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Abstract

Purpose—To improve signal-to-noise ratio (SNR) for diffusion-weighted MR images.

Methods—A new method is proposed for denoising diffusion-weighted magnitude images. The 
proposed method formulates the denoising problem as an maximum a posteriori estimation 
problem based on Rician/noncentral χ likelihood models, incorporating an edge prior and a low-
rank model. The resulting optimization problem is solved efficiently using a half-quadratic method 
with an alternating minimization scheme.

Results—The performance of the proposed method has been validated using simulated and 
experimental data. Diffusion-weighted images and noisy data were simulated based on the 
diffusion tensor imaging (DTI) model and Rician/noncentral χ distributions. The simulation study 
(with known gold standard) shows substantial improvements in SNR and diffusion tensor es-
timation after denoising. In-vivo diffusion imaging data at different b-values were acquired. Based 
on the experimental data, qualitative improvement in image quality and quantitative im-provement 
in diffusion tensor estimation were demonstrated. Additionally, the proposed method is shown to 
outperform one of the state-of-the-art non-local means based denoising algorithms, both 
qualitatively and quantitatively.

Conclusion—The SNR of diffusion-weighted images can be effectively improved with rank and 
edge constraints, resulting in an improvement in diffusion parameter estimation accuracy.
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Introduction

Low SNR has been a major limiting factor for high resolution diffusion-weighted (DW) 
imaging and is often problematic for the quantification of diffusion properties of tissues (1, 
2). Significant efforts have been made to address this problem. Straightforward approaches, 
including signal averaging and reducing k-space coverage, have found some practical use, 
but they have noticeable limitations, such as long data acquisition time or low spatial 
resolution.

An alternative approach is to acquire high-resolution (noisy) data, followed by denoising. 
Denoising can be applied to either complex-valued or magnitude DW images. The method 
in (3) assumes a diffusion tensor model and estimates the tensor parameters directly from 
complex-valued DW images, incorporating smoothness constraints on both the DW images 
and the diffusion tensor field. The method in (4) imposes no specific diffusion model and 
performs joint image reconstruction and denoising, utilizing an edge constraint that exploits 
the correlation of edge structures in DW image series for effective edge-preserving 
smoothing. Although denoising complex data is generally advantageous (e.g., smaller bias 
and easier characterization), it is desirable to effectively denoise magnitude data for a 
number of practical reasons (such as availability and free of phase artifacts (5)).

A key challenge in denoising magnitude images lies in the handling of signal-dependent, 
non-Gaussian noise (6,7). While the measurement noise in complex k-space data can be 
modeled as signal-independent Gaussian noise, noisy magnitude images often follow Rician 
distribution (8, 9) or noncentral χ distribution (10–12). Based on these distributions, several 
meth-ods have been proposed for denoising DW magnitude data. The methods in (13, 14) 
assume a specific parametric diffusion model and directly estimate the diffusion parameters 
from noisy magnitude data using Rician likelihood model. The methods in (15–19) do not 
assume any diffusion model and apply Rician/noncentral χ distribution based image 
denoising followed by a separate diffusion parameter estimation. In order to denoise DW 
magnitude data effectively, a variety of constraints that exploit prior information about DW 
images have been used in the existing literature. They include local smoothness (20–24), 
image sparsity (25) and non-local similarities (26–29). The reader can refer to (4) for a more 
complete list of related references.

This paper presents a new method to jointly denoise a sequence of DW magnitude images, 
combining the following modeling components. First, we model the noisy magnitude data 
using Rician/noncentral χ distribution, providing flexibility to process images from a range 
of reconstruction schemes (11). Second, we impose a low-rank structure on the desired DW 
image series, which helps separate the underlying signal from noise, assuming that the true 
signal lies in a low-dimensional subspace. The benefits of low-rank modeling have 
previously been demonstrated in various MRI applications, including reconstruction from 
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highly undersampled k-t space data (30–33) and denoising (34–36). Third, we incorporate a 
special edge constraint. This constraint exploits the correlation of edge structures in a DW 
image series for effective edge-preserving smoothing (4). We formulate the denoising 
problem within an maximum a posteriori (MAP) estimation framework that integrates these 
three components and solve the associated optimization problem using an efficient 
alternating minimization algorithm. The proposed method is the first attempt to incorporate 
noisy signal modeling, low-rank modeling and edge-preserving prior in a unified 
mathematical framework for denoising magnitude MR image series. The proposed method 
is described in detail in the subsequent section. Its performance will be demonstrated using 
both simulated and experimental data in the Results section, followed by discussions and 
conclusions.

Theory

In a typical diffusion imaging experiment, a sequence of DW images is acquired for 
quantifying diffusion properties at each voxel. Given a sequence of Q noisy DW magnitude 
images Y = [y1,y2,…,yQ], where the vector yi ∈ RM represents an individual image frame 
with M pixels, we jointly denoise all the images in Y using the following MAP estimation 
formulation

[1]

where A = [a1,a2,…, aQ] represents the underlying noise-free image series expressed in 
matrix form with ai ∈ RM being the ith image frame, such that

[2]

We use Â to denote the denoised image series, p (Y|A) to represent the likelihood function 
capturing the distribution of the noisy data, and p (A) to represent the image prior. We next 
describe p (Y|A) and p (A), and how to solve Eq. [1] with a low-rank constraint on A.

Noise Model

It is generally accepted that the real and imaginary parts of a complex-valued image from 
any linear reconstruction scheme follow Gaussian distributions with the same noise 
variance. There-fore, the magnitude image intensity at each voxel, computed as 

, with yR and yI being the real and imaginary parts respectively, can be modeled 
by the Rician distribution (5) as

[3]
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where a is the corresponding noise-free intensity, I0(·) is the zeroth-order modified Bessel 
function of the first kind, and σ2 is the variance of the Gaussian noise in the real and 
imaginary parts.

Assuming independent noise distribution at each voxel and spatially invariant noise 
variance, the joint likelihood of all voxels p (Y|A) can be expressed as a product of Rician 
distributions as

[4]

where m and q are indices for voxel positions and image frames, respectively.

If the magnitude image is obtained by sum-of-squares combination of images from multiple 

coils as  with c being the coil index, the intensity can be modeled by 
the noncentral χ distribution (10) as

[5]

assuming uncorrelated noise and uniform variance across different coils. C is the number of 
coils and IC(·) is the Cth-order modified Bessel function of the first kind. Accordingly, the 
joint likelihood function can be extended to sum-of-squares images, using a product of 
noncentral χ distributions as

[6]

If the correlation between different coils needs to be considered, the noncentral χ model can 

still be used with an effective noise variance  and an effective number of coils Ceff, as 
described in (12). The likelihood models in Eqs. [4] and [6] can also be readily extended to 
the case of spatially varying noise by substituting σ with a voxel dependent σm.

Image Model

The proposed image model has two key features: a low-rank model for A and a special edge 
prior p (A). First, we express the image series A as (31,37)

[7]

where U ∈ RM × L and V ∈ RL × Q are low-rank matrices with L ≪ Q < M. This 
representation is motivated by and based on the assumption that there is a strong spatial 
correlation of tissue diffusion properties, whether the diffusion properties are described by a 
tensor (38) or higher-order models (39–41). This correlation (referred to as spatial-diffusion 

Lam et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2014 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation here) can be well captured by the Partial Separability (PS) model (30,31), which 
leads to the low-rank representation of the image series A as expressed in Eq. [7].

Second, we use the following prior for edge-preserving smoothing (the log form of this prior 
is equivalent to the regularization penalty proposed in (4))

[8]

In Eq. [8], H(·) can be any edge-preserving regularization function, wq are the edge weights 
for the qth image frame, Ωm represents a neighborhood of the mth voxel, which contains its 
adjacent voxels along the horizontal and vertical directions, and λ is a regularization 
parameter. It was demonstrated in (4) that DW image series have highly correlated edge 
structures that can be enforced via the prior in Eq. [8]. The edge weights, wq can be chosen 
according to different denoising preferences. For example, assigning larger weights to the 
images acquired at higher b-values will help preserve image features revealed with heavier 
diffusion weightings. For more comprehensive discussions on choosing wq, see (4,42).

Joint Denoising Formulation

For DW images following Rician distribution, we integrate the Rician likelihood model in 
Eq. [4], the low-rank model in Eq. [7] and the edge prior in Eq. [8] into the MAP 
formulation in Eq. [1], yielding the following optimization problem

[9]

where Û, V̂ are estimates of U and V. The regularization term R(·) is given by

[10]

The denoised image series is computed as Â = ÛV̂.

For DW images following noncentral χ distribution (sum-of-squares combination), the like-
lihood function is replaced by the noncentral χ distribution model in Eq. [6], which yields 
the following optimization problem

[11]
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The proposed formulations in Eqs. [9] and [11] can be adapted to handle various special 
cases. For instance, the estimation of a full rank A from noncentral χ distributed data can be 
reformulated without explicit rank modeling as follows:

[12]

where C = 1 for Rician distributed data. In this case, only the spatial edge constraint is 
utilized.

Algorithm

A multiplicative half-quadratic method (4,43) combined with an alternating minimization 
scheme is used to solve the problems in Eq. [9] and Eq. [11]. Specifically, we use the Huber 
function (4,44) for H(·) in this paper, and the proposed algorithm performs an iterative 
reweighted ℓ2 regularization by first solving

[13]

followed by updating the weights lnm using

[14]

where α is a manually chosen threshold and

[15]

The steps in Eqs. [13] and [14] are alternated until convergence. As can be seen, in each 
iteration, the prior in Eq. [8] leads to a local edge penalty modulated by the line variables lnm 

estimated using edge information from all the image frames. At spatial regions where lnm is 
large, heavy smoothing is applied, while at regions with small lnm (edge structure present), 
weaker smoothing is applied.

For a fixed lnm, U and V are estimated alternatively. At the kth iteration, we update U with 
V̂(k) by solving

Lam et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2014 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[16]

where B is a finite difference operator and W is a diagonal weighting matrix composed of 
lnm.

For a fixed Û(k), optimizing V can be done by solving the following Q decoupled sub-
problems (a similar decomposition can be found in (45)):

[17]

Each sub-problem has a very low dimensionality L and is easy to solve. Due to the Rician/
noncentral χ likelihood, nonlinear optimization should be used to solve the alternating 
minimization problems. To solve the problem in Eq. [16], we used the limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (46), which was designed for large 
scale problems where the approximated Hessian cannot be saved explicitly. The standard 
BFGS method (46) was used for solving each sub-problem in Eq. [17]. We have also 
derived explicit expressions for the gradients of the optimization cost functions in Eqs. [16] 
and [17], which lead to efficient computations using matrix-vector multiplications (see the 
Appendix for derivations).

The algorithm is initialized by applying a singular value decomposition (SVD) on Y and 
extracting the first L eigenvectors as initial estimates Û(0) and V̂(0). L was selected 
empirically by examining the singular value distribution of Y and choosing a proper cut-off 
threshold. The noise variance σ2 was estimated from the background regions with negligible 
signals (5,15). Notice that when amq = 0, the Rician distribution becomes the Rayleigh 

distribution with a second moment  (5). Therefore, σ2 can be estimated as half 
of the mean square data intensity in a background region. For noncentral χ distributed data, 

the second moment for the background signal can be computed similarly as 
with C the number of coils (10). Thus, we can again use the mean square intensity in the 
background to estimate σ2. Assuming that all images within the series have similar noise 
levels, the accuracy of this estimation can be improved by averaging the estimates of σ2 

from all the frames. For the edge prior, we assigned slightly larger wq for images with higher 
b-values. The regularization parameter λ was chosen based on visual inspection of both the 
denoised images and the estimated diffusion parameter maps.

Methods

Simulations

DW images were simulated using an adult mouse diffusion tensor atlas from the Biomedical 
Informatics Research Network (BIRN) Data Repository. The image intensity amq of the mth 

voxel in the qth frame was generated using the tensor model as follows:
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[18]

where am0 is the intensity without diffusion weighting, bq is the b-value for the qth frame, uq 

specifies the diffusion encoding direction, and Dm is the diffusion tensor for the mth voxel. 
Forty-five images with 256 × 256 pixels were generated, including one image with b = 0 and 
44 images with b = 2000s/mm2 in different diffusion encoding directions. Independent 
Rician noise was simulated by adding white Gaussian noise to the real and imaginary parts 
of the images. The noise standard deviation was chosen as 1/10 of the mean intensity in the 
center region of the first frame (the image with b = 0). We then applied four processing 
schemes to the same noisy image series to illustrate the effect of each constraint in the 
proposed method. They are: (1) no denoising; (2) denoising with Gaussian distribution and 
edge constraints (Eq. [12] with Gaussian likelihood); (3) denoising with Rician distribution 
and edge constraints (Eq. [12] with C = 1); and (4) denoising with Rician distribution and 
both low-rank model and edge constraints (Eq. [9]). The low-rank model order was L = 8. 
The weightings for the spatial prior were w1 = 1 for the first frame, and wq = 1.5 (q ≥ 2) for 
the rest of the series. The regularization parameters λ for different schemes were chosen 
such that the noise variances from the background were similar after denoising. The tensors 
and FA estimates for all cases were produced for comparison using the standard least-
squares approach in (47) (same for all the results presented in this paper).

The proposed method was also compared with one of the state-of-the-art image denoising 
methods: the multi-component non-local means (MNLM) algorithm (29). The algorithm 
applies NLM filter (26) to the images using filtering kernels defined on image blocks, which 
is based on a completely different model compared to the proposed method. The original 
algorithm works for Gaussian noise and needs modification for Rician case. Specifically, 
noting that the squared intensity of the simulated noisy images follows a chi-square 
distribution with expectation E(y2) = E(a2) + 2σ2, we applied the MNLM algorithm to the 
squared magnitude images and the output intensities were then shifted by 2σ2 to obtain the 
estimated squared intensities, as described in (26).

The same noise-free DW image series was also used to generate noncentral χ distributed 
data to simulate noisy sum-of-squares images. The noisy intensity in this case was generated 
as

where ac = a is the noise-free intensity for each coil, n1c and n2c are white Gaussian noise 
with the same standard deviation as in the Rician distributed data. A total of four coils were 
simulated (C = 4) and uniform sensitivity maps were assumed for each coil (noting that the 
sensitivity map does not affect noise distribution). The proposed method was applied to 
denoise the simulated series with the noncentral χ likelihood model (Eq. [11]) with L = 8 
and the same wq assignment as in the Rician noise case. The MNLM algorithm was also 
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applied to the squared image series and the output intensities were shifted by 2Cσ2, 
considering that the squared intensity follows a noncentral chi-square distribution with 
expectation E(y2) = E(a2) + 2Cσ2.

Experimental data

In-vivo human brain diffusion imaging data from healthy volunteers was used to evaluate 
the performance of the proposed method in practical scenarios. The first data set was 
obtained from a multi-b-value diffusion experiment. The data was acquired on a 3T Siemens 
scanner (Trio, Siemens Healthcare USA) equipped with a 32-channel receiver headcoil, 
using a double spin-echo EPI sequence with partial Fourier sampling (5/8 of the k-space in 
phase-encoding direction). The imaging parameters were: TR/TE = 6300/98ms, matrix size 
= 128 × 128 with a FOV of 256 × 256mm2 and 35 slices with 2mm thickness. The DW 
image series was acquired at multiple b-values (b = 1000, 2000, 3000s/mm2) in 30 diffusion 
encoding directions for each nonzero b-value. Partial Fourier reconstruction (48) was 
applied to each coil to obtain the original noisy images. The proposed method with Rician 
likelihood model was then applied to denoise the reconstructed image series coil by coil 
with L = 16. λ was chosen based on visual inspection of the denoised images to balance 
between noise reduction and oversmoothing (a similar procedure was applied for all the in-
vivo data). Sum-of-squares was used to combine the denoised images from all coils for 
diffusion tensor estimation.

The second data set was from a DTI experiment on a different 3T Siemens scanner (Skyra, 
Siemens Healthcare USA) equipped with a standard 16-channel receiver headcoil, using a 
single spin-echo EPI sequence. The data acquisition parameters were: TR/TE = 7800/91ms, 
2 × 2 mm2 in-plane resolution and 2mm slice thickness. Diffusion encodings along 64 
directions with b = 2000s/mm2 and a b = 0 image were acquired. Parallel imaging with an 
acceleration factor of 2 was used and GRAPPA reconstruction (49) was performed. The 
proposed method with noncentral χ likelihood model was applied to denoise the sum-of-
squares image series, with L = 16 and λ chosen by visual inspection.

The third data set was again acquired on the 3T Siemens Skyra using the same sequence as 
above. Sixty-four diffusion directions with b = 2000s/mm2 were acquired covering a full 
sphere in the diffusion q-space (50, 51). In addition, the diffusion directions in the left 
hemisphere (in q-space) are symmetric to the diffusion directions in the right hemisphere. 
Again, GRAPPA reconstruction with an acceleration factor of 2 was applied. The diffusion 
tensors estimated from either hemisphere before and after denoising were compared. 
Theoretically, the tensors estimated from either hemisphere in q-space should be the same. 
However, the presence of noise alters this symmetry. Therefore, this comparison provides a 
direct quantitative measure of noise reduction. A similar approach was used in (4).

Results

Representative results from both simulated and in-vivo data are shown to illustrate the 
effectiveness of the proposed method.
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Simulation Results

Figure 1 shows some representative DW images (for the same diffusion encoding direction), 
calculated FA maps and the corresponding error maps for the four alternative schemes 
(described in the first paragraph of the Methods section). As can be seen, effective noise 
reduction due to edge constraints can be observed in both columns 2 and 3. However, the 
Gaussian noise assumption introduced noticeable bias (see the error image and FA error map 
in column 2). The results in column 4 have the smallest errors in both the DW images and 
FA maps, illustrating the advantages of integrating the data model, the low-rank model and 
the edge constraints.

Figure 2 compares representative image frames, FA maps and color-coded FA maps from 
the noisy images, the MNLM algorithm and the proposed method, for the simulated Rician 
distributed data. Zoom-in images corresponding to a specific brain region are also shown. 
As can be seen, the proposed method (column 4) not only significantly reduces the noise 
level but also helps recover important diffusion features originally contaminated by noise. 
The denoising results from the MNLM algorithm (column 3) look good visually but 
oversmoothing is present in several regions. The difference between MNLM and the 
proposed method can be seen more clearly in the zoom-in regions. Figure 3 compares the 
quantification results from different methods. Note that FA errors of the proposed method 
(column 3) are more concentrated around zero (i.e., lower bias and variance) and less 
dependent on the true FA values, indicating the effectiveness of the proposed method in 
reducing noise while maintaining the anisotropy of the diffusion tensors.

Figure 4 compares the denoising results for the simulated noncentral χ distributed data (sum-
of-squares images). Figure 5 shows the corresponding comparison of the FA estimation 
errors. The image quality and quantification accuracy of the proposed method are again 
superior to those of the alternative methods.

Figure 6 shows a more comprehensive quantitative comparison between different cases 
under different noise levels. The peak signal-to-noise ratio (PSNR), computed as

[19]

is shown for representative frames from each method. aq and Âq in the equation correspond 
to the noise-free image and the noisy/denoised images, respectively. PSNR is commonly 
used for measuring the approximation accuracy of a noisy/reconstructed image to the 
original image. Higher PSNR (higher approximation accuracy) usually indicates better 
visual quality. However, better visual quality does not necessarily lead to higher parameter 
estimation accuracy in quantitative diffusion imaging. Therefore, we also computed the root-
mean-squared-error (RMSE) of the estimated FA values, defined as
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[20]

for evaluating quantification accuracy. FA and  in the equation are FA maps estimated 
from the noise-free images and images from different methods, respectively, and M1 is the 
number of voxels extracted from the non-background regions for computing the RMSE. It 
can be observed from the curves that the proposed method significantly improves the image 
quality while providing more accurate parameter estimation. The MNLM algorithm provides 
very good PSNR results but the quantification accuracy is lower compared to the proposed 
method. The difference is even more obvious for the noncentral χ distributed data. Also note 
that the proposed method can handle very high noise levels.

To examine the effects of L (the low-rank model order) and λ (the regularization parameter) 
on the denoising performance, simulations were run with different combinations of L and λ 

for the Rician noise case. Figure 7 compares the PSNR and FA-RMSE for different 
parameter combinations. As can be seen, although lower ranks yield better PSNR, the 
diffusion parameter estimation accuracy degrades significantly if L is too small (< 6), as 
expected. If L is too high, the denoising performance degrades in terms of both PSNR and 
FA-RMSE, because the rank constraint was not effective in this case. The proposed method 
is in general robust to a reasonable range of λ values. Furthermore, we observe that, to 
achieve a higher PSNR (better visual image quality), using edge constraints only (full rank, 
L = Q) will tend to favor larger regularization parameters, which can degrade the parameter 
estimation accuracy. Using the joint constraints provides a better trade-off for both metrics. 
This feature allows us to choose a proper λ by visual inspection of the denoised images.

Experimental Results

Figure 8 shows the denoising results of the proposed method for one slice of the in-vivo 
Rician distributed data. Representative DW images, FA maps and color-coded FA maps 
corresponding to the three different b-values are shown. Although the gold standard is not 
available, qualitative improvement is evident as shown by the denoised images and the 
parameter maps. Before denoising, several diffusion structures (as identified by the red 
arrows in the DW images) were corrupted by noise, especially for higher b-values. After 
denoising by the proposed method, these structures became better defined. Furthermore, the 
proposed method significantly reduces noise contamination in the diffusion parameters. The 
fiber bundles appeared much more uniform after denoising while the boundaries remained 
sharp (as identified by the red arrows in the RGB images). The improvement is consistent 
across different b-values.

Denoising results from the in-vivo noncentral χ distributed data are shown in Figure 9. One 
slice of the DW images and the corresponding FA maps are shown, which illustrate effective 
noise removal and recovery of diffusion parameters achieved by the proposed method for 
practical sum-of-squares reconstructions.
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Figure 10 compares the histograms of Log-Euclidean distances (52) between tensors 
estimated from the right hemisphere and the left hemisphere of q-space, before and after 
denoising. The average Log-Euclidean distances are also calculated. It is well known that 
diffusion data are symmetric in q-space. This symmetry provides another mean to validate 
our method on experimental data without a gold standard. As can be seen, the symmetry 
between tensors estimated from each of the two hemispheres is significantly improved after 
denoising. This result quantitatively demonstrates the effectiveness of the proposed method 
in reducing the uncertainty introduced by signal-dependent noise in the original magnitude 
data.

Discussion and Conclusions

We have demonstrated effective denoising of DW magnitude image series by combining 
noisy magnitude signal modeling with rank and edge constraints. The proposed method has 
two desirable advantages. First, the proposed method introduces a unified mathematical 
framework that integrates low-rank modeling and a spatial prior to maximize the noise 
reduction effect while preserving important diffusion information. Second, the capability to 
incorporate both Rician and noncentral χ distributions into the MAP estimation framework 
allows for effective denoising of magnitude images from both single-coil and multiple-coil 
acquisitions using an image prior. Note that magnitude images from a single coil follow 
Rician distribution (5, 8, 9), while the noisy reconstructions from multiple coils depend on 
the reconstruction scheme used (11). For example, GRAPPA reconstructions with sum-of-
squares combination can be assumed to follow noncentral χ distribution, while SENSE 
reconstructions can be assumed to follow Rician distribution. For multiple-coil acquisitions, 
if reconstructions from individual coils were available, denoising them individually before 
combination would be better because (1) the Rician distribution is simpler, and (2) 
correlation between coils could complicate the distribution of the combined data. However, 
in many practical situations, we do not have reconstructions from each individual coil. 
Therefore, the capability of denoising with a more complicated distribution (e.g., noncentral 
χ distributions) increases the flexibility and applicability of the proposed method.

As with most denoising methods, the performance of the proposed method relies on an 
accurate estimation of the noise variance σ2. The estimation method used in this paper is 
simple and provides highly accurate results when images contain reasonably large 
background regions (with noise only). If the background regions contain artifacts (e.g., due 
to aliasing or motion artifacts), the estimation of σ2 is less accurate. For these more general 
scenarios, a variety of robust noise estimation methods have been proposed. They include 
simultaneous background detection and noise estimation (53, 54), robust noise estimation 
for images without background regions (55–57), and estimation of spatially varying noise 
(28, 58, 59). Proper integration of the proposed method with these noise estimation methods 
may be desirable for handling more general data acquisition and reconstruction schemes. A 
thorough investigation of this issue is application-specific and beyond the scope of this 
paper.

Theoretically, the rank L of the image series A is determined by the number of distinct types 
of diffusion properties in the tissues (whether it is described by a tensor or higher-order 
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models). Practically, L can be small without introducing significant low-rank approximation 
error due to the spatial-diffusion correlation, which seems to be strongly supported by our 
results. In general, the optimized rank choice will be application dependent. For DTI, a 
lower rank is reasonable since every tensor lies in a six-dimensional subspace. But for high 
angular resolution diffusion imaging, a higher rank is necessary to avoid oversmoothing 
complex fiber structures.

Choosing a proper regularization parameter λ is also important to the proposed method. In 
practical denoising scenarios, calculating the optimal λ is very challenging with the absence 
of a gold standard. The discrepancy principle and generalized cross-validation (60, 61) are 
useful for choosing regularization parameters in least-squares problems with Tikhonov 
regularization, but they are not directly applicable in our case due to the nonlinearity of the 
problem and non-Gaussian noise model. In this paper, we simply chose λ by visual 
inspection and it has provided reasonably good results empirically. However, as indicated by 
the results in Fig. 7, λ can be “optimized” with respect to a specific data acquisition scheme 
and application scenario using a “reference” data set and then be translated to practical 
measurements, but this issue needs to be further investigated. Furthermore, establishing an 
objective metric for choosing λ is worth pursuing in future research.

In summary, a new method for denoising a sequence of diffusion-weighted magnitude 
images has been described. The proposed method formulates the denoising problem within 
an MAP estimation framework, incorporating noisy magnitude signal modeling, low-rank 
approximation of the image series, and a special edge prior. An efficient algorithm is used to 
solve the associated optimization problem. Representative results from simulated and 
experimental data demonstrate that the proposed method substantially improves both the 
image quality and the diffusion parameter estimation accuracy. In addition, significant FA 
estimation error reduction is achieved for a wide range of anisotropy levels, which is 
especially important for comparing diffusion properties of different tissues or conducting 
longitudinal study of tissue changes for a certain disease. We expect the proposed method to 
prove useful for reducing noise-induced uncertainty or improving spatial resolution for 
quantitative diffusion MRI with magnitude data. Furthermore, although the proposed 
method was developed for DW images, it could also be used in different applications where 
a sequence of magnitude images is acquired and analyzed, e.g., functional MRI and 
parametric mapping. Such extensions could be investigated in the future.
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Appendix

Gradient of Equation [16] for the U sub-problem

Defining , where
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[21]

we can express the cost function in Eq. [16] as . Then the gradient of 
f(U) can be written as

[22]

Where  and  is the qth column of V̂(k). For brevity, let us 
denote

Then, the directional derivative [∇Lq(U)]ij is given as

Using this equation, the gradient ∇Lq(U) ∈ RM × L can be expressed in a matrix-vector 
multiplication form as

[23]

where  is a column vector, ⊙ denotes element-wise multiplication and 
I0/1(·) stands for element-wise evaluation of modified Bessel function of the first kind. 
Therefore, the gradient can be computed efficiently using this closed-form expression. Note 
that the variable being updated is a matrix, thus we are taking derivative w.r.t. each element 
in this matrix. However, in the actual implementation, the variable and the gradient can be 
vectorized to fit into an optimization routine.
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Gradient of Equation [17] for the V sub-problem

Defining g(vq) as the cost function, we have

[24]

where

and . Following a similar strategy for deriving the gradient of f(U) in 
the previous section, we write the directional derivative of L(vq) as follows:

[25]

where amq is defined the same way as in the previous section. According to Eq. [25], to 
compute the derivative of L(vq) w.r.t. the lth element, we first compute a length-M column 
vector:

[26]

Then a new column vector is obtained by element-wise multiplication of bq and the lth 
column of Û(k), and hence ∂L(vq)/∂vq,l is obtained by summing all the elements in this 
vector. Finally, the gradient of g(vq) can be written as

[27]

Gradients for the non-central χ distribution

The gradient derivation for non-central χ likelihood follows the same procedures except the 
extra log function term and the order difference in the modified Bessel function of the first 
kind, IC−1(·) as shown in Eq. [11]. The gradient w.r.t. the additional log function is 
straightforward to derive and is not shown here. As for the derivative for IC−1(·) with an 
arbitrary order C − 1, we use the following identity
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[28]

Therefore, the terms in Eq. [23] and Eq. [26] can be modified for the non-central χ 

distribution as

[29]

and as

[30]
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Figure 1. 
Comparison of DW images (row 1), error images (row 2), FA maps (row 3) and FA error 
maps (row 4) for four different processing schemes. They correspond to (1) no denoising 
(column 1, Noisy Data); (2) denoising with Gaussian noise model and edge constraints 
(column 2, Gaussian+Edge); (3) denoising with Rician signal model and edge constraints 
(column 3, Rician+Edge); (4) denoising with Rician signal model and joint low-rank and 
edge constraints (column 4, Rician+Edge+Rank).
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Figure 2. 
Denoising results for simulated Rician distributed data (b = 2000). The three rows 
correspond to (Top) representative DW images, (Center) FA maps and (Bottom) color-
coded FA maps from the noise-free images (column 1, Gold Standard), Rician noise 
corrupted images (column 2, Noisy Data), images denoised by the MNLM algorithm 
(column 3, MNLM) and images denoised by the proposed method (column 4). The color is 
based on the orientation of the primary eigenvectors of the estimated diffusion tensors: red 
for left-right, green for anterior-posterior and blue for superior-inferior.
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Figure 3. 
Quantitative comparison of FA estimation for simulated Rician distributed data: (Top) plots 
of FA errors versus the true FA values and (Bottom) histograms of FA errors. The bias (dash 
line) and the standard deviation (solid line) are also shown. Three cases are compared, 
including FA errors for noisy data (column 1), FA errors for denoised data from the MNLM 
algorithm (column 2) and FA errors for denoised data from the proposed method (column 
3).
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Figure 4. 
Denoising results for simulated noncentral χ distributed data (sum-of-squares combined 
images). The three rows correspond to (Top) representative DW images, (Center) FA maps 
and (Bottom) color-coded FA maps from the noise-free images (column 1), noncentral χ 

distributed noisy images (column 2), images denoised by the MNLM algorithm (column 3) 
and images denoised by the proposed method (column 4). The direction information is 
encoded in the same way as in Fig. 2.
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Figure 5. 
Quantitative comparison of FA estimation for simulated noncentral χ distributed data: (Top) 
plots of FA errors versus the true FA values and (Bottom) histograms of FA errors. Three 
cases are compared, including FA errors for noisy data (column 1), FA errors for denoised 
data from the MNLM algorithm (column 2) and FA errors for denoised data from the 
proposed method (column 3).
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Figure 6. 
Quantitative comparison of different methods under different noise levels for Rician 
distributed data ((a)-(b)) and noncentral χ distributed data ((c)-(d)): (a and c) PSNRs for one 
representative image frame; and (b and d) RMSEs for FA estimation. The x-axis represents 
different noise standard deviations (σ).
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Figure 7. 
Comparison of denoising performance w.r.t. different combinations of the low-rank model 
order L and the regularization parameter λ. The image on the left (a) shows the PSNR and 
the image on the right (b) shows the FA-RMSE in different cases. The x-axis shows the 
range for λ and the y-axis shows the range for L.
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Figure 8. 
Results from coil-by-coil denoising the experimental data (with Rician likelihood). The 
three rows correspond to images for different b-values. Representative image frames 
(column 1 and 2), calculated FA maps (column 3 and 4) and color-coded FA maps (column 
5 and 6) are shown. The colors stand for: red for left-right, green for anterior-posterior and 
blue for superior-inferior.
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Figure 9. 
Results from denoising the experimental sum-of-squares images (with noncentral χ 

likelihood). The images for one slice are shown and arranged as: (Top) DW images from the 
noisy and denoised data; and (Bottom) Estimated FA maps from the noisy and denoised 
data.
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Figure 10. 
Comparison of histograms for Log-Euclidean distances between tensors estimated from 
diffusion signals in two hemispheres of the diffusion space (q-space), before and after 
denoising. The average Log-Euclidean errors for both cases are also shown.

Lam et al. Page 28

Magn Reson Med. Author manuscript; available in PMC 2014 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


