2016). Therefore, it seems a
legitimate question to ask if the denoising criterion (where
we add the noise to the inputs) can also be advantageous for
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the variational auto-encoding framework where the noise is
added to the latent variables, but not to the inputs, and if so,
how can we formulate the problem for efficient training. Al-
though it has not been considerably studied how to combine
these, there has been some evidences of its usefulness1. For
example, (Rezende and Mohamed 2014) pointed out that in-
jecting additional noise to the recognition model is crucial
to achieve the reported accuracy for unseen data, advocat-
ing that in practice denoising can help the regularization of
probabilistic generative models as well.

In this paper, motivated by the DAE and the VAE, we
study the denoising criterion for variational inference based
on recognition networks, which we call the variational auto-
encoding framework throughoutthe paper. Our main con-
tributions are as follows. We introduce a new class of ap-
proximate distributions where the recognition network is ob-
tained by marginalizing the input noise over a corruption
distribution, and thus provides capacity to obtain a more
flexible approximate distribution class such as the mixture
of Gaussian. Because applying this approximate distribu-
tion to the standard VAE objective makes the training in-
tractable, we propose a new objective, called the denoising
variational lower bound, and show that, given a sensible cor-
ruption function, this is (i) tractable and efficient to train ,
and (ii) easily applicable to many existing models such as the
variational autoencoder, the importance reweighted autoen-
coder (IWAE) (Burda, Grosse, and Salakhutdinov 2015),
and the neural variational inference and learning (NVIL)
(Mnih and Gregor 2014). In the experiments, we empiri-
cally demonstrate that the proposed denoising criterion for
variational auto-encoding framework helps to improve the
performance in both the variational autoencoders and the
importance weighted autoencoders (IWAE) on the binarized
MNIST dataset and the Frey Face dataset.

Variational Autoencoders

The variational autoencoder (Kingma and Welling 2014;
Rezende and Mohamed 2014) is a particular type of vari-
ational inference framework which is closely related to our
focus in this work (see Appendix for background on varia-
tional inference). With the VAE, the posterior distribution is
defined as pθ(z|x) ∝ pθ(x|z)p(z). Specifically, we define a
prior p(z) on the latent variable z ∈ R

D, which is usually
set to an isotropic Gaussian distribution N (0, σID). Then,
we use a parameterized distribution to define the observa-
tion model pθ(x|z). A typical choice for the parameterized
distribution is to use a neural network where the input is z

and the output a parametric distribution over x, such as the
Gaussian or Bernoulli distributions, depending on the type
of the output observation. Then, θ becomes the weights of
the neural network. We call this network pθ(x|z) the gener-
ative network. Due to the complex nonlinearity of the neural
network, the posterior distribution pθ(z|x) is intractable.

1In practice, it turned out to be useful to augment the dataset
by adding some random noise to the inputs. However, in denois-
ing criterion, unlike the augmenting, the model tries to recover the
original data, not the corrupted one.

One interesting aspect of VAE is that the approximate dis-
tribution q is conditioned on the observation x, resulting in
a form qφ(z|x). Similar to the generative network, we use a
neural network for qφ(z|x) with x and z as its input and out-
put, respectively. The variational parameter φ, which is also
the weights of the neural network, is shared among all obser-
vations. We call this network qφ(z|x) the inference network,
recognition network.

The objective of VAE is to maximize the following varia-
tional lower bound with respect to the parameters θ and φ.

log pθ(x) ≥ Eqφ(z|x)

[

log
pθ(x, z)

qφ(z|x)

]

(1)

= Eqφ(z|x) [log pθ(x|z)]−KL(qφ(z|x)||p(z)).
(2)

Note that in Eqn. (2), we can interpret the first term as a
reconstruction accuracy through an autoencoder with noise
injected in the hidden layer that is the output of the infer-
ence network, and the second term as a regularizer which
enforces the approximate posterior to be close to the prior
and maximizes the entropy of the injected noise.

The earlier approaches to train this type of models were
based on the variational EM algorithm: in the E-step, fix-
ing θ, we update φ such that the approximate distribution
qφ(z|x) close to the true posterior distribution pθ(z|x), and
then in the M-step, fixing φ, we update θ to increase the
marginal log-likelihood. However, with the VAE it is possi-
ble to apply the backpropagation on the variational param-
eter φ by using the re-parameterization trick (Kingma and
Welling 2014), considering z as a function of i.i.d. noise and
of the output of the encoder (such as the mean and variance
of the Gaussian). Armed with the gradient on these param-
eters, the gradient on the generative network parameters θ
can readily be computed by back-propagation, and thus we
can jointly update both φ and θ using efficient optimization
algorithms such as the stochastic gradient descent.

Although our exposition in the following proceeds mainly
with the VAE for simplicity, the proposed method can be
applied to a more general class of variational inference
methods which use the inference network qφ(z|x). This in-
cludes other recent models such as the importance weighted
autoencoders (IWAE), the neural variational inference and
learning (NVIL), and DRAW (Gregor et al. 2015).

Denoising Criterion in Variational Framework

With the denoising autoencoder criterion (Seung 1998;
Vincent et al. 2008), the input is corrupted according to
some noise distribution, and the model needs to learn to
reconstruct the original input (e.g., by maximize the log-
probability of the clean input x, given the corrupted input
x̃). Before applying the denoising criterion to the variational
autoencoder, we shall investigate a synthesized inference
formulation of the VAE in order to comprehend the conse-
quences of the denoising criterion.

Proposition 1. Let qφ(z|x̃) be a conditional Gaussian dis-
tribution such that qφ(z|x̃) = N (z|μφ(x̃), σφ(x̃)) where
μφ(x̃) and σφ(x̃) are non-linear functions of x̃. Let p(x̃|x)
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be a known corruption distribution around x. Then,

q̃φ(z|x) = Ep(x̃|x) [qφ(z|x̃)] =

∫

x̃

qφ(z|x̃)p(x̃|x)dx̃ (3)

is a mixture of Gaussian.

Depending on whether the distribution is over a contin-
uous or discrete variables, the integral in Equation 3 can be
replaced by a summation. It is instructive to consider the dis-
tribution over discrete domain to see that Equation 3 has a
form of mixture of Gaussian - that is, each time we sam-
ple x̃ ∼ p(x̃|x) and substitute into q(z|x̃), we get different
Gaussian distributions.

Example 1. Let x ∈ {0, 1}D be a D-dimension obser-
vation, and consider a Bernoulli corruption distribution
pπ(x̃|x) = Ber(π) around the input x. Then,

Epπ(x̃|x) [qφ(z|x̃)] =
K
∑

i=1

qφ(z|x̃i)pπ(x̃i|x) (4)

is a finite mixture of Gaussian with K = 2D mixture com-
ponents.

As mentioned in the previous section, usually a feedfor-
ward neural network is used for the inference network. In
the case of the Bernoulli distribution as a corrupting distri-
bution and qφ(z|x̃) is a Gaussian distribution, we will have

2D Gaussian mixture components and all of them share the
parameter φ.

Example 2. Consider a Gaussian corruption model
p(x̃|x) = N(x|0, σI). Let qφ(z|x̃) be a Gaussian inference
network. Then,

Ep(x̃|x) [qφ(z|x̃)] =

∫

x̃

qφ(z|x̃)p(x̃|x)dx̃. (5)

1. If qφ(z|φ
⊤
x̃) = N (z|μ = φ⊤

x̃, σ = σ2I) such that the
mean parameter is a linear model of weight vector φ and
input x̃, then the Equation 5 is a Gaussian distribution.

2. If qφ(z|x̃) = N (z|μ(x̃), σ(x̃)) where μ(x̃) and σ(x̃) are
non-linear functions of x̃, then the Equation 5 is an infi-
nite mixture of Gaussian.

In practice, there will be infinitely many number of Gaus-
sian mixture components as in the second case, all of whose
parameters are predicted by a single neural network. In other
words, the inference neural network will learn which Gaus-
sian distribution is needed for the given input x̃2.

We can see this corruption procedure as adding a stochas-
tic layer to the bottom of the inference network. For ex-
ample, we can define a corruption network pπ(x̃|x) which
is a neural network where the input is x and the out-
put is stochastic units (e.g., Gaussian or Bernoulli distri-
butions). Then, it is also possible to learn the parameter π
of the corruption network by backpropagation using the re-
parameterization trick. Note that a similar idea is explored in
IWAE (Burda, Grosse, and Salakhutdinov 2015). However,
our method is different in the sense that we use the denoising
variational lower bound as described below.

2The mixture components are encoded in a vector form.

The Denoising Variational Lower Bound

Previously, we described that integrating the denoising crite-
rion into the variational auto-encoding framework is equiv-
alent to having a stochastic layer at the bottom of the in-
ference network, and then estimating the variational lower
bound becomes intractable because Ep(x̃|x)[qφ(z|x̃)] re-
quires integrating out the noise x̃ of the corruption distri-
bution. Before introducing the denoising variational lower
bound, let us examine the variational lower bound when an
additional stochastic layer is added to the inference network
and then it is integrated out over the stochastic variables.

Lemma 1. Consider an approximate posterior distribution
of the following form:

qΦ(z|x) =

∫

z′

qϕ(z|z
′)qψ(z

′|x)dz′,

here, we use Φ = {ϕ, ψ}. Then, given pθ(x, z) =
pθ(x|z)p(z), we obtain the following inequality:

log pθ(x) ≥ EqΦ(z|x)

[

log
pθ(x, z)

qϕ(z|z′)

]

≥ EqΦ(z|x)

[

log
pθ(x, z)

qΦ(z|x)

]

.

Refer to the Appendix for the proof. Note that qψ(z
′|x)

can be either parametric or non-parametric distribution. We
can further show that this generalizes to multiple stochastic
layers in the inference network.

Theorem 1. Consider an approximate posterior distribu-
tion of the following form

qΦ(z|x) =

∫

z
1···zL−1

qφL (z|zL−1) · · · qφ1 (z1|x)dz1 · · · dzL−1.

Then, given pθ(x, z) = pθ(x|z)p(z), we obtain the follow-
ing inequality:

log pθ(x) ≥ EqΦ(z|x)

[

log
pθ(x, z)

∏L−1
i=1 qφi(zi+1|zi)

]

(6)

≥ EqΦ(z|x)

[

log
pθ(x, z)

qΦ(z|x)

]

, (7)

where z = z
L and x = z

1.

The proof is presented in the Appendix. Theorem 1 im-
plies that adding more stochastic layers gives tighter lower
bound.

We now use Lemma 1 to derive the denoising variational
lower bound. When the approximate distribution has the fol-
lowing form q̃φ(z|x) =

∫

qφ(z|x̃)p(x̃|x)dx̃, we can write
the variational lower bound as follows:

log pθ(x) ≥ Eq̃φ(z|x)

[

log
pθ(x, z)

qφ(z|x̃)

]

(8)

= Eq̃φ(z|x)

[

log
pθ(x, z)

q̃φ(z|x)

]

def
= Lcvae. (9)

Applying Lemma 1 to Equation 9, we can pull out the ex-
pectation in the denominator outside of the log and obtain
the denoising variational lower bound:

Ldvae
def
= Eq̃φ(z|x)

[

log
pθ(x, z)

qφ(z|x̃)

]

. (10)
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Note that the pθ(x, z) in the numerator of the above equa-
tion is a function of x not x̃. That is, given corrupted input x̃
(in the denominator), the Ldvae objective tries to reconstruct
the original input x not the corrupted input x̃. This denois-
ing criterion is different from the popular data augmentation
approach where the model tries to reconstruct the corrupted
input.

By the Lemma 1, we finally have the following:

log pθ(x) ≥ Ldvae ≥ Lcvae. (11)

It is important to note that the above does not necessarily
mean that Ldvae ≥ Lvae where

Lvae = Eqφ(z|x)

[

log
pθ(x, z)

qφ(z|x)

]

. (12)

This is because q̃φ(z|x) in Lcvae depends on the choice of a
corruption distribution while qφ(z|x) in Lvae does not.

Note also that q̃φ(z|x) has the capacity to cover a much
broader class of distributions than qφ(z|x). This makes it
possible for Ldvae to be a tighter lower bound of log pθ(x)
than Lvae. For example, suppose that the true posterior
p(z|x) consists of multiple modes. Then, q̃φ(z|x) has the
potential of modeling more than a single mode, whereas it is
impossible to model multiple modes of p(z|x) using qφ(z|x)
regardless of which lower bound of log pθ(x) is used as the
objective function. However, we also note that it is also pos-
sible to make the Lcvae a looser lower bound than Lvae

by choosing a very inefficient corruption distribution p(x̃|x)
such that it completely distorts the input x in such a way to
lose all useful information required for the reconstruction,
resulting in Lvae > Lcvae. Therefore, for Ldvae, it is impor-
tant to choose a sensible corruption distribution.

A question that arises when we consider Ldvae is what is
the underlying meaning of maximizing Ldvae. As mentioned
earlier, the aim of variational objective is to minimize the
distributions between approximate posterior and true poste-
rior distribution, i.e. KLdvae = KL (q̃φ(z‖x)||p(z|x)) =
log pθ(x)−Lcvae. However, Ldvae definitely does not min-
imizes only the KL between approximate posterior and true
posterior distribution as we can observe that KLcvae =
KL (q̃φ(z‖x)||p(z|x)) ≥ log pθ(x)−Ldvae. This illustrates
that KLdvae ≤ KLcvae. Nonetheless, KLdvae provides a
tractable way to optimize from the approximate posterior
distribution q(z|x). Thus, it is interesting to see the follow-
ing proposition.

Proposition 2. Maximizing Ldvae is equivalent to minimiz-
ing the following objective

Ep(x̃|x)[KL(q̃φ(z|x̃)||p(z|x))]. (13)

That is,

log pθ(x) = Ldvae + Ep(x̃|x)[KL(q̃φ(z|x̃)||p(z|x))].

The proof is presented in the Appendix. Proposition 2 il-
lustrates that maximizing Ldvae is equivalent to minimizing
the expectation of the KL between the true posterior distri-
bution and approximate posterior distribution over all noised
inputs from p(x̃|x). We believe that this is indeed an effec-
tive objective because the inference network tries to learn to

map not only the training data point but also its corrupted
variations to the true posterior distribution, resulting in a
more robust training of the inference network to unseen data
points. As shown in Theorem 1, this argument also applies
for multiple stochastic layers of inference network.

Training Procedure

One may consider a simple way of training VAE with the
denoising criterion, which is similar to how the vanilla de-
noising autoencoder is trained: (i) sample a corrupted in-

put x̃(m) ∼ p(x̃|x), (ii) sample z
(l) ∼ q(z|x̃(m)), and (iii)

sample reconstructed images from the generative network

pθ(x|z
(l)). This procedure is akin to the regular VAE except

that the input is corrupted by a noise distribution at every
update.

The above procedure can be seen as a special case of opti-
mizing the following objective which can be easily approxi-
mated by Monte Carlo sampling.

Ldvae = Ep(x̃|x)Eq(z|x̃)

[

log
pθ(x, z)

qφ(z|x̃)

]

(14)

�
1

MK

M
∑

m=1

K
∑

k=1

log
pφ(x, z

(k|m))

qφ(z(k|m)|x̃(m))
(15)

where x̃
(m) ∼ p(x̃|x) and z

(k|m) ∼ qφ(z|x̃
(m)). In the

experiment section, we call the estimator of Equation 15
DVAE. Although in the above we applied the denoising cri-
terion for VAE (resulting in DVAE) as a demonstration, the
proposed procedure is applicable more generally to other
variational methods with inference networks. For example,
the training procedure for IWAE with denoising criterion
can be formulated with Monte Carlo approximation:

Ldiwae = Ep(x̃|x)Eq(z|x̃)

[

log

M
∑

m=1

K
∑

k=1

pθ(x, z
(k|m))

qφ(z(k|m)|x̃(m))

]

(16)

� log
1

MK

M
∑

m=1

K
∑

k=1

pφ(x, z
(k|m))

qφ(z(k|m)|x̃(m))
. (17)

where x̃
(m) ∼ p(x̃|x), z(k|m) ∼ qφ(z|x̃

(m)), and Monte
Carlo sample size is set to 1. We named the following esti-
mator of Equation 17 as DIWAE.

Experiments

We conducted empirical studies of DVAE under the denois-
ing variational lower bound as discussed in Section . To as-
sess whether adding a denoising criterion to the variational
auto-encoding models enhance the performance or not, we
tested on the denoising criterion on VAE and IWAE through-
out the experiments. As mentioned in Section , since the
choice of the corruption distribution is crucial, we compare
on different corruption distributions of various noise levels.

We consider two datasets, the binarized MNIST dataset
and the Frey face dataset. The MNIST dataset contains
60,000 images for training and 10,000 images for test and
each of the images is 28 × 28 pixels for handwritten digits

2062



from 0 to 9 (LeCun et al. 1998). Out of the 60,000 train-
ing examples, we used 10,000 examples as validation set to
tune the hyper-parameters of our model. We use the bina-
rized version of MNIST, where each pixel of an image is
sampled from {0, 1} according to its pixel intensity value.
The Frey Face3 dataset consists of 2000 images of Brendan
Frey’s face. We split the images into 1572 training data, 295
validation data, and 200 test data. We normalized the images
such that each pixel value ranges between [0, 1].

Throughout the experiments, we used the same neural
network architectures for VAE and IWAE. Also, a single
stochastic layer with 50 latent variables is used for both VAE
and IWAE. For the generation network, we used a neural
network of two hidden layers each of which has 200 units.
For the inference network, we tested two architectures, one
with a single hidden layer and the other with two hidden
layers. We then used 200 hidden units for both of them. We
used softplus activations for VAE and tanh activations for
IWAE following the same configuration of the original pa-
pers of (Kingma and Welling 2014) and (Burda, Grosse, and
Salakhutdinov 2015). For binarized MNIST, the last layer
of the generative network was sigmoid and the usual cross-
entropy term was used. For the Frey Face dataset where the
input value is real numbers, we used Gaussian stochastic
units for the output layer of the generation network.

For all our results, we ran 10-fold experiments. We opti-
mized all our models with ADAM (Kingma and Ba 2014b).
We set the batch size to 100 and the learning rate was se-
lected from a discrete range chosen based on the validation
set. We used 1 and 5 samples of z per update for VAE and
5 samples for IWAE. Note that using 1 sample for IWAE is
equivalent to VAE. The reported results were only trained
with training set, not including the validation set.

Following common practices of choosing a noise distri-
bution, we deployed the salt and pepper noise to the bi-
nary MNIST and Gaussian noise to the real-valued Frey
Face dataset. Table 1 presents the negative variational lower
bounds with respect to different corruption levels on the
MNIST. Table 2 presents the negative variational lower
bound using unnormalized generation networks, with re-
spect to different corruption levels on the Frey Face dataset.
Note that when the corruption level is set to zero, DVAE and
DIWAE are identical to VAE and IWAE, respectively.

In the following, we analyze the results by answering
questions on the experiments.

Q: Does adding the denoising criterion improve the per-
formance of variational autoencoders?

Yes. All of the methods with denoising criterion sur-
passed the performance of vanilla VAE and vanilla IWAE
as shown in Table 1 and Table 2. But, it is dependent on
the choice of proper corruption level; for a large amount of
noise, as we expected, it tends to perform worse than the
vanilla VAE and IWAE.

Q: How sensitive is the model for the type and the level of
the noise?

It seems that both of the models are not very sensitive with

3Available at http://www.cs.nyu.edu/∼roweis/data.html.

Figure 1: Denoising Variational Lower Bound for DVAE and
DIWAE

respect to the two types of noises: Gaussian and salt and pep-
per. They are more sensitive to the level of the noise rather
than the type. Based on the experiments, the optimal corrup-
tion level lies in between (0, 5] since all of the results in that
range are better than the one with 0% noise. It is natural to
see this result considering that, when the noise level is exces-
sive, (i) the model will lose information required to recon-
struct the original input and that (ii) there will be large gap
between the distributions of the (corrupted) training dataset
and the test dataset.

Q: How do the sample sizes M affect to the result?

In Figure 1, we show the results on different configura-
tions of M . As shown, increasing the sample size helps to
converge faster in terms of the number of epochs and con-
verge to better log-likelihood. The converged values of VAE
are 94.97, 94.44, and 94.39 for M = 1, 5, and 10 respec-
tively, and 93.17, 92.89, and 92.85 for IWAE. Note, how-
ever, that increasing sample size requires more computation.
Thus, in practice using M = 1 seems a reasonable choice.

Q: What happens when we replace the neural network in
the inference network with some other types of model?

Several applications have demonstrated that recurrent
neural network can be more powerful than neural netework.
Here, we tried replacing neural network in the inference net-
work with gated recurrent neural network that consist of sin-
gle recurrent hidden layers with five time steps (Chung et al.
2014). We denote these models DVAE (GRU) and DIWAE
(GRU) where GRU stands for gated recurrent units.

Table 3 demonstrates the results with different noise level
on MNIST dataset. We notice that when VAE combined with
GRU tend to severely overfit on the training data and it actu-
ally performed worse than having a neural network at the in-
ference network. However, denoising criterion redeems the
overfitting behaviour and produce much better results com-
paring with both VAE (GRU) and DVAE with regular neu-
ral networks. Similarly, IWAE combined with GRU showed
overfitting behaviour although it gave better results than DI-
WAE with neural networks. Also, DIWAE (GRU) gave the
best performance among all models we experimented with.

Q: Data augmentation v.s. data corruption?

We consider specific data augmentation where our data
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Table 1: Negative variational lower bounds using different corruption levels on MNIST (the lower, the better). The salt-and-
pepper noises are injected to data x during the training.

Model
# Hidden Noise Level
Layers 0 5 10 15

DVAE (K=1) 1 96.14 ± 0.09 95.52 ± 0.12* 96.12 ± 0.06 96.83 ± 0.17
DVAE (K=1) 2 95.90 ± 0.23 95.34 ± 0.17* 95.65 ± 0.14 96.17 ± 0.17

DVAE (K=5) 1 95.20 ± 0.07 95.01 ± 0.04* 95.55 ± 0.07 96.41 ± 0.11
DVAE (K=5) 2 95.01 ± 0.07 94.71 ± 0.13* 94.90 ± 0.22 96.41 ± 0.11

DIWAE (K=5) 1 94.36 ± 0.07 93.67 ± 0.10* 93.97 ± 0.07 94.35 ± 0.08
DIWAE (K=5) 2 94.31 ± 0.07 93.08 ± 0.08* 93.35 ± 0.13 93.71 ± 0.07

Table 2: Negative variational lower bound using different corruption levels on the Frey Face dataset. Gaussian noises are injected
to data x during the training.

Model
# Hid. Noise Level
Layers 0 2.5 5 7.5

DVAE (K=1) 1 1304.79 ± 5.71 1313.74 ± 3.64* 1314.48 ± 5.85 1293.07 ± 5.03
DVAE (K=1) 2 1317.53 ± 3.93 1322.40 ± 3.11* 1319.60 ± 3.30 1306.07 ± 3.35

DVAE (K=5) 1 1306.45 ± 6.13 1320.39 ± 4.17* 1313.14 ± 5.80 1298.40 ± 4.74
DVAE (K=5) 2 1317.51 ± 3.81 1324.13 ± 2.62* 1320.99 ± 3.49 1317.56 ± 3.94

DIWAE (K=5) 1 1318.04 ± 2.83 1320.18 ± 3.43 1333.44 ± 2.74* 1305.38 ± 2.97
DIWAE (K=5) 2 1320.03 ± 1.67 1334.77 ± 2.69* 1323.97 ± 4.15 1309.30 ± 2.95

Table 3: Negative variational lower bounds using different corruption levels on MNIST (the lower, the better) with recurrent
neural network as a inference network. The salt-and-pepper noises are injected to data x during the training.

Model
# Hidden Noise Level
Layers 0 5 10 15

DVAE (GRU) 1 96.07 ± 0.17 94.30 ± 0.09* 94.32 ± 0.12 94.88 ± 0.11
DIWAE (GRU) 1 93.94 ± 0.06 93.13 ± 0.11 92.84 ± 0.07* 93.03 ± 0.04

lies in between 0 and 1, x ∈ (0, 1)D like MNIST. We con-
sider a new binary data point x′ ∈ {0, 1}D where the pre-
vious data is treated as a probability of each pixel value
turning on, i.e. p(x′) = x. Then, we augment the data by
sampling the data from x at every iteration. Although, this
setting is not realistic, we were curious whether the perfor-
mance of this data augmentation compare to denoising crite-
rion. The performance of such data augmentation on MNIST
gave 93.88 ± 0.08 and 92.51 ± 0.07 for VAE and IWAE.
Comparing these negative log-likelihood with the perfor-
mance of DVAE and DIWAE, which were 94.32± 0.37 and
93.83± 0.06, data augmentation VAE outperformed DVAE
but data augmentation IWAE was worse than DIWAE.

Q: Can we propose a more sensible noise distribution?

For all the experiment results, we have used a simple cor-
ruption distribution using a global corruption rate (the pa-
rameter of the Bernoulli distribution or the variance of the
Gaussian distribution) to all pixels in the images. To see
if a more sensible corruption can lead to an improvement,
we also tested another corruption distribution by obtaining a
mean image. Here, we obtained the mean image by averag-
ing all training images and then used the pixel intensity of
the mean image as the corruption rate so that each pixel has
different corruption rate which statistically encodes at some
extent the pixel-wise noise from the entire dataset. However,
we could not observe a noticeable improvement from this
compared to the version with the global corruption rate, al-
though we believed that this is a better way of designing the

corrupting distribution. One interesting direction is to use a
parameterized corruption distribution and learn the parame-
ter. This will be advantageous because we can use our de-
noising variational lower bound which it is tighter than the
classical variational lower bound on noisy inputs. We leave
this for the future work.

Conclusions

In this paper, we studied the denoising criterion for a gen-
eral class of variational inference models where the approx-
imate posterior distribution is conditioned on the input x.
The main result of our paper was to introduce the denois-
ing variational lower bound which, provided a sensible cor-
ruption function, can be tighter than the standard variational
lower bound on noisy inputs. We claimed that this training
criterion makes it possible to learn more flexible and robust
approximate posterior distributions such as the mixture of
Gaussian than the standard training method without corrup-
tion. In the experiments, we empirically observed that the
proposed method can consistently help to improve the per-
formance for the variational autoencoder and the importance
weighted autoencoder. Although we observed considerable
improvements for our experiments with simple corruption
distributions, how to obtain the sensible corruption distribu-
tion is still an important open question. We think that learn-
ing with a parametrized corruption distribution or obtaining
a better heuristic procedure will be important for the method
to be applied more broadly.
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