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Abstract In this article, a novel algorithm for denoising

images corrupted by impulsive noise is presented. Impulsive

noise generates pixels whose gray level values are not con-

sistent with the neighboring pixels. The proposed denoising

algorithm is a two-step procedure. In the first step, image

denoising is formulated as a convex optimization problem,

whose constraints are defined as limitations on local varia-

tions between neighboring pixels. We use Projections onto

the Epigraph Set of the TV function (PES-TV) to solve this

problem. Unlike other approaches in the literature, the PES-

TV method does not require any prior information about the

noise variance. It is only capable of utilizing local relations

among pixels and does not fully take advantage of correla-

tions between spatially distant areas of an image with similar

appearance. In the second step, a Wiener filtering approach

is cascaded to the PES-TV-based method to take advantage

of global correlations in an image. In this step, the image is

first divided into blocks and those with similar content are

jointly denoised using a 3D Wiener filter. The denoising per-

formance of the proposed two-step method was compared

against three state-of-the-art denoising methods under vari-

ous impulsive noise models.
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1 Introduction

In this article, a two-step algorithm for denoising images that

are corrupted by impulsive noise is presented. In the first step,

local variations among neighboring pixel values are mini-

mized in order to remove the impulsive components of the

observed image. The first step does not fully take advantage

of the correlation between distant areas of an image with

similar appearance, e.g., blue sky region covering all the top

portions of an image, cheek of a facial image and even tex-

tural regions of a shirt. In the second stage of the denoising

method, similar image blocks are determined using a block

matching algorithm and they are denoised using Wiener fil-

tering as in [1].

The first step of the proposed algorithm is based on pro-

jections onto the epigraph set of the total variation function

(PES-TV) [2–4]. In the PES-TV approach, the denoising

operation is formulated as an orthogonal projection prob-

lem in which the input image is projected onto the epigraph

set of the total variation (TV) function.

Dabov et al. [1] proposed block matching 3D filtering

(BM3D) denoising method that can utilize the correlation

between similar areas of the image by jointly denoising them

together. BM3D seems to be the best image denoising method

for images corrupted by Gaussian noise [1,5–23]. BM3D

is also a two-stage algorithm. However, the first stage of

BM3D requires an estimate of the noise variance beforehand

to determine the hard thresholding level used in the first stage,

which fails to produce a good estimate of the image under

impulsive noise. As a result, the second stage of the BM3D

does not produce a reliable denoised image when the noise is

impulsive. On the other hand, the PES-TV denoising method
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does not need an accurate estimate of the noise variance in

the first step. It does not require any parameter adjustment

either. When we combine the second part of BM3D with

the PES-TV approach, we get better results than ordinary

BM3D approach for images corrupted by impulsive noise.

An approximate estimation of the noise variance is enough

for the second stage of the PES-TV-based method.

The article is organized as follows. In Sect. 2, the PES-TV

framework, is presented. In Sect. 3, block matching and col-

laborative filtering part of the denoising method is described.

Simulation results are presented in Sect. 4.

2 Denoising using projections onto epigraph sets of

the TV function (PES-TV)

Let the original image be v, and the noisy image be v0. Sup-

pose that the observation model is the additive noise model:

v0 = v + η, (1)

where η is the additive noise. We define the TV function for

a discrete image w = [wi, j ] 0 ≤ i, j ≤ M − 1 ∈ R
M×M =

R
N as follows:

TV(w) =
∑

i, j

|wi+1, j − wi, j | +
∑

i, j

|wi, j+1 − wi, j |. (2)

It can be shown that the TV function TV : R
N → R is a

convex cost function [2,3,8,16]. We define the epigraph set

of the TV in R
N+1 as follows:

CTV =

{

w = [wT y]T : y ≥ TV(w)

}

, (3)

which is the set of N + 1-dimensional vectors, whose (N +

1)st component y is greater than TV(w). We use bold face

letters for N -dimensional vectors and underlined bold face

letters for N +1-dimensional vectors, respectively. A graphi-

cal description of the epigraph concept is illustrated in Fig. 1.

The first step of our denoising algorithm consists of mak-

ing an orthogonal projection onto CTV. Let v0 = [v 0]T be

an arbitrary vector in R
N+1. The projection w∗ is determined

by minimizing the distance between v0 and CTV, i.e.,

w∗ = arg min
w∈CTV

‖v0 − w‖2. (4)

In this approach, v0 is projected onto the CTV. This means

that we select the nearest vector w⋆ on the set CTV to v0 as

illustrated in Fig. 1. Eq. (4) is equivalent to:

Fig. 1 Graphical representation of the minimization operation in (5)

and (6). The corrupted observation vector v0 is projected onto the set

CTV

w⋆ =

[

w⋆

TV(w⋆)

]

= arg min
w∈CTV

∥

∥

∥

∥

[

v0

0

]

−

[

w

TV(w)

]∥

∥

∥

∥

2

, (5)

where w⋆ = [w⋆T , TV(w⋆)]T is the projection of [v0 0]T

onto the epigraph set. The projection w⋆ must be on the

boundary of the epigraph set. Therefore, the projection must

be of the form [w⋆T , TV(w⋆)]. Eq. (5) becomes:

w⋆ =

[

w⋆

TV(w⋆)

]

= arg min
w∈CTV

(

‖v0 − w‖2 + TV(w)2
)

.

(6)

Solution of (6) using projections onto boundary and tangen-

tial hyperplanes are described in [24].

It is also possible to use φ(w) = λTV(w) as the convex

cost function and Eq. (5) becomes:

[

w⋆

TV(w⋆)

]

= arg min
w∈CTV

‖v0 − w‖2 + λ2TV(w)2. (7)

In current TV-based denoising methods [16,17] the following

cost function is used:

f (w) = ‖v0 − w‖2 + λTV(w). (8)

In our case, the regularization term is the square of the TV

function as shown in (6). Since the noise is impulsive, the

contribution of the regularization function (TV) should be

higher than usual. The first term in (6) and (8) consists of

components |vi − wi |, which are comparable to |wi − wi−1|

terms forming the TV function. The ℓ2-norm dominates the

TV function in ordinary LASSO cost function. However, in

(6) and (7) the square of TV(w) increases the effect of the

regularization term. It also leads to an efficient computational

solution in [24].
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Fig. 2 Graphical representation

of the proposed two-stage

denoising process
PES-TV
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Finding the right regularization parameter is a major prob-

lem in LASSO. Unlike LASSO approach [25], where the

selection of the λ parameters is determined in an ad hoc man-

ner or inspection, in the proposed PES-TV-based denoising

algorithm, it is experimentally observed that λ = 1 works

well [26]. We tried various λ values between 0.2 and 2, and

λ = 1 produced the best results. The PES-TV software is

available in [26].

3 Block matching and collaborative filtering

The second step of the proposed denoising method is the

three dimensional (3D) approach introduced by Dabov et al.

[1]. The output of the PES-TV-based denoising step is fed

into the “3D” block matching (BM) step of BM3D.

In natural images, spatially distant areas/blocks are corre-

lated with each other. However, most denoising algorithms

do not exploit this fact and only consider local pixel varia-

tions in an image. Dabov et al. introduced block matching

and collaborative Wiener filtering concepts in a denoising

framework to take advantage of similarities between spatially

distant blocks in an image. They first group similar looking

regions in an image by block matching. Then, they denoise

all those regions together using a 3D approach called col-

laborative Wiener filtering. We borrow this procedure from

[1], and use it as the second step of our denoising scheme as

shown in Fig. 2. In this section, we briefly review the BM3D

denoising method.

3.1 Block matching

First the PES-TV denoised image is divided into non-

overlapping regions of fixed size called reference blocks

(BR). Then, each reference block is compared against candi-

date blocks of similar appearance (BC) using the following

equation:

d(BR, BC) =
‖BR − BC‖2

N
, (9)

where N = M2 is the number of pixels in each block. Blocks

satisfying the similarity condition are grouped together to

construct 3D arrays of similar blocks (SB). Blocks satisfying

condition of the set GSBR are grouped together to construct

3D arrays of similar blocks, as follows:

GSBR = {c ∈ w⋆ : d(BR, BC) ≤ τth} (10)

where c represents the coordinate of blocks in the recon-

structed image obtained by the PES-TV step, and τth is the

maximum distance whose similarity of blocks is determined

according to this threshold. The distance threshold τth is

determined according to deterministic speculations based on

the denoised image in the first step [1]. Each set GSBR is an

N × NGSB 3D array of similar blocks, where NGSBR
is the

number of blocks in the set GSBR .

3.2 Collaborative filtering

The 3D arrays obtained by block matching have both spa-

tial and “temporal” similarity. Therefore, the noise can be

efficiently removed by the collaborative 3D Wiener filter-

ing. Wiener shrinkage coefficients for the set of blocks are

determined from the 3D transform coefficient as follows:

WGSBR
=

∣

∣

∣
T

(

GBE
SBR

)∣

∣

∣

2

∣

∣

∣
T

(

GBE
SBR

)∣

∣

∣

2
+ σ 2

, (11)

where GBE
SBR

is the 3D array for similar blocks from basic

estimate (BE), which is the output of the PES-TV step, T (.)

is the transformation operator, |T (GBE
SB)|2 is the power spec-

trum of the basic estimate image and σ 2 is the variance of

the noise which is estimated using the difference between the

noisy image and the denoised image obtained from PES-TV

step. After obtaining the coefficients, the collaborative filter-

ing is realized by elementwise multiplication of WGSBR
by

the 3D arrays of noisy image GSBR , as follows:

w⋆
rec = T −1

(

WGSBR
T (GSBR )

)

. (12)

where w⋆
rec is the reconstructed 3D array, and T −1(.) is

the inverse transformation operator. After filtering the 3D

array, inverse transform and aggregation operation [1] is per-

formed to get the final denoised image. The overall process

is explained graphically in Fig. 2.
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4 Simulation results and conclusions

In this section, simulation examples are presented. The basic

estimate, which is obtained in the first step, affects the

main denoising process in Wiener filtering step. In BM3D

approach, first step requires the knowledge of the variance of

the noise; however, for images corrupted by impulsive noise

Table 1 Comparison of the SNR results for denoising algorithms for

ǫ-contaminated Gaussian noise for “Note” image

ǫ σ1 σ2 SNRInput PES-TV Chambolle BM3D

0.1 5 30 14.64 29.67 22.26 24.43

0.1 5 40 12.55 27.84 20.32 20.75

0.1 5 50 10.75 25.84 18.63 17.59

0.1 5 60 9.29 24.12 17.37 15.09

0.1 5 70 7.98 22.52 16.24 13.14

0.1 5 80 6.89 21.03 14.97 11.60

0.1 10 30 12.56 25.98 21.71 25.73

0.1 10 40 11.13 24.74 19.97 23.83

0.1 10 50 9.85 23.24 18.46 21.56

0.1 10 60 8.58 22.07 17.10 19.11

0.1 10 70 7.52 20.49 16.03 16.71

0.1 10 80 6.46 18.84 15.12 14.87

0.05 5 30 16.75 28.60 23.78 26.93

0.05 5 40 14.98 26.04 21.54 23.10

0.05 5 50 13.41 23.91 19.91 19.98

0.05 5 60 12.10 21.63 18.63 17.60

0.05 5 70 10.80 19.50 17.50 15.87

0.05 5 80 9.76 17.23 16.38 14.38

0.05 10 30 13.68 26.90 22.62 26.70

0.05 10 40 12.66 25.68 21.12 25.46

0.05 10 50 11.71 24.72 19.60 23.73

0.05 10 60 10.72 23.62 18.30 21.43

0.05 10 70 9.82 21.77 17.22 19.33

0.05 10 80 8.92 20.29 16.45 17.25

the exact variance is unknown. Therefore, this step fails to

generate an appropriate basic estimate for second step. Using

the PES-TV approach [3], we solve this problem.

The impulsive noise changes the pixel values in the image

as follows:

v
i, j
0 =

{

vi, j , if x < l

imin + y(imax − imin), if x > l
(13)

where vi, j is the (i, j)th pixel in the original image, x, y ∈

[0, 1] are two uniformly distributed random variables, l is the

parameter controlling how much of the image is corrupted,

and imax and imin are the severity of the noise [27]. The salt

and pepper noise and the ǫ-contaminated Gaussian noise are

two types of impulsive noises. The ǫ-contaminated Gaussian

noise is widely used to represent impulsive noise [18,28].

The PDF of ǫ-contaminated Gaussian noise is given by:

v
i, j
0 = vi, j +

{

η
i, j
1 , with probability 1 − ǫ

η
i, j
2 , with probability ǫ

(14)

where η1 and η2 are independent Gaussian noise sources with

variances σ 2
1 and σ 2

2 , respectively. We assume that σ1 ≪ σ2,

and ǫ is a small positive number [21]. The reconstruction per-

formance is measured using the signal-to-noise ratio (SNR)

and peak-SNR (PSNR) criterions, which are defined as fol-

lows:

SNR = 20 × log10

(

‖worig‖

‖worig − wrec‖

)

, (15)

PSNR = 20 × log10

(

max(worig)

‖worig − wrec‖/N

)

, (16)

where worig is the original signal, wrec is the reconstructed

signal and N is the total number of pixels in image.

Denoising results for “Note” [3] image with

ǫ-contaminated noise are summarized in Table 1. In this toy

Table 2 PSNR Results for

denoising images corrupted with

ǫ-contaminated noise with

ǫ = 0.1, σ1 = 5, with different

σ2’s using PES-TV algorithm

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 36.87 34.39 31.87 29.74 28.00 26.53

Lena 34.55 32.85 31.40 29.97 28.55 27.27

Mandrill 28.31 27.86 27.36 26.76 25.33 24.59

Living room 31.61 30.94 29.57 28.41 27.46 26.38

Lake 32.03 31.29 29.71 28.64 27.57 26.58

Jet plane 34.56 32.75 31.20 29.85 28.32 27.05

Peppers 34.64 33.39 32.02 30.56 29.22 27.87

Pirate 31.46 30.80 29.60 28.50 27.49 26.53

Cameraman 35.29 33.45 31.45 29.74 28.14 26.65

Flower 31.17 31.03 29.85 28.78 27.69 26.88

Kodak (ave.) 32.85 31.19 29.88 28.65 27.51 26.48

Average 32.91 31.39 30.03 28.78 27.59 26.53
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Table 3 PSNR Results for

denoising images corrupted with

ǫ-contaminated noise with

ǫ = 0.1, σ1 = 5, with different

σ2’s using BM3D algorithm

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 34.65 30.40 27.59 25.34 23.69 22.40

Lena 33.53 30.13 27.28 25.13 23.55 22.29

Mandrill 31.48 28.88 26.66 24.89 23.36 22.27

Living room 33.06 30.14 27.64 25.56 23.90 22.49

Lake 33.70 30.36 27.63 25.42 23.75 22.46

Jet plane 33.50 30.28 27.67 25.47 24.02 22.68

Peppers 33.66 30.50 27.62 25.48 23.86 22.46

Pirate 32.58 29.74 27.67 25.20 23.69 22.45

Cameraman 33.99 30.32 27.39 25.29 23.69 22.40

Flower 32.72 30.27 27.91 25.76 24.07 22.76

Kodak (ave.) 32.11 30.53 28.10 26.05 24.37 23.04

Average 32.46 30.40 27.93 25.85 24.19 22.87

example, the PES-TV approach produces the best results.

The denoising results for a set of 34 images including 10

well-known test images from image processing literature and

24 images from Kodak Database [29], which are corrupted

by ǫ-contaminated noise with σ1 = 5 and ǫ = 0.1, and

σ2 ∈ [30, 80] are presented in Tables 2 and 3 for PES-TV

and BM3D algorithms, respectively. In this case, the noise is

the combination of two Gaussian noises with different vari-

ances; therefore, it cannot be exactly modeled as a noise with

a single variance parameter. The PES-TV algorithm performs

better and produces higher PSNR values compared to all

other denoising results obtained using [1,16,19], because it

does not require knowledge of variance of the noise. We also

present an additional illustrative example in Fig. 3. In this

figure the “peppers” image is corrupted with ǫ-contaminated

Gaussian noise and the denoising results for PES-TV and

BM3D methods are presented. The BM3D fails to clear the

impulsive noise.

In another set of experiments, images that are corrupted by

a mixture of salt and pepper and Gaussian noises are denoised

using the PES-TV denoising method and also with BM3D

and BM3D with median filtering (BM3DM) for comparison

purposes. The salt and pepper impulsive noise model is as

follows:

v
i, j
0 =

⎧

⎪

⎨

⎪

⎩

smin, with probability p

smax, with probability q

vi, j , with probability 1 − p − q

(17)

where vi, j is the gray level pixel value of the original image,

[smin, smax] are the dynamic range of the original image,

smin ≤ vi, j ≤ smax for all (i, j) values, v
i, j
0 is the gray level

pixel value of the noisy image and r = p + q defines the

noise level [30].

The density of the salt and pepper noise is set to 0.02 and

0.05 and Gaussian noise is added with different variances.

Fig. 3 a A portion of original “Peppers” image, b image corrupted by

ǫ-contaminated noise with ǫ = 0.1, σ1 = 5, and σ2 = 50, c denoised

image, using PES-TV algorithm; PSNR = 32.02 dB, and d denoised

image, using BM3D; PSNR = 27.62 dB. Standard BM3D algorithm

fails to clear impulsive noise

Results for this set of experiments are shown in Tables 4 and

5, respectively. In almost all cases, the PSNR values for PES-

TV algorithm are higher than other algorithms. In Tables 4

and 5, the third column refers to median filtering followed by

second stage (3D Wiener filtering) of the BM3D algorithm

(BM3DM ).

An illustrative comparison of the PES-TV vs. BM3D and

BM3DM is presented in Fig. 4 for “Lena” image. In this

example, the PES-TV denoising method performs better than
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Fig. 4 a A portion of original “Lena” image, b image corrupted by

salt and pepper noise with density 0.05, and additive white Gaussian

noise with standard deviation σ = 20, c denoised image, using PES-

TV algorithm; PSNR = 32.57 dB, d denoised image, using BM3D;

PSNR = 28.95 dB, and e denoised image, using BM3D-Median; PSNR

= 30.10 dB

the other two denoising methods both visually and in the

sense of PSNR. For example in Fig. 4d the artifacts produced

by salt and pepper noise are not removed properly by BM3D

algorithm and the denoised image by BM3DM in Fig. 4e has

also some artifacts. This issue is solved by PES-TV denois-

ing method in Fig. 4c. This is also apparent in a fluorescence

microscopic image in Fig. 5. In this figure, the example fluo-

rescence microscopic image is corrupted by salt and pepper

Fig. 5 a Fluorescence microscopic image, b image corrupted by salt

and pepper noise with density 0.05, and additive white Gaussian noise

with standard deviation σ = 30, c denoised image, using PES-TV algo-

rithm; PSNR = 32.98 dB, d denoised image, using BM3D; PSNR =

28.61 dB, and e denoised image, using BM3D-Median; PSNR = 29.35

dB

noise with density 0.05, and additive white Gaussian noise

with standard deviation σ = 30 and denoised using the PES-

TV, BM3D and BM3DM denoising methods. Both visually

and in the sense of PSNR values, PES-TV performs better

compared to other two denoising methods.

In [20], the proximity operator-based denoising results

for the Cameraman and Lena images are reported for various

regularization parameter λ values for Gaussian noise with

σ = 15 and 25 standard deviation levels. Best PSNR values

for Lena image for σ = 15 (σ = 25) is 32.33 dB (30.13 dB),

when the regularization parameter λ = 0.09 (λ = 0.05). We

obtain PSNR values equal to 32.43 and 30.12 dB, respec-

tively, without any regularization parameter adjustment. For

Cameraman our results are much better with PSNR = 33.10

and 30.60 dB compared to 30.39 and 27.77 dB with λ = 0.1

and λ = 0.07 for σ = 15 and 25, respectively.

The first step of the BM3D approach relies on hard

thresholding, which cannot remove isolated large amplitude

impulsive noise components. On the other hand, the PES-

TV approach successfully reduces the impulsive noise and

produces better estimate for the second step of the BM3D

denoising method. It is experimentally observed that the

proposed scheme on images corrupted by impulsive noise

results in much better denoising performance compared to

both Chambolle’s method and standard BM3D denoising.
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5 Conclusion

In this article, a novel algorithm for denoising images cor-

rupted by impulsive noise is presented. This algorithm is a

two-step algorithm, which in the first step the PES-TV-based

denoising algorithm produces basic denoised estimate for

the second step. Using this basic estimate, the second stage

groups the similar blocks of the noisy image and denoise

these 3D arrays of the similar blocks using collaborative 3D

Wiener filtering. The PES-TV algorithm does not require the

knowledge of the noise variance to denoise the image, then

produces better basic estimate for Wiener filtering step in

comparison with standard BM3D algorithm. Experimental

results indicate that higher SNR and PSNR, and better visual

results are obtained using the proposed denoising method

compared to other algorithms.
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