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Abstract 

Deep learning (DL) is progressively popular as a viable alternative to traditional signal processing (SP) based methods 
for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted 
and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is 
imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision method-
ology, we propose a new Signal Processing Informed Neural Network (SPINN) framework by embedding SP knowl-
edge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network 
(DFAWNet) is developed, which consists of fused wavelet convolution (FWConv), dynamic hard thresholding (DHT), 
index-based soft filtering (ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale 
features while learning wavelet scales and selecting important wavelet bases automatically; DHT dynamically elimi-
nates noise-related components via point-wise hard thresholding; inspired by index-based filtering, ISF optimizes and 
selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different 
deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate 
a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The 
corresponding code is available at https://​github.​com/​alber​tszg/​DFAWn​et.
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1  Introduction
Condition-based maintenance (CBM) of machinery is 
important in the modern industry [1]. Failure of major 
equipment, such as aero-engine and helicopter, might 
lead to huge losses of life and property. While operat-
ing in complex conditions, key components of these 
machines will deteriorate over time [2–4]. Therefore, it’s 
essential to develop the CBM system and detect faults 
accurately [5]. As the key component of CBM, effective 

fault diagnosis can reduce the risk of unplanned shut-
down [6].

Different signal processing (SP) techniques have been 
developed and widely used for fault diagnosis tasks [7]. 
The SP-based methods mainly consist of transform-based 
methods and index-based filtering methods [8]. As a 
well-known transform-based method, wavelet transform 
has been applied to fault diagnosis with great progress 
over the last 20 years [9]. Chen et al. [10] proposed adap-
tive redundant lifting multiwavelet for compound fault 
detection. Assisted with quantitative wavelet function 
selection, Yan et al. [11] proposed an optimized wavelet 
packet transform for bearing fault diagnosis. As for the 
index-based filtering method, its core idea is to con-
struct indicators in a low-dimensional space to concen-
trate diagnostic information contained in original signal 
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with a high-dimensional space. Based on the character-
istic of signals, index-based filtering methods construct 
a health index utilized for detecting fault information in 
non-stationary signals. Some health indexes, e.g., Gini 
index, spectral Gini index, adaptive spectral kurtosis, and 
smoothness index, were proposed for extracting fault 
features [12]. These SP-based methods have a firm theo-
retic basis and have been developed in the past few dec-
ades for addressing some challenges, such as denoising 
and weak feature extraction. However, they usually need 
expert experience and time-consuming featurization that 
is dependent on both the problem and the dataset.

In recent years, fault diagnosis based on deep learn-
ing (DL) has attracted much attention as it’s an end-to-
end method without the need for expert experience or 
featurization [13, 14]. The DL-based methods have been 
successfully applied to different diagnosis tasks. Consid-
ering a nonstationary condition, Liu et al. [15] proposed 
a multiscale kernel based residual convolutional neural 
network (CNN) to enhance the feature extraction abil-
ity. As fault modes are unpredictable in practical appli-
cations, Yu et al. [16] proposed DL-based open set fault 
diagnosis which could reject unknown-class samples by 
extreme value theory. These DL-based methods are sup-
posed to be used for a CBM decision in a real industrial 
environment where a wrong decision may lead to unpre-
dictable losses. In such a risk-sensitive field, explainabil-
ity is essential for users to effectively understand, trust, 
and manage such a powerful technique [17]. Further-
more, due to strong background noise in the industrial 
environment and the complicated transmission path of 
large mechanical systems, fault features are often weak 
and easily to be submerged. It’s imperative that explain-
able and noise-restrained DL-based fault diagnosis meth-
ods should be developed.

SP-based methods are inherently explainable and have 
been developed for denoising. DL-based methods have 
strong data-driven parameter learning ability. It’s natu-
ral to take advantage of both SP-based methods and 
DL-based methods. Recently, considerable literature 
has grown up around the theme of designing a DL net-
work combined with some SP-based methods. Based on 
morphological analysis, Ye et al. [18] constructed a deep 
morphological operation layer and the extracted features 
were weighted based on the kurtosis. Utilizing the wave-
let transform, Li et  al. [19] proposed WaveletKernelNet 
which replaces the convolution kernel with the wavelet 
basis. Yuan et  al. [20] constructed an interpretable net-
work with a smart lifting wavelet kernel for fault diag-
nosis. Considering the structure of the extreme learning 
machine, wavelet transform, Wang et  al. [21] proposed 
a fully interpretable network for locating resonance fre-
quency bands for machine condition monitoring, in 

which wavelet transform, square envelope, and Fourier 
transform were incorporated into the fully interpretable 
network and sparsity measures were used to quantify 
repetitive transients. Michau et al. [22] proposed a fully 
learnable deep wavelet transform network for unsuper-
vised monitoring. Inspired by soft shrinkage in denois-
ing, Zhao et al. [23] designed a residual shrinkage module 
for denoising. However, it still employs the original con-
volution as the filter. Although these studies perform very 
well, they haven’t provided a simple yet generic perspec-
tive to effectively combine the advantages of SP-based 
methods and DL-based diagnostic methods.

To provide a more general and comprehensive way of 
integrating SP-based methods with DL-based methods, 
we propose a new SP informed neural network (SPINN) 
framework in this paper. To construct this framework, we 
employ the Filterbank-Feature-Decision (FFD) to provide 
a comprehensive perspective to unify the literature men-
tioned above. FFD is a methodology that has been used 
explicitly or implicitly in machine condition monitoring 
[8]. Thus, as illustrated in Figure 1, a SPINN consists of a 
filterbank stage (purple circle), feature stage (pink circle), 
and decision stage (gray circle). It’s notable that the first 
two stages of SPINN are designed from SP-based meth-
ods but the overall framework is realized by DL-based 
methods. In the concrete design of SPINN, wavelet trans-
form is selected for the first filterbank stage. In the sec-
ond feature stage, considering the extraction of features 
in noisy conditions, the thresholding denoising technique 
is used first. Then index-based filtering method selects 
the optimal filter to extract fault features. Finally, features 
are processed and input into the classifier to give a diag-
nosis decision. As a data-driven neural network, SPINN 
could learn from data. Meanwhile, benefiting from SP-
based methods, SPINN possesses both explainability and 
other features from SP methods such as noise resistance.
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Figure 1  SPINN (Filterbank and feature stages are designed from 
SP-based methods but realized by DL-based methods. They can 
extract the information we need (green circle). Then the extracted 
information is input into a normal neural network (NN) as the final 
decision stage. The overall SPINN is trained by backpropagation with 
the target loss until desired training epoch (E))
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As a practical DL-based implementation of SPINN, 
we developed a denoising fault-aware wavelet network 
(DFAWNet) in this paper. However, like traditional SP-
based methods, wavelet denoising and index-based fil-
tering inevitably need expert experience for parameter 
selection, e.g., selection for wavelet scales, wavelet base 
types, thresholding function design, filter selection index 
design, etc. With backpropagation, we try to address 
these limitations in DFAWNet benefitting from the data-
driven mechanism of DL-based methods.

The main contributions of this paper can be summa-
rized as follows.

•	 Based on the FFD methodology, a framework called 
SPINN is proposed to effectively take advantage of 
both SP-based methods and DL-based methods. 
Although it has been used in the related literatures, 
SPINN explicitly provides a unified perspective for 
them. In addition, a concrete SPINN is designed with 
wavelet denoising and index-based filtering in this 
paper.

•	 As a DL-based implementation of the proposed 
SPINN, the DFAWNet is developed. In the filter-
bank stage, fused wavelets convolution (FWConv) is 
designed to implement a learnable wavelet transform 
with multiple bases. In the feature stage, dynamic 
hard thresholding (DHT) is proposed to complete 
hard thresholding corresponding to wavelet denois-
ing. Then index-based soft filtering (ISF) is designed 
for wavelet filter optimization and selection, so as to 
extract fault features. In the final stage, the classifier 
completes the diagnosis decision.

•	 The proposed SPINN provides an effective way to 
combine SP-based methods with DL-based methods. 
In different experiments, DFAWNet shows strong 
noise resistance ability and fault feature extraction 
ability by end-to-end learning.

The paper is organized in the following way. Section 2 
briefly introduces the main idea of the proposed method 
and related theory. The DL-based implementation of 
the proposed SPINN is discussed in detail in Section 3. 
In Section 4, the method is verified by experiments and 
comparisons to other methods. Finally, the conclusion is 
summarized in Section 5.

2 � Preliminary
2.1 � FFD, SPINN, and DFAWNet
For the SP-based method, a common procedure for fault 
diagnosis contains filtering, computing health index, and 
diagnosis. Based on this procedure, the FFD methodol-
ogy provides a general perspective for the SP-based fault 
diagnosis method [8]. At the filterbank stage, signals 

are transformed into different representation domains 
through a linear filterbank. Then some health indexes 
are computed for diagnostic feature representation usu-
ally with a dimension reduction. Then subband signals 
with diagnostic features can be selected via these health 
indexes such as the spectral kurtosis and the energy. 
Finally, a decision on the health state is taken by manu-
ally analyzing selected features or machine learning tech-
nologies. Actually, skip of one of these stages is possible.

Based on the FFD methodology, the SPINN is pro-
posed to provide a general perspective for combining SP-
based methods with DL-based methods. The core idea of 
SPINN is shown in Figure 1. For a concrete design of the 
SPINN, we select the commonly used wavelet transform 
as the filterbank. To improve robustness to noise and 
feature extraction ability, thresholding and widely used 
index-based filtering method (feature frequency band 
selection method) are used in the feature stage. Finally, 
these fault features are provided to the classifier and 
complete the target diagnosis task. The structure is illus-
trated at the top of Figure 2. For different requirements, 
SPINN can be designed with different SP-based methods.

As one of the practical DL-based implementations for 
SPINN, the developed DFAWNet is shown at the bottom 
of Figure 2. DFAWNet aims to take advantage of the SP-
based methods while addressing the problems associated 
with them. The FWConv aims to alleviate the problem 
of wavelet basis selection and scale selection in wavelet 
transform. The DHT solves the threshold function design 
problem in hard thresholding. The ISF aims to address 
index design and filter optimization in index-based filter-
ing. Finally, a normal classifier implements the diagnosis 
task.

In the remainder of this section, we give a brief intro-
duction to the mentioned SP-based methods and their 
corresponding problems.

2.2 � Wavelet Denoising
The procedure of wavelet denoising is illustrated in Fig-
ure  3. Since SPINN focuses on feature extraction, we 
only implement the wavelet transform with thresholding, 
while not involving the inverse transform in SPINN.

2.2.1 � Wavelet Transform (Filterbank)
Supposed that the signal with noise can be formulated as:

where x(t) is the measured signal; s(t) is the feature sig-
nal; n(t) is interference which contains various kinds of 
noises.

As a widely used signal analysis tool for nonstation-
ary signals, wavelet transform could provide joint infor-
mation from the time domain and frequency domain. 

(1)x(t) = s(t)+ n(t),
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Based on the inner product, the wavelet transform pro-
vides decomposition in terms of scale and position, 
or frequency and time through a series of convolution 
operations:

where W denotes the wavelet coefficients; a is the scaling 
parameter inversely proportional to the center frequency; 
b is the translation parameter to locate the signal; ψ∗(t) is 
the complex conjugate of the selected wavelet basis ψ(t) 
from a set of wavelet bases � = {ψ1, ψ2, · · · , ψN }.

The scaling parameter a is the most important param-
eter which brings the multi-resolution property for the 
wavelet transform. Different wavelet bases are designed 
over the past decades for revealing hidden features of 
non-stationary signals. With the different scales and 
wavelet bases, wavelet transform can be considered as 
filters with different characteristics and frequency bands.

(2)Wa,b(x,ψ) = |a|−1/2

∫ +∞

−∞

x(t)ψ∗

(

t − b

a

)

dt,

Accordingly, choosing a suitable scale and a wave-
let basis are fundamental problems when using wavelet 
transform in the filterbank stage of the SPINN.

2.2.2 � Thresholding (Feature)
After wavelet transform, the coefficients of n(t) are small 
and uniformly distributed while those of s(t) are con-
centrated. Consequently, setting small values to zero is 
the core idea in thresholding. There are two main types 
of thresholding methods [24]. Soft thresholding shrinks 
both negative and positive coefficients towards zero via a 
threshold, in contrary to hard thresholding which either 
keeps or removes the values of coefficients. The hard 
thresholding can be defined as:

where Ŵ  denotes denoised wavelet coefficients; τ repre-
sents the hard threshold.

(3)Ŵ =

{

0, |W | < τ ,
W , |W | ≥ τ ,
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Denoising can be seen as a feature selection in each fre-
quency band. To obtain a good denoising performance, 
the critical problem is to design an appropriate threshold 
function for wavelet coefficients.

2.3 � Index‑Based Filtering
Based on prior statistical knowledge of the fault charac-
teristics, index-based filtering selects the optimal filter 
(frequency band) and extracts fault information. The pro-
cedure of common index-based filtering is illustrated in 
Figure 4.

2.3.1 � Filtering (Filterbank)
Firstly, a raw vibration signal is processed by a set of 
band-pass filters [12]. Here wavelets are used as the 
filters.

2.3.2 � Index Calculating (Feature)
As a key step in index-based filtering, different indexes 
have been proposed to measure the amount of fault 
information. In this study, we briefly introduce two 
types of indicators constructed from energy and sparsity 
measures.

Energy is a widely used index to find wavelet filters 
containing defect-related features [25]. The core idea is 
that the energy of wavelet coefficients is higher in the 
defect-related frequency band than that of other bands. 
The energy can be calculated from the corresponding 
wavelet coefficients:

In addition, the sparsity measure is widely used to char-
acterize repetitive transients in fault diagnosis. A gener-
alized sparsity measure can be formulated as the sum of 
weighted normalized square envelop (SWNSE) [26]:

where xl,h[i] is the modulus (envelope) of the signal xl,h 
processed by a band-pass filter with a non-dimensional 

(4)Energy =

n
∑

i=1

|Ŵ (i)|2.

(5)SWNSEl,h
(

xl,h[i]
)

=

N
∑

i=1

NSEl,h[i] ×̟ [i] − c,

pass-band l ≤ k < h, NSEl,h[i] is a normalized square 
envelope (NSE), ̟ is a weight acting on the NSE, c is a 
constant.

The maximization of the sparsity measure is used 
to find the optimal band-pass filter. As a typical spar-
sity measure of the generalized sparsity measure, spec-
tral kurtosis (SK) was proposed in Ref. [27]. Combined 
with wavelet coefficients after thresholding, it can be 
expressed as:

where W̃  is the envelope of Ŵ :

SK has the ability to scrutinize the wavelet coefficients on 
one whole scale, which is related to the central frequency 
and bandwidth. For the wavelet scale with a higher degree 
of fault correlation, the value of SK is higher.

Since there are various indexes, designing a suitable 
index is a fundamental problem when index-based filtering 
is used in the feature stage of the SPINN.

2.3.3 � Optimal Filter Selection (Feature)
The last step is to select the optimal filter based on the 
designed index:

where � represents parameters of a set of given filters, 
e.g., the central frequency and bandwidth; �∗ are param-
eters of the optimal filter; Index(·) is the function to cal-
culate the designed index. For a normal index-based 
filtering method, � is fixed and given in advance, i.e., the 
frequency band allocation is fixed.

For SPINN, the number of filters is restricted. Thus, the 
selected filter may not be optimal as the optimal param-
eters are not contained in the given � . However, opti-
mal filter selection is equivalent to the filter parameter 

(6)SK =

1
n

n
∑

i=1

W̃ (i)4

(

1

n

n
∑

i=1

W̃ (i)2
)2

− 2,

(7)W̃ =

√

Ŵ 2 +Hilbert(Ŵ )2.

(8)�∗ = arg max
�

Index(x,�),
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optimization problem. The definition of filter optimiza-
tion is the same as Eq. (8), except for the continuous and 
optimizable filter parameters. As a result, when index-
based filtering is used in SPINN, filter parameter optimi-
zation is the second problem we should consider.

3 � Proposed Approach
In this section, a detailed introduction to the DFAWNet 
including FWConv, DHT, ISF, and the end-to-end fault 
diagnosis network is given below. The core design moti-
vation is illustrated in Figure 2. The overall fault diagnosis 
framework of DFAWNet is shown in Figure 5.

3.1 � Fused Wavelet Convolution
As a DL-based implementation of the wavelet trans-
form, FWConv attempts to address the problem of scale 
learning and basis selection by the learnable scale and 
adaptive fusion of various wavelet bases. The learnable 
scale can locate the appropriate frequency band under 
the optimization of corresponding loss. Meanwhile, the 
adaptive fusion of various wavelet bases could effectively 
improve feature extraction ability. The whole structure of 
FWConv is shown in Figure 6.

The first step is to realize the wavelet transform with 
a learnable scale. In Ref. [19], wavelet transform can be 
inverted into convolution with learnable parameters. Dif-
ferent from Ref. [19], the translation parameter b can be 
replaced by the stride parameter in 1-D convolution in 
this study. Consequently, an improved single-parameter 
wavelet convolution is realized:

where a is the learnable parameter of the filter kernel ψ ; 
Wa is wavelet coefficients computed under the scale a. 
Different channels correspond to different scales. For the 
sake of convenience, in the cth channel, wavelet coeffi-
cients can be denoted as Wc and wavelet basis is denoted 
as ψc.

The second step is to alleviate the problem of basis 
selection. Different wavelet bases ψ are designed for 
extracting various features. In addition, a single wavelet 
basis usually cannot meet the requirement of fault diag-
nosis [28]. Thus, a simple idea is to prepare a set of wave-
let bases and select important ones via the data-driven 
mechanism.

However, discarding the unselected wavelet bases will 
stop corresponding gradient backpropagation which is 
unstable for network learning.

A more proper implementation way for basis selection 
is to generate C new wavelet bases ψ ′ from the original ψ 
based on linear weighting, called fusion:

where ψ ′ denotes new wavelet bases; C is the number of 
generated new wavelet bases; Co is the number of original 
wavelet bases ψ ; the weight pi of the ith new wavelet basis 

satisfies 
Co
∑

n=1

pi,n = 1.

(9)Wa = x ∗ ψa,

(10)ψ ′
i =

Co
∑

n=1

pi,nψn, i = 1, . . . ,C ,
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When the weight pi is one-hot, we realize the wavelet 
base selection. For a generalized definition, the weight pi 
should be high for the selected wavelet basis ψi and low 
for the basis different from it:

where Softmax(·) guarantees 
Co
∑

n=1

pi,n = 1 ; and t is a tem-

perature parameter changing from 1 to T = 1e4 with the 
network training.

The basis ψi is selected according to the importance 
index. Inspired by different wavelet bases characterizing 
various features, a good importance index should be high 
if the wavelet basis is highly different from each other. 
Thus, based on KL-divergence [29], the importance index 
can be defined as:

(11)
pi,n = Softmax(−t � ψi − ψ �2), n = 1, 2, . . .Co,

(12)

In =
1

Co

Co
∑

m=1

DKL(pn||pm)

=
1

Co

Co
∑

m=1

Co
∑

l=1

pn,l log
pn,l

pm,l
, n = 1, 2, · · · ,Co.

Based on the importance index, we could select C 
important bases and generate their corresponding weight 
p. Then we generate new bases and realize the fused 
wavelet convolution:

3.2 � Dynamic Hard Thresholding
As a DL-based implementation of thresholding, DHT is 
proposed to address the problem of threshold function 
design in traditional thresholding methods. Similar to 
the traditional threshold function, the feature discrim-
inator can give the decision to either keep or remove 
values of coefficients. Then a reparameterization trick 
module translates the decision into an optimizable hard 
thresholding operation. The overall structure of DHT is 
shown in Figure 7.

According to Eq. (3), the key point of hard thresholding 
is to determine which coefficients should be kept (fea-
ture) and which should be removed (noise). In DL, this 

(13)

Wi = FWconv(x,ψ ′
i ) = x ∗ ψ ′

i

= x ∗

(

Co
∑

n=1

pi,nψn

)

, i = 1, · · · ,C .
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is equivalent to a binary classification problem. Thus, the 
thresholding can be formulated as:

where H ∈ R
L is the operation of removing or keeping 

and L is the length of the wavelet coefficients; φ is the 
output of the feature discriminator.

The first step is to design the feature discrimina-
tor. According to Ref. [30], a threshold function design 
should consider the inter-scale and intra-scale depend-
ency of the coefficients. For the intra-scale dependency, 
we should consider the local information of the neighbor-
ing coefficient. Then the intra-scale feature is extracted 
by a simple convolution:

where ι0 ∈ R
L is output for the decision to keep the coef-

ficient; ι1 ∈ R
L is output for the decision to remove the 

coefficient; conv(·) is a 1-D convolution.
As for the inter-scale dependency, the global average 

value is used to represent the characteristic of each scale. 
Then the dependency of different scales is extracted by 
the fully connected layer:

where γ0 ∈ R
L is output for the decision to keep the coef-

ficient; γ1 ∈ R
L is output for the decision to remove the 

coefficient.
Then we obtain the final output of the feature discrimi-

nator with the Softmax(·):

(14)

Ŵ = W ⊙H , H =

{

0, φ < 0.5,
1, φ ≥ 0.5,

φ ∈ (0, 1),

(15)[ι0, ι1] = conv(W ),

(16)[γ0, γ1] = fc(

L
∑

i=1

Wci

/

L),

(17)φi = Softmax(ιi + γi), i = 0, 1,

where φ0 ∈ R
L represents the decision to keep the coeffi-

cients (used as φ in Eq. (14)); φ1 ∈ R
L represents the deci-

sion to remove the coefficients.
The next step is to translate the feature decision φ0 into 

an optimizable hard thresholding operation H. In the 
inference stage, this feature decision could be directly 
converted to hard operation by logical judgment. How-
ever, in the training phase, directly turning the decision 
into the hard thresholding operation will result in the loss 
of gradient for the feature discriminator and probabilis-
tic randomness (probabilistic randomness of the decision 
is helpful for training when the discriminator is not well 
trained). These problems can be tackled by the Gumbel-
Softmax reparameterization trick [31]:

where g0 and g1 are i.i.d samples drawn from Gumbel 
(0, 1) distribution; ǫ is a parameter that controls the 
smoothness of distribution hi, and it’s set to 0.66 as this is 
a binary classification; (1− arg max

i

(hi)) returns the sam-

pling result by Gumbel-Softmax; re(·) denotes the repa-
rameterization trick that keeps the gradient 
backpropagation for h0. Consequently, in the training 
stage, H can be denoted as:

where forward denotes the feed-forward stage; backward 
denotes the backpropagation stage.

Note that dynamic hard thresholding is executed by 
the optimizable operation H. It provides us with a new 
perspective to constrain the denoising process from the 
denoising ratio. The denoising ratio r is defined as the 

(18)hi = Softmax((log(φi)+ gi)/ε), i = 0, 1,

(19)H = re((1− arg max
i

(hi))− h0)+ h0,

(20)H =

{

h0 > 0.5 ⇔ 1− arg max
i

(hi), forward,

h0, backward,
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removed) with the feature discriminator. Gumbel-Softmax reparameterization is a trick module that converts feature decisions into an optimizable 
hard thresholding operation)
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proportion of wavelet coefficients that are set to zero in 
the forward propagation:

A denoising ratio loss LDR is designed for controlling the 
denoising ratio:

where ractual is the actual denoising ratio during the train-
ing phase; rtarget is the desired denoising ratio set up 
previously.

A large denoising ratio implies a strong denoising capa-
bility. However, an excessive denoising ratio may elimi-
nate some useful information. Since residual connection 
can preserve the original signal to stabilize the noise 
reduction process, the DHT is finally implemented as:

where the extra identity mapping empirically stabilizes 
the denoising process and reduces the sensitivity of the 
hyperparameter setting.

3.3 � Index‑Based Soft Filtering
As a DL-based implementation of index-based filtering, 
ISF attempts to address the problems of filter optimiza-
tion and index designing. Firstly, an index-based loss is 
constructed for filter optimization. Then the soft filter-
ing selection module selects the optimal filter from those 
optimized filters based on an adaptive index. The struc-
ture of ISF is shown in Figure 8.

Firstly, we design the loss for filter optimization. 
According to Ref. [27], SK can help in designing more 
sophisticated filters. Thus, a simple index-based loss can 
be designed based on Eq. (6):

where W̃  is the envelope of Ŵ  ; P(·) is a cos function 
dynamically changed from 1 to 0 according to the current 
epoch e.

The index-based loss with the coefficient P(e) enables 
fast filter optimization via the prior SP knowledge in 
the early stages of training. Combined with a task-based 

(21)r = 1−

∑

H

L
.

(22)LDR = (ractual − rtarget)
2,

(23)Ŵ = DHT(W ) = W ⊙H +W ,

(24)LSK = −
P(e)L

C

C
∑

i=1

L
∑

l=1

W̃i(l)
4

(
L
∑

l=1

W̃i(l)2)2
,

diagnosis loss, the data-driven mechanism finetunes 
the filter design in the later stages. After optimization, 
there are C wavelet filters corresponding to outputs in C 
channels.

The next step is to select the optimal filter from the 
optimized C filters. Defined as hard filter selection in 
this paper, traditional index-based filtering often employs 
only the optimal filter and discards other filters. Each fil-
ter has a corresponding output. Thus, filter selection is 
equal to the corresponding output selection:

where ω ∈ R
C ; hard selection ωi for each channel satisfies 

ωi ∈ {0, 1} and 
C
∑

i=1

ωi = 1.

However, deep learning performs well because it can 
compose different features of one layer [32]. Instead of 
hard filter selection, we proposed the soft filter selection 
to keep all features and implicitly select the optimal filter. 
In terms of the constraint to ωi , soft filter selection is a 
generalization of Eq. (25). Soft selection ω̂i ∈ (0, 1) guar-
antees that all channels can be combined in the next 

layer. Furthermore, the condition 
C
∑

i=1

ω̂i = 1 is removed 

for a more flexible channel selection. In soft selection, a 
high value of ωi should corresponds to a channel contain-
ing more fault features. Actually, this is what the index 
should be in the traditional index-based filtering method. 
Then the problem is to design an appropriate index.

As energy is widely used for constructing a frequency 
band selection index in wavelet transform, we construct 
the new index based on the energy. Note that N types of 
wavelet bases in FWConv lead to N energy characteris-
tics, it’s supposed to divide channels into N groups and 
calculate their relative indices. However, FWConv fuses 
important wavelet bases dynamically and thus group-
ing calculation is complicated and resource-consuming. 
A simple idea is to calculate a local relative index using 
convolution. Based on the channel energy, the index (soft 
selection) can be formulated as:

(25)Wh = Ŵ ⊙ ω,

ŴC

L

O C

L

E

Energy

1
5 

C
on

v
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Soft decision

Soft filter selection

ˆ

SKL

Figure 8  Index-based soft filtering module
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where sigmoid(·) represents the activation function that 
scales output value into (0, 1) ; E = [E1, · · · ,EC ] ∈ R

C 
represents the channel energy; ω̂ ∈ R

C is the index for 
each channel.

Finally, the ISF is defined as follows:

where O ∈ R
C×L are the output features; the extra iden-

tity mapping stabilizes the training of the previous part 
(FWConv and DHT).

3.4 � End‑to‑End Denoising Fault‑Aware Wavelet Network 
Architecture

As shown in Figure  5, DFAWNet is composed of 
FWConv, DHT, ISF, and a general CNN classifier. We 
refer to the combination of FWConv, DHT, and ISF as 
the denoising fault-aware wavelet (DFAW) module. In 
this paper, the CNN classifier is a relatively shallow 1-D 
structure modified from Ref. [33].

Firstly, with the noisy raw vibration signal x as the 
input, the DFAW module extracts more discrimina-
tive and robust features based on wavelet denoising and 
index-based filtering:

where ν denotes learnable parameters of the DFAW 
module. Then the features are fed into the rest of the 
DFAWNet, a model gθ (·) parameterized by θ , to predict 
the health state ŷ:

where gθ (·) represents the classifier consisting of 1-D 
convolutional layer, BN layer, ReLU (ReLU is a nonlinear 
activation function), max pooling layer, and FC layers. 
The detailed structure is shown in Figure 5.

For a diagnosis task with Nclass categories, the cross 
entropy loss is:

where yi is the label of the ith class.
Considering that there are two extra loss func-

tions from DHT and ISF, the total loss for the overall 
DFAWNet is:

where α, β are trade-off parameters, which can be deter-
mined by grid search and other hyper-parameter search 
methods [34].

(26)ω̂ = sigmoid(conv(E)),

(27)O = ISF(Ŵ ) = Ŵ ⊙ ω̂ + Ŵ ,

(28)O = DFAWν(x),

(29)ŷ = gθ (O),

(30)Lcls = −

Nclass
∑

i=1

yilog(ŷi),

(31)L = Lcls + αLDR + βLSK,

The DFAWNet parameters are estimated end-to-end by 
solving the following supervised classification problem:

As shown in Figure 5, the fault diagnosis framework of 
DFAWNet consists of 3 steps: (1) Segment acquired sig-
nals into fixed-length samples. Divide them into a train-
ing set and a test set. (2) Train the DFAWNet with the 
training set. (3) With the trained network, predict the 
health state by samples in the test set. As the proposed 
method only use raw vibration signals as inputs, this is an 
end-to-end fault diagnosis framework.

4 � Experiment Analysis
In this section, experiments on three different datasets 
are carried out to validate the robustness against noise, 
generalization ability, and component effectiveness of 
the proposed DFAWNet respectively. The DFAWNet is 
implemented by Pytorch 1.10.0 on ubuntu 18.04.6 LTS 
with NVIDIA GeForce RTX 3090.

4.1 � Experiment with XJTU‑SY Bearing Dataset
As our target is to realize an explainable denoising model 
with robustness to noise in the signal, a detailed anti-
noise experiment is carried out on this dataset.

4.1.1 � Data Description
This dataset is provided by the Institute of Design Sci-
ence and Basic Component at Xi’an Jiaotong University 
and the Changxing Sumyoung Technology Co. [35]. The 
accelerated degradation bearing testbed and correspond-
ing accelerometer layout are shown in Figure  9. Data 
are acquired at a sampling frequency of 25.6 kHz. The 
detailed data information is described in Table 1. Similar 
to Ref. [36], horizontal data at the end of run-to-failure 
experiments are used. The data from five bearings are 
divided into five categories. Each signal is segmented 
into samples of 1024 points without overlap. The ratio 
of training to testing is 4:1. Thus, there are 512 training 
samples and 128 test samples.

To validate the robustness to noise of the DFAWNet, 
Gaussian noise is added to each sample with different sig-
nal-to-noise ratios (SNRs) to simulate signals acquired in 
real industrial equipment. The settings of SNRs are − 4 
dB to 4 dB with an interval of 2 dB.

4.1.2 � Experiment Details
For the sake of comparison, eight models are imple-
mented based on the same backbone, i.e., a baseline 
model replacing the DFAW module with a normal convo-
lution layer (CNN), an anti-noise model with a wide ker-
nel size of 64 in the first layer (WCNN) [37], a multiscale 

(32)ν∗, θ∗ = arg min
ν,θ

L(ŷ, y).
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kernel model with multi-resolution property (MKCNN) 
[15], a model with residual shrinkage module (RSNet) 
[23], an explainable model with a learnable sinc function 
as the filter (SincNet) [38], three wavelet kernel net with 
the kernel of Laplace wavelet, Morlet wavelet, and Mex-
hat wavelet (WaveletNet-L, WaveletNet-m, and Wavelet-
Net-M, respectively) [19].

For DFAWNet, the original channel Co is set to 128 
while the fused channel number C is 64. The wavelet 
bases are the same as Ref. [19], i.e., Laplace kernel (44 
channels), Morlet kernel (42 channels), and Mexhat ker-
nel (42 channels) compose the whole 128 channels. Their 
scale parameters are initially set as a uniform distribution 
among different channels, i.e., [0.1, 2] for Laplace, [0.1, 
3] for Morlet, and [0.1, 4.5] for Mexhat. Wavelet kernel 
length is empirically set to 32. The denoising ratio rtarget 
is set to 0.2. In the loss function α and β are set to 0.05 
and 0.005 respectively. As there’s no gumbel noise in the 
inference phase, it will be no gumbel noise in the last 10% 
epochs of the training phase to stabilize the inference.

As for the universal training setting, the Adam opti-
mizer with a weight decay of 0.0001 is utilized. The learn-
ing rate is 0.0001 with an exponential decay rate of 0.99. 
The batch size is 64 and the total training epoch is 110. 
Each experiment is conducted five times to eliminate 

randomness. These settings are the same in this study 
unless mentioned otherwise.

4.1.3 � Analysis and Discussion
Figure  10 shows an overview on performance of CNN, 
SincNet, WaveletNet-L, WaveletNet-m, WaveletNet-M, 
RSNet, WCNN, MK-CNN, and DFAWNet under dif-
ferent SNRs. In addition, a DFAWNet variant without 
a DHT module (DFAWNet-1) is conducted to further 
explore the influence of DHT for enhancing the model’s 
robustness to noise.

It is apparent from Figure 10 that the diagnostic accura-
cies of all models are reduced with the decrease in SNR. 
Furthermore, DFAWNet obviously performs better than 
other models under different noise conditions and shows 
strong robustness to noise. Besides high accuracies under 
different SNRs, a relative performance decrease can also 
show a model’s robustness to noise. An index represent-
ing noise influence (NI) for the model is then defined as:

where � means difference value between 4 dB and −4 dB; 
Accbase means diagnosis accuracy under 4 dB. A smaller 
NI represents a lower performance decrease and stronger 
robustness to noise.

As can be seen from Table  2, DFAWNet obtains the 
lowest NI which means the best stability of performance 
among different SNRs. Further analysis shows that the 
DHT module could effectively improve robustness to 
noise, e.g., the accuracy improvement from 76.09% to 
81.64% under −  4 dB and the IN value decrease from 
2.29 to 2.10. What is interesting about the data in this 
table is that SincNet, WaveletNet-L, and Wavelet-m all 
have a good IN which means that SP-based methods can 
help DL to extract more representative features.

(33)NI =
�Acc

�SNR · Accbase
,

Figure 9  a Testbed of rolling element bearings and b accelerometer 
position

Table 1  Detailed description of XJTU-SY datasets

Operation condition File Lifetime Fault element

Speed: 35 Hz
Load: 12 kN

Bearing 1 2 h 3 min Outer race

Bearing 2 2 h 41 min Outer race

Bearing 3 2 h 38 min Outer race

Bearing 4 2 h 2 min Cage

Bearing 5 52 min Inner race and outer race

30

40

50

60

70

80

90

100

4 2 0 2 4

A
cc

ur
ac

y(
%

)

SNR (dB)

CNN SincNet
WavletNet-L WavletNe-m
WavletNet-M RSNet
WCNN MK-CNN
DFAWNet-1 DFAWNet

Figure 10  Model performance with different SNRs
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As a core part of the denoising process, a more detailed 
working mechanism of the DHT module is explored. 
First, we visualize features before the DHT module and 
after this module in Figure 11. It should be noted that the 
part of the residual connection is not plotted for a bet-
ter understanding of the hard thresholding process. We 
will analyze the residual connection below. As shown in 
Figure 11, after hard thresholding, it’s obvious that some 
periodic features are kept while other features are set to 
zero.

The denoising ratio controls how many features 
are set to set zero. Thus, a high denoising ratio could 
reduce model performance. To stable the training pro-
cess and reduce the sensitivity of the denoising ratio, a 
residual connection is employed in DHT. We conduct a 
DFAWNet with no residual connection in the DHT mod-
ule (DFAWNet-NR) and compare it with the original 
DFAWNet under different denoising ratios. The result 
of diagnostic accuracy under −  4  dB SNR is illustrated 
in Figure 12. Without residual connection, a proper set-
ting will obtain better performance. With a denoising 
ratio of 0.1, the accuracy of DFAWNet is 81.64% while 
DFAWNet-NR is 81.72%. However, a model with a resid-
ual connection could obtain better performance under 
most settings. In addition, a denoising ratio of 1.0 will 
lead to a meaningless diagnostic result for DFAWNet-NR 
and it’s not shown in Figure 12.

4.2 � Experiment with Aeroengine Bevel Gear Dataset
In the real industrial environment, working condition is 
not stable and machinery often has rotating speed fluc-
tuation. Thus, DFAWNet is applied to aeroengine bevel 
gear fault diagnosis under variable operating conditions 
for illustrating its robustness against operating condition 
variation.

4.2.1 � Data Description
The lubricating oil accessory testing bench shown in Fig-
ure 13 is used for aeroengine bevel gear data collection. 
With a sampling frequency of 20 kHz, we acquire vibra-
tion signals with four different health states, i.e., nor-
mal state (NF), tooth surface wear (TSW), broken tooth 
(BF), and small end collapse (SEC). Considering variable 
operating conditions, signals under five rotating speeds 
are collected. Each sample has 1024 points. The detailed 
information is presented in Table 3.

To compare the model performance between the 
original operating condition and the cross-operating 
condition, we set data under 1500 r/min as the original 
operating condition. The ratio of training data to test data 
is set to 1:1. There are 4854 training samples with 4850 
test samples under 1500 r/min. Data under the other four 
operating conditions are used as a cross operating con-
dition test set. There is a total of 40149 samples in the 
cross-operating condition test set.

4.2.2 � Experiment Details
Similarly, DFAWNet is compared with CNN, WCNN, 
MKCNN, WaveletNet-L, WaveletNet-m, WaveletNet-
M, DSN, and SincNet in this experiment. Specially, we 
train and test models at 1500 r/min as a stable operating 
condition experiment. A robustness test is conducted by 
training at 1500 r/min and testing on the cross-operating 
condition test set. The total training epoch is 30.

4.2.3 � Analysis and Discussion
The diagnostic results under stable and variable operat-
ing conditions are shown in Table 4. From the data, we 
can see most models can obtain a good accuracy of over 
90% and the proposed DFAWNet performs the best.

When these models are applied in variable conditions, 
there is a dramatic performance decrease for most mod-
els. The proposed DFAWNet performs the best in vari-
able conditions and has the smallest accuracy decrease 
of 14.4% while DSN obtains a performance decrease 
of 30.63%. In addition, the performance gaps among all 
models are widened, e.g., the maximum gap among 9 
models is 25.03% while it’s 10.26% in the stable condition.

In order to illustrate the performance of these models 
in variable conditions more intuitively, t-SNE is used to 
visualize the extracted features after the final convolution 
layer in 2-D spaces (Figure 14). This result is significant 
that features of SEC (yellow points) are easy to sepa-
rate for all models. However, CNN, WCNN, MKCNN, 
WaveletNet, and RSN group features of the other three 
conditions in the same areas, which leads to poor diag-
nostic performance. In contrast, as shown in Figure 14(h) 
and (i), SincNet and DFAWNet separate the remaining 

Table 2  Robustness to noise

Model Mean accuracy 
under −4 dB (%)

Mean accuracy 
under 4 dB (%)

Noise 
influence 
(NI)

CNN 53.67 ± 1.36 73.05 ± 2.22 3.32

SincNet 66.33 ± 2.78 91.01 ± 2.52 3.40

WaveletNet-L 65.78 ± 3.98 88.59 ± 2.48 3.22

WaveletNet-m 66.56 ± 2.54 90.08 ± 1.16 3.26

WaveletNet-M 50.47 ± 2.22 80.08 ± 2.38 4.62

RSNet 63.28 ± 2.68 93.59 ± 1.55 4.05

WCNN 58.20 ± 2.4 96.33 ± 0.99 4.95

MKCNN 61.17 ± 2.99 86.56 ± 1.3 3.67

DFAWNet-1 76.09 ± 2.37 93.20 ± 1.78 2.29

DFAWNet 81.64 ± 1.3 96.56 ± 1.0 2.10
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features of the three states into two parts. The features 
grouped by DFAWNet are more discriminative between 
state 2 and 3 (green and yellow points). These results sug-
gest that DFAWNet is better than other 8 models in terms 
of robustness against operating condition variation.
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Figure 11  Comparison of features before thresholding and after thresholding: a, b features of the first channel; c, d features of the last channel
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Figure 13  a Aeroengine bevel gear; b lubricating oil accessory 
testing bench; c sensor position layout
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Table 3  Aeroengine bevel gear dataset

Rotating speed (r/
min)

Sample number Health state (label)

500 11537 Normal state (0)
Tooth surface wear (1)
Broken tooth (2)
Small end collapse (3)

1000 8925

1500 9704

2000 10805

3900 8898

Table 4  Average accuracy (%) with different operating 
conditions

Model Stable condition Variable condition Decrease

CNN 92.11 ± 2.19 65.69 ± 4.21 26.43

WCNN 94.74 ± 1.42 65.97 ± 6.72 28.77

MKCNN 93.88 ± 0.34 67.33 ± 2.29 26.55

WaveletNet-L 93.34 ± 1.39 65.72 ± 6.08 27.62

WaveletNet-m 87.82 ± 0.47 59.67 ± 1.50 28.14

WaveletNet-M 88.44 ± 2.07 58.65 ± 3.63 29.78

DSN 94.69 ± 1.34 64.06 ± 5.55 30.63

SincNet 97.40 ± 0.23 80.96 ± 3.10 16.45

DFAWNet 98.08 ± 0.05 83.68 ± 1.64 14.40

4.3 � Experiment Analysis with MFPT Dataset
As DFAWNet is composed of FWConv, DHT module, 
ISF module, and CNN classifier, we conduct experiments 
in this section to verify the effectiveness of each compo-
nent of the proposed DFAWNet.

4.3.1 � Data Description
The Machinery Failure Prevention Technology (MFPT) 
dataset consists of three sets of bearing vibration data: a 
baseline set sampled at 97656 Hz, an outer race faults set 
sampled at 48828 Hz, and an inner race faults set sam-
pled at 48828 Hz [39]. In this paper, we use the baseline 
data, outer race data at 25 and 50 lbs of load, inner race 
data at 0 lbs and 50 lbs of load as 5 categories. The sample 
length is set to 1024. Thus, there are 915 training and 229 
test samples.

4.3.2 � Experiment Details
The proposed method is first compared with CNN, 
WCNN, MKCNN, DSN, and SincNet. Then we replace 
the first layer of CNN with different convolution layers 
to verify the effectiveness of fused wavelets convolution. 
WConv-x means a wavelet convolution with wavelet 
basis x, i.e., L (Laplace), m (Morlet), and M (Mexhat). 

The channel number is set to 64 and is equally assigned 
to different wavelet bases if x contains two or three wave-
let bases. DFAWNet-1 (DFAWNet without DHT mod-
ule), DFAWNet-2 (DFAWNet without FWConv), and 
DFAWNet-3 (DFAWNet without ISF module) comprise 
the ablation experiment to verify the effectiveness of each 
component.

4.3.3 � Analysis and Discussion
Experiment results shown in Table  5 indicate that 
DFAWNet performs the best. Comprehensive com-
parisons of different first convolution layers are shown 
in Figure  15. These results further confirm that a com-
bination of different wavelet bases can improve model 
performance, e.g., WConv-LMm is better than other 
single wavelet basis convolution layers and two wavelet 
bases convolution layers. It seems that WConv-LM is 
not better than WConv-L and WConv-Mm is not bet-
ter than WConv-m. However, we have validated that 
with a different channel assignment ratio, WConv-LM 
and WConv-Mm can perform better than corresponding 
single wavelet basis convolution layers. This is in accord 
with the result that FWConv is better than WConv-LMm 
as fusion is actually an adaptive wavelet selection mod-
ule, which can assign more channels for a proper wavelet 
basis.

In order to intuitively understand the mechanism of 
FWConv, we calculate the frequency bands of all wave-
let convolution kernels and present the cumulative fre-
quency band of all kernels in Figure  16. The central 
frequency moves from 6.10 to 12.21 kHz. Furthermore, 
as shown in Figure 17, the central frequencies of optimal 
filters locate between 9 kHz and 14 kHz where 12.21 kHz 
is in the middle. Thus, the learning of FWConv can be 
regarded as an optimal frequency band adjustment pro-
cess. It can be explained as concentrating on a frequency 
containing more fault information.

To verify the effectiveness of FWConv, DHT, and ISF 
in the proposed DFAWNet, an ablation experiment is 
conducted and the results are presented in Table 6. Three 
components are absolutely useful. Further analysis shows 
that FWConv is the most important part as it’s the foun-
dation of wavelet denoising theory which could extract 
multiscale features. A possible explanation for a rela-
tively small improvement of the DHT module is that the 
data is acquired in the laboratory with a low-noise envi-
ronment. Overall, these results indicate that FWConv, 
DHT, and ISF are important components of the proposed 
DFAWNet and they can effectively improve diagnostic 
performance.
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Figure 14  Visualization of features using t-SNE: a CNN; b WCNN; c MKCNN; d WaveletNet-L; e WaveletNet-m; f WaveletNet-M; g RSN; h SincNet; i 
DFAWNet

5 � Conclusions
In this study, the SPINN, an intelligent diagnosis frame-
work, is presented with effectively taking advantage of 
both SP-based methods and DL-based methods. For the 

Table 5  Experimental results of different models

Model Max-acc (%) Min-acc (%) Avg-acc (%)

CNN 76.42 74.67 75.55 ± 0.55

WCNN 89.52 88.77 88.47 ± 0.62

MKCNN 87.77 86.03 86.72 ± 0.49

DSN 83.84 80.79 82.27 ± 0.79

SincNet 90.39 89.52 89.74 ± 0.29

DFAWNet 92.36 93.32 92.76 ± 0.49
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Figure 15  Diagnostic results of CNN with different first layers
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requirement of weak fault feature extraction under heavy 
noise, we design the SPINN with wavelet denoising and 
index-based filtering. As a DL-based implementation for 
SPINN, DFAWNet has explainability, denoising ability, 
fault feature extraction ability, and end-to-end parameter 
learning ability. The FWConv alleviates the requirement 
of wavelet basis and scale selection for wavelet transform 
implementation. DHT denoises signals with dynamic fea-
ture estimation in inter-scale and intra-scale. In addition, 
ISF optimizes and selects optimal wavelet filters for diag-
nostic feature extraction. As an integration, it’s convenient 
to embed the DFAW module in front of a DL model and 
improve its performance.

Different experiments on three datasets verified the 
performance of the proposed DFAWNet. With added 
noise, the diagnostic results confirmed that DFAWNet 
has better robustness against noise than other meth-
ods. In the second experiment, we tested all methods on 
variable operating conditions. DFAWNet has the least 
amount of performance degradation. Moreover, the abla-
tion experiment evaluated the effectiveness of each com-
ponent. The visualization of the feature after thresholding 
and the cumulative frequency band of the wavelet kernel 
illustrate the explainability of this work.

However, the selection of the wavelet bases is still 
restricted by prepared base types and the fusion method 
is still designed based on priors. The exploration of 
extracted fault features is not enough. The decision stage 
of the SPINN is still not explainable. Further research 
might explore replacing handcrafted wavelet bases with 
some constraints related to the filter property. In addi-
tion, the correlation between the selected feature and the 
fault should be studied. For different application require-
ments, other designs to SPINN are also expected. More-
over, we believe that the SPINN is useful for analyzing 

Figure 16  Cumulative frequency band of the wavelet convolution 
kernel

Figure 17  The paving spectral kurtosis values and their associated frequency bands for signals in different states: a normal state (the optimal 
central frequency is 9.92 kHz); b inner race fault (the optimal central frequency is 13.73 kHz); c outer race fault (the optimal central frequency is 13.22 
kHz)

Table 6  Experimental results of the ablation experiment

Model Max-acc (%) Min-acc (%) Avg-acc (%)

DFAWNet 93.32 92.36 92.76 ± 0.49

DFAWNet-1 92.62 91.35 92.11 ± 0.48

DFAWNet-2 91.27 90.39 90.87 ± 0.39

DFAWNet-3 92.67 92.05 92.43 ± 0.25
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other non-vibration signals, such as audio signals or 
physiological signals.
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