
71Bull.  Pol.  Ac.:  Tech.  65(1)  2017

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 

TECHNICAL SCIENCES, Vol. 65, No. 1, 2017

DOI: 10.1515/bpasts-2017-0009

*e-mail: tomasz.marciniak@put.poznan.pl

Abstract. This paper presents analysis of selected noise reduction methods used in optical coherence tomography (OCT) retina images (the so-

called B-scans). The tested algorithms include median and averaging filtering, anisotropic diffusion, soft wavelet thresholding, and multiframe 

wavelet thresholding. Precision of the denoising process was evaluated based on the results of automated retina layers segmentation, since this 

stage (vital for ophthalmic diagnosis) is strongly dependent on the image quality. Experiments were conducted with a set of 3D low quality scans 

obtained from 10 healthy patients and 10 patients with vitreoretinal pathologies. Influence of each method on the automatic image segmentation 

for both groups of patients is thoroughly described. Manual annotations of investigated retina layers provided by ophthalmology experts served 

as reference data for evaluation of the segmentation algorithm.
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2. Characteristics of OCT interfaces

The inspection of biometric properties of an eye using the OCT 

technology is based on segmentation and identification of the 

most important segments (such as retina layers and borders 

of the optic disc) and on the analysis of their depth at various 

1. Introduction

The newest measurement technologies provide automatic vi-

sualization and analysis of pathologic tissues. This process can 

be further extended through application of advanced algorithms 

for analysis of medical images [1]. The detailed measurements 

and proper representation of thickness, volume and placement 

of the examined structures make it easier for the specialists to 

chose the proper treatment course [2].

Among noninvasive techniques for soft tissue measure-

ment used in ophthalmology is the spectral domain optical 

coherence tomography (SD-OCT) [3]. This technology is 

based on illuminating the tissue with a stream of infrared 

light. The light reflected from inner structures of the eye, is 

spectrally analyzed to receive data, representing layers of the 

retina. A set of single scans across the retina (called A-scans) 

is assembled into a cross-section (i.e. the B-scan) illustrating 

the layered morphological structure of the retina. A series of 

B-scans creates a three-dimensional visualization (3D OCT 

scan) of the retina.

Figure 1 presents a 3D OCT scan annotated with the most 

commonly identified retina layers: inner limiting membrane 

(ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner 

plexiform layer (IPL), inner nuclear layer (INL), outer plexi-

form layer (OPL), outer nuclear layer (ONL), inner segments 

of photoreceptors (IS), outer segments of photoreceptors (OS), 

and retinal pigment epithelium (RPE) [4].

Fig. 1. Example of 3D OCT scan of human retina with annotated most 
important layers
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points. This information is required to perform the detailed and 

proper diagnosis that can point out possible treatment courses. 

Fig. 2 presents a general scheme of the OCT analysis proce-

dure.

Using modern OCT devices it is possible to acquire even 

70 000 A-scans per second [5]. This means performing a 3D 

scan, of 141 B-scans with the resolution of 640£385 points 

each, in around 0.8 second. The fast measurement assures no 

artifacts caused by involuntary movements of the eyeball. Some 

of the newest devices employ also a motion correction tech-

nology (MCT) in order to minimize this problem [6].

The B-scans constituting the 3D OCT scan can be very 

noisy, what is the main cause of errors during the automatic 

segmentation of layers. The research on the nature of noise in 

the OCT images [7] proves, that it is not an entirely random 

noise as it contains some specific information. It is called the 

speckle noise. It depends on:

● the placement in the image

● intensity scale of the image

● reflecting properties of the examined tissue.

It is not possible to automatically assess its level. Due to 

the above features, elimination of noise from the OCT images 

is a very difficult task, though necessary for the proper tissue 

analysis.

Fig. 3 illustrates an example of the B-scan acquired through 

a 3D OCT examination. This image has a low quality due to the 

noise. It includes pathological changes caused by the vitreomac-

ular traction syndrome (tearing of the retina in the fovea region 

due to anomalous vitreous detachment). This pathology causes 

incorrect segmentation of retina layers performed with the use 

of the automatic procedure presented in Section 3.

Methods for reducing the speckle noise can be divided into 

two groups: methods based on averaging of a series of images 

and algorithms designed for denoising single frames (B-scans).

The first group of methods requires multiple scans of the 

same area that are next averaged [8, 9]. Since the noise present 

in every cross-section has various spatial distributions (as op-

posed to the examined tissue) this is an efficient approach to 

this noise reduction. The more images used for the averaging, 

the better is the noise minimization and the tissue structure 

enhancement.

Unfortunately, this technique significantly prolongs the 

measurement time. Indeed, for the above example, the standard 

number of frames is 32, but using MCT even 80, what means 

the time acquisition of 24 and 62 seconds, respectively for the 

earlier discussed 3D scan. This is not acceptable for a patient. 

The prolonged acquisition would also cause shift and rotation 

between subsequent B-scans in the 3D dataset due to unex-

pected movement of the patient/eyeball, problems with main-

taining vision focus and blinking. These problems do not affect 

scan acquisition under a second, therefore this method can be 

used only during the acquisition of a single B-scan (one Line 

Scan Pattern) through the center of macula.

Methods of the second group used for denoising the B-scans 

in a volumetric set involve:

● averaging and median filtering [10]

● regularization [11]

● local Bayesian estimation [12]

● diffusion filtering, including nonlinear anisotropic fil-

tering [13–15]

● wavelet thresholding (e.g. spatially adaptive filtering 

[16], dual tree complex wavelet transformation [17], 

curvelets transformation [18]).

The results of research conducted by Ozcan et al. [19] sug-

gest superiority of methods based on wavelet transformations 

in comparison to other techniques. The published findings were 

derived from data gathered mainly using images of animal 

tissues (pigs, rats, mice) [8, 15], human skin [20, 21], and 

human healthy retina [9]. In many cases the noise reduction 

methods were analyzed on nonmedical and synthetic images 

[11, 13, 15].

Furthermore, little information can be found in the literature 

about analysis of speckle noise on OCT images of pathological 

changes of the retina. One of the reports that used images from 

30 patients with 15 various retina pathologies was presented by 

Abbirame et al. [22].

Fig. 2. General scheme of biometric analysis of eye structures using 
OCT

Fig. 3. Example of 3D OCT retina cross-section (B-scan): (A) B-scan 

with expert’s manual segmentation, (B) B-scan with erroneous 

automatic segmentation of retina layers (places with erroneous seg-

mentation are indicated by arrows)

A

B
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Recent literature includes also papers describing applica-

tion of the wavelet thresholding method for a 3D set of human 

skin images [20, 21]. This method utilizes the information from 

neighboring frames to minimize the effect of blurring and em-

phasize the details in the image.

3. Denoising of 3D OCT scans

In this article we analyze the influence of selected denoising 

methods on the retina layers segmentation procedure. The tests 

include 3D sets of OCT images for both healthy and patho-

logical retinas. The inspected pathology is the vitreomacular 

traction syndrome. The group of investigated algorithms is pre-

sented in Fig. 4 and described below.

where ∆ represents the Laplace operator, and c(x, y) describes 

the diffusion coefficient dependent on the position (x, y) in the 

image space, according to the function
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where  defines gradient, κ is the denoising parameter, being 

a positive real value that is related to the noise level and to the 

expected edge preservation in the image. For edge detection 

we use the image gradient calculated with the Prewitt operator, 

since it is robust to noise [14].

Through choosing the lower value of the diffusion coeffi-

cient we avoid the blurring of edges, while bigger value allows 

for smoothing of areas between the edges. Thanks to this, the 

lines and structures in the image, important for interpretation, 

are preserved. This technique is useful for reducing the speckle 

noise in OCT images.

3.4. Wavelet thresholding. The wavelet thresholding (WT) 

method provides good results in denoising OCT images. This 

is mainly due to the fact that the noise is evenly distributed 

between wavelet coefficients, while the majority of the infor-

mative content is concentrated among the coefficients with high 

magnitude. By selecting a proper threshold value (which might 

be a difficult task) we are able to reduce the noise maintaining 

characteristic features of the image [25].

In this algorithm, a single B-scan Ii, represented in the loga-

rithmic scale, is decomposed with the wavelet transform of the 

maximum decomposition level L. Thereby receiving approx-

imation coefficients AL
i  and detail coefficients W L

i, D, where D 

describes direction (horizontal or vertical) of image filtering. 

During the experiments we used the soft thresholding method 

with the Haar wavelet, namely the discrete stationary wavelet 

transform (DSWT) [26].

The denoising operations consist in reducing the detail coef-

ficients for a position x in the image, based on the weight GL
i, D
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where each weight GL
i, D is calculated for a manually selected 

threshold τ according to the following equation
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The last step of this algorithm requires performing the in-

verse wavelet transform. Fig. 5a presents a general scheme of 

the described algorithm.

3.5. Multiframe wavelet thresholding. The multiframe wavelet 

thresholding method (MWT) uses a set of frames i 2 h1, Ni, 
where N defines the number of the processed B-scans. It as-

sumes that the noise in image i is uncorrelated with respect to 

noises in other images (B-scans), and that its standard deviation 

σi(x) at position x is the same as in the other images.

Fig. 4. Selected denoising methods for testing their influence on image 
segmentation

3.1. Averaging filtering. The basic, commonly used method 

of image denoising is averaging filtering (further referred to as 

AVG). It employs the two dimensional convolution between an 

investigated image and a previously defined filter. Such filter is 

usually defined as a square matrix with odd numbers of rows 

and columns (e.g. 3£3), although rectangular filters, such as 

3£19, can also be found in the literature [23]. In our analysis 

we tested four variants of such filters, namely: 3£3, 5£5, 7£7, 

and 9£9.

3.2. Median filtering. Another commonly used nonlinear tech-

nique of image denoising is median filtering (further referred to 

as MED). Its advantage in preprocessing of OCT examinations 

is the ability to preserve the edges and tissue features, and to 

reduce the influence of the speckle noise. During the experi-

ment we evaluated four sizes of this type of filter: 3£3, 5£5, 

7£7, and 9£9.

3.3. Anisotropic diffusion filtering. Anisotropic diffusion 

(AD) is an efficient noise reduction method. For an input image 

this method, proposed by Perona and Malik [24], defines the 

denoised image as

 

 

 
             

∆            
                       

            

      
                                    
                                                                      

                  
                          

                                                              

                                                

, (1)



74 Bull.  Pol.  Ac.:  Tech.  65(1)  2017

A. Stankiewicz, T. Marciniak, A. Dąbrowski, M. Stopa, P. Rakowicz, and E. Marciniak

Authors of this method [8] propose calculating the weight 

for the detail coefficients in a way that allows for estimation 

of the local noise. This weight is called the significance weight 

GL
sig, i, D(x) and is calculated as follows
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where σS, i, D defines the mean squared distance between the 

detail coefficients in individual images, parameter k describes 

the noise reduction level, and θi is the normalized parameter 

calculated as in (7):
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Heliodor Święcicki Medical University Hospital in 
Poznań to annotate 7 retina layers

. (7)

After obtaining new detail and approximation coefficients 

with the above weights for all images, the coefficients are av-

eraged and the inverse transform is calculated.

This algorithm was developed for processing a set of frames 

of the same examined tissue area, as is in the case of multiple 

acquisition of a single B-scan across the fovea. Bearing in mind, 

that the distance between the subsequent B-scans in the 3D ex-

amination is about 50 μm, a little change in the tissue structure 
is observed in the neighboring cross-sections. Based on this, we 

propose to use 3 subsequent frames in the 3D OCT set as input 

images for this method. A general scheme of this approach is 

illustrated in Fig. 5b.

4. Experiments

4.1. Methodology. As was mentioned earlier, we measured ef-

fectiveness of the denoising methods by analysis of influence on 

the image segmentation accuracy. There are two reasons for this 

experiment. First, for OCT images a reference image (an ideal 

image without noise) does not exist, thus, it is difficult to cal-

culate accuracy of denoising algorithms directly. Second, noise 

in OCT images is causing errors in the segmentation of the 

retina layers. The segmentation procedure is in turn a key step 

in defining the morphological structure of the retina during the 

diagnosis. Visualization and measurement of the retina layers 

thickness is the base line for the retina analysis.

Current research concerning segmentation of medical im-

ages indicates methods based on the graph theory as the most 

accurate approach [27]. The algorithm selected for this study 

(reported by Chiu et al. [23]) treats a single OCT B-scan as 

a graph, in which every pixel is a node. For the created graph, 

with previously calculated weights, we use the shortest path 

Fig. 5. Scheme of image denosing algorithm for: a) standard wavelet thresholding and b) multiframe wavelet thresholding approach

a) b)
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to find the line representing the border between two neigh-

boring layers in the image. In the conducted experiment we used 

a modified version of this algorithm [28, 29]. The modified ver-

sion takes continuity of tissues into account across all cross-sec-

tions and the signal quality in each column of the image.

The 3D OCT scans used for testing were acquired with 

Avanti RTvue device (Optovue Inc., Freemont, USA [5]) from 

10 patients with vitreomacular traction (VMT) pathology and 

10 healthy volunteers. Average age for each group was 71 

and 39 years, respectively. Every patient had a full 3D OCT 

examination of macular region of size 7£7£2 mm. The ex-

amined volume is represented by 141£640£385 data points 

(141 B-scans with 640£385 resolution). Next, the acquired 

scans were manually segmented by experts from the Clinical 

Eye Unit at the Heliodor Święcicki Medical University Hospital 
in Poznań to annotate 7 retina layers (further used as reference 
data for evaluating investigated algorithms).

In the next step, each image was denoised with the earlier 

described methods. For every method various parameter values 

were tested. Table 1 presents a list of the tested parameters and 

their values, with the best results obtained for values marked 

with gray shading. Also, as a part of subjective evaluation of 

the denoising algorithms, the ophthalmology experts were given 

an opportunity to select the best parameter values. It is worth 

mentioning that they have intuitively selected bigger values 

then those resulting from the tests (see Fig. 6).

Table 1 

Values of parameters chosen for tested denoising methods

AVG MED AD DSWT MWT

Parameter Mask size Mask size κ τ k

Value 1 3£3 3£3 1 1 0.1

Value 2 5£5 5£5 5 10 1

Value 3 7£7 7£7 10 30 10

Value 4 9£9 9£9 20 100 100

4.2. Comparison of denoising algorithms. Examples of 

B-scans obtained after application of each investigated de-

noising method are illustrated in Figs. 6 and 7. Fig. 6A pres-

ents an original B-scan, while an example of employing AVG 

and MED filtering is illustrated in Fig. 6B and 6C respectively. 

Fig. 6D, 6E and 6F illustrate the results of AD, DSWT and 

MWT algorithms.

The original single cross-section (A) has a visibly high 

noise content (a grainy structure). By comparing it with images 

(B) and (C) we can notice that these methods cause blurring 

of the image and the noise is still present. Method (E) also 

leads to blurring of the image, although the regions of indi-

vidual tissues are smoothed. Additionally, for bigger threshold 

values rectangular shaped artifacts appear in the image. The 

greatest unification and smoothing of tissues can be detected 

in method (D). Unfortunately, this algorithm reduces the line 

of the posterior vitreous cortex present in the upper left part of 

Fig. 6. Original B-scan (A), and illustration of results of analyzed noise 

reduction methods: (B) average filtering (3£3 mask), (C) median fil-

tering (3£3 mask), (D) anisotropic diffusion (κ = 20), (E) soft wavelet 
thresholding (τ = 20), (F) multiframe wavelet thresholding (k = 1)

A

B

C

D

E

F
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the image. This line is best revealed by method (F), thanks to 

which, it is possible to maintain most informative content about 

the pathology distribution. Method (F) also provides a good 

quality image with low noise content and visible retina tissue 

areas separation.

Next, each 3D scan was subjected to automatic image seg-

mentation based on the graph theory. Verification of effective-

ness of the implemented methods was based on calculation of 

the peak signal to noise ratio (PSNR):

 

Mask size Mask size       

                       

            

, [dB] (8)

where MAX defines a maximum possible value of the annota-

tion range (in our case it is equal to the height of the image), 

and MSE is a mean squared error between the automatic and 

manual segmentations. Due to divergence in annotating layer 

borders by experts and by computer, the difference between 

them lower than 5 pixels was classified as negligible (i.e., error 

equal to zero), what would give PSNR value over 45 dB.

4.3. Analysis of segmentation accuracy. During the conducted 

experiment we used an image segmentation algorithm imple-

mented in the Matlab/Simulink R2014b environment [30] for 

annotating 7 borders between the retina layers: ILM, NFL/GCL, 

IPL/INL, INL/OPL, OPL/ONL, IS/OS, and RPE/Choroid using 

the procedure described in Section 4.1.

Figure 7 presents the segmentation results after each inves-

tigated denoising method. As can be seen, method (F) provides 

best accuracy for segmenting pathological tissue. Although still 

some inadequacies can be found, especially in places of shading 

caused by blood vessels or fluids (e.g. for IS/OS border).

The OCT device used for acquiring the image provides au-

tomatic segmentation of only 4 retina layers (i.e. ILM, IPL/INL, 

IS/OS and RPE/Choroid). Thus, comparison of the proposed 

method to this device is not applicable.

Results of automatic segmentation were calculated sepa-

rately for images of healthy volunteers and eyes with VMT 

pathology. Their comparisons for each evaluated method illus-

trate Figs. 8‒12. It is clearly visible that smaller filter masks for 
both averaging and median filtering provide better results, while 

bigger masks tend to blur the image. It can be also inferred, that 

lower values of κ parameter in the AD method and threshold τ 
for the WSDT method guarantee better performance.

Fig. 7. Illustration of manually segmented layers (A) and results of automatic analysis after noise reduction with selected methods: (B) average 

filtering (3£3 mask), (C) median filtering (3£3 mask), (D) anisotropic diffusion (κ = 20), (E) soft wavelet thresholding (τ = 10), (F) multiframe 
wavelet thresholding (k = 1). Data is presented in a section of the size 220£220 pixels cropped from the center of the image in Fig. 6
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Fig. 8. PSNR of retina layers segmentation for healthy and pathological 

eyes after averaging filtering
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Tables 2 and 3 contain PSNR results obtained for the best 

parameter values for each denoising method. It is worth men-

tioning, that for borders between hyper-reflective and dark re-

gions (i.e. ILM, IS/OS, and RPE/Choroid) the segmentation 

results for both groups of patients have higher scores, regardless 

of the denoising method.

Additionally, a severe VMT pathology, that affected one of 

the examined patients, has greatly lowered the calculated PSNR 

value for this group. For this patient the best results in each 

method gave a score in the range of 36.80 to 38.14 dB, while 

mean results for other patients in this group were in the range 

of 43.78 to 44.42 dB. For all patients with the VMT pathology 

the erroneous segmentation occurred in the area of pathology, 

and the biggest error was 49 px. This error may be caused by 

layers irregularities in the area of pathology, as the segmentation 

algorithm assumes smoothness of the layers borders. This conti-

nuity characteristic is expected by the experts and is noticeable 

in their manual annotations.

Table 2 

PSNR values for automatic segmentation of selected retina layers 

for patients with VMT [dB]

Method AVG MED AD DSWT MWT

All layers 37,40 37,40 37,75 37,70 37,88

ILM 49,28 49,34 48,54 48,56 49,23

NFL/GCL 38,35 38,24 40,12 40,14 39,11

IPL/INL 35,56 35,50 35,84 35,80 35,94

INL/OPL 33,82 33,79 33,90 33,85 34,17

OPL/ONL 34,87 34,98 35,02 34,91 35,45

IS/OS 41,64 41,84 42,35 42,38 42,24

RPE/Choroid 45,67 45,53 46,52 46,47 46,20

Table 3 

PSNR values for automatic segmentation of selected retina layers 

for healthy eyes [dB]

Method AVG MED AD DSWT MWT

All layers 43,58 43,29 44,60 44,56 43,15

ILM 55,66 55,42 55,45 55,55 54,49

NFL/GCL 40,09 39,95 42,74 42,72 40,84

IPL/INL 44,31 43,68 44,26 44,16 42,62

INL/OPL 43,44 42,54 41,79 41,68 40,58

OPL/ONL 44,62 43,95 44,13 44,04 42,31

IS/OS 43,08 43,44 48,76 48,68 46,14

RPE/Choroid 43,91 44,01 45,11 45,34 45,51

5. Conclusions

Manufacturers of OCT devices constantly try to overcome the 

problem of low quality of the acquired images. The denoising 

methods such as anisotropic diffusion and wavelet thresholding 

allow for better retina segmentation for both tested groups of pa-

tients. Additionally, in case of the VMT pathology we were able 

to improve accuracy by using the multiframe wavelet thresh-

olding algorithm. We have observed that this approach did not 

provide significant improvement for images of healthy retinas.

Our experiments confirmed that the proposed method of 

the multiframe wavelet thresholding improved segmentation 

accuracy for OCT images of pathological tissues, although 

change of the noise reduction parameter did not influence the 

segmentation process.

Fig. 9. PSNR of retina layers segmentation for healthy and pathological 
eyes after median filtering

Fig. 10. PSNR of retina layers segmentation for healthy and patholog-

ical eyes after filtering with anisotropic diffusion method

Fig. 11. PSNR of retina layers segmentation for healthy and patholog-

ical eyes after filtering with wavelet soft thresholding method

Fig. 12. PSNR of retina layers segmentation for healthy and patholog-

ical eyes after filtering with multiframe wavelet thresholding method
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For healthy data also soft wavelet thresholding of single 

B-scans and anisotropic diffusion methods are worth exploring, 

although for these methods it is worth setting the parameter 

value as small as possible.

The proposed solution can be applied to volumetric datasets 

to aid during the diagnostic procedure, since precise segmen-

tation allows for early detection of morphological changes and 

conduction of the thorough assessment of the pathology stage. 

Thanks to that, it could be possible to select and perform the 

proper therapy treatment.
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