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Abstract—This paper addresses the denoising problem asso-
ciated with magnetic resonance spectroscopic imaging (MRSI),
where signal-to-noise ratio (SNR) has been a critical problem. A
new scheme is proposed, which exploits two low-rank structures
that exist in MRSI data, one due to partial-separability and the
other due to linear predictability. Denoising is performed by
arranging the measured data in appropriate matrix forms (i.e.,
Casorati and Hankel) and applying low-rank approximations by
singular value decomposition (SVD). The proposed method has
been validated using simulated and experimental data, producing
encouraging results. Specifically, the method can effectively de-
noise MRSI data in a wide range of SNR values while preserving
spatial-spectral features. The method could prove useful for
denoising MRSI data and other spatial-spectral and spatial-
temporal imaging data as well.

Index Terms—MR spectroscopy, MR spectroscopic imaging,
denoising, low-rank approximation, partially-separable functions,
linear prediction

I. INTRODUCTION

THE acquired magnetic resonance spectroscopic (MRS)
signal in (k, t)-space can be expressed as

s(k, t) =

∫∫
ρ(r, f)e−i2πk·re−i2πftdrdf + ξ(k, t), (1)

where ρ(r, f) denotes the desired spatial-spectral function and
ξ(k, t) is the measurement noise often modeled as a complex
white Gaussian process. The function ρ(r, f) provides valu-
able information on the spatial-spectral distribution of metabo-
lites, and is useful for noninvasive metabolite imaging of living
systems. For example, 13C MRSI can be used to study glucose
metabolism [1]; 31P MRSI is capable of detecting metabolites
participating in tissue energy metabolism [1]; 1H MRSI can
map out the spatial distributions of N-Acetylaspartate (NAA),
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creatine, choline, and lactate metabolites that are useful for
the investigation of neurological disorders [2]. However, con-
siderable practical challenges remain in obtaining ρ(r, f) in
both high spatial-spectral resolution and high SNR. These
difficulties are due to acquisition time limitations and low
concentrations of metabolites (typically thousands-fold below
that of tissue water [3]). This paper addresses the low SNR
problem.

A straightforward way to improve the SNR of MRSI data is
to acquire multiple sets of measurements for signal averaging,
but at the expense of lengthening the already long data
acquisition time. Another approach is to apply a linear shift-
invariant filter such as a Gaussian smoothing filter. However,
such an approach often has poor tradeoff between spatial-
spectral resolution and SNR. For a better tradeoff between
SNR and resolution, many advanced denoising methods pro-
posed for general signal processing applications can be used.
Most notable in this class are transform-based methods (e.g.,
wavelet shrinkage [4], SVD truncation [5], [6], etc.) and
PDE-based methods [7]. These methods utilize known signal
properties such as piecewise smoothness for feature-preserving
denoising. They are effective when the SNR is beyond some
threshold, but can not well separate signal from noise in the
presence of severe noise contamination, as it is often the case
with practical MRSI data.

There are also several denoising methods specifically de-
signed for MRSI signals. In [8], for instance, MRS signals
are denoised by consecutive projection onto different domains,
represented by a set of linear time-frequency transforms.
Explicit parametric models have also been used for denoising
MRSI data either prior to or during metabolite quantitation
[9]–[13]. These methods are very effective when the models
are correct. However, generic parametric models that fully
account for all spectral features are not yet available and
incorrect models often create significant bias which can be
very problematic in practical applications. For example, a
popular denoising method described in [9] and originally
proposed in [14] makes a strict use of the Lorentzian lineshape
of the spectral peaks and is very sensitive to noise. Less-
constrained approaches were proposed in [15], [16].

In this work, we propose a new scheme for MRSI denoising,
coined LORA (LOw Rank Approximations), by utilizing the
low-rank structures of the spatial-spectral data. Specifically,
we incorporate low-rank approximation in (k, t) domain by
assuming that spatial variations are separable from temporal
variations to some low order [17]. In addition, we exploit
the low-rank structure of the temporal signal due to its linear
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predictability. The use of these two low-rank properties pro-
vides efficient spatial-spectral filtering. Our preliminary results
were reported in [18]. This paper presents a more detailed
description and a more thorough evaluation of the proposed
method.

The rest of the paper is organized as follows. Section II
presents the proposed method, including a description of the
low-rank properties and the associated denoising algorithm.
Section III discusses algorithm considerations. Section IV
shows simulation and experimental results illustrating denois-
ing performance of the proposed algorithm, followed by the
conclusions of the paper in Section V. For easy reference, the
following is a list of the key symbols used in this paper.
ρ(r, f): Spatial-spectral function of a spin system
ρ(f): MRSI spectrum at an arbitrary spatial location
s0(k, t): Ideal noiseless MRSI signals
s(k, t): Measured MRSI signals
ξ(k, t): Noise in the measured MRSI signals
s(t): MRSI signal at an arbitrary spatial location
L1: Order of the partially separable (PS) model
L2: Order of the linear predictive (LP) model
cl(r): Spatial basis of the PS model
ψl(f): Spectral basis of the PS model
ĉl(k): Fourier transform of cl(r)
ψ̂l(t): Inverse Fourier transform of ψl(f)
αl: Coefficients of the mixture of Lorentzians model
ϕl: Lorentzian spectral function
C : Casorati matrix
H : Hankel matrix
A : A general matrix
λ: Singular values of a matrix

II. PROPOSED METHOD

The proposed method is based on low-rank approximations
of MRSI data. Specifically, it exploits two low-rank properties
(one due to partial separability and the other due to linear
predictability) for noise removal.

A. Low-rankness due to spatiotemporal partial separability

The spatial-spectral distribution function ρ(r, f) can be
expressed as

ρ(r, f) =

L1∑
l=1

cl(r)ψl(f), (2)

where cl(r) can be viewed as the spatial basis and ψl(f) as the
spectral basis for ρ(r, f). This model is called L1th-order par-
tially separable (between space and frequency). Equivalently,
the noiseless MRSI data s0(k, t) can be expressed as partially
separable between k and t to the L1th order:

s0(k, t) =

L1∑
l=1

ĉl(k)ψ̂l(t), (3)

where ĉl(k) and ψ̂l(t) are related to cl(r) and ψl(f) in (2)
by the Fourier transform, respectively. In (3) we assume that
field inhomogeneity effects have been previously removed.
This task can be achieved using a range of field-correction
techniques, such as those in [19]–[21].

Validity of the PS model (2) can be justified as follows.
Noting that ρ(r, f) is an L2-function, model (2) is always
valid for L1 = ∞. In practice, the PS model is valid for a
finite (small) L1 because there is a finite number of resonances
(spectral components) in any practical MRS experiment. In
this case, function ψl(f) can be viewed as the spectral function
of the l-th resonance component and c l(r) is its corresponding
spatial distribution.

Model (2) also arises when ρ(r, f) can be decomposed
into a summation of compartmental spectral functions. This
simplified form of the PS model was previously used in [22]
for spectroscopic imaging. In this case L1 is the number of
compartments, cl(r) = 1, and

ψl(f) =

{
1
Vl

∫
ρ(r, f)dr, r ∈ Dl

0, otherwise,
(4)

where Dl represents the l-th compartment and V l is its
corresponding volume. While compartmental spatial-spectral
functions are partially-separable, the PS model in (2) rep-
resents a much broader class of functions and does not
impose compartmental homogeneity as in [22], which is often
problematic for practical MRSI data [23].

An important property of model (3) is that the Casorati
matrix formed from s0(k, t) samples is low-rank. Specifically,
let

C0 =

⎡
⎢⎢⎣

s0(k1, t1) s0(k1, t2) ... s0(k1, tM )
s0(k2, t1) s0(k2, t2) ... s0(k2, tM )

· · ·
s0(kN , t1) s0(kN , t2) ... s0(kN , tM )

⎤
⎥⎥⎦ (5)

for any point set {s0(kn, tm)}N,M
n=1,m=1. Then, model (3)

implies that C0 has at most rank L1 [17].
In practice, L1 is much smaller than min(N,M) due to

the small number of spectral components (about 5 ∼ 10 com-
monly MR-observable metabolites, 4 resonance components
from macromolecules, and 5 components from lipids in the
human brain [24], [25]). This enables the use of the low-rank
property for effective denoising.

B. Low-rankness due to linear predictability

The time-domain signal of a spin system with L2 spectral
components resonating at frequency f l with damping factor γl
can be expressed as [3]

s0(t) =

L2∑
l=1

αle
−(γl+j2πfl)t. (6)

Equivalently in the frequency domain, the spectrum consists
of L2 Lorentzian resonance lines ϕl(f):

ρ(f) =

L2∑
l=1

αlϕl(f),

where

ϕl(f) =
1/γl

1 + 4π2(f + fl)2/γ2l
−j 2π(f + fl)/γ

2
l

1 + 4π2(f + fl)2/γ2l
. (7)

In practice, resonance lines ϕl(f) may deviate from the
Lorentzian lineshape due to magnetic field inhomogeneity
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and limited spatial resolution, etc. So, an associated practical
question is whether the observed resonance lines can be well
represented using (7). This question was previously raised in
[3], [26] and it was found that any observed lines can be fitted
using a linear combination of Lorentzian basis functions. For
example, the broad resonance from residual water was found to
be well-represented using 3 ∼ 10 Lorentzians [3]. Therefore,
(7) is valid (in a mathematical sense), although in this case L2

does not physically represent the number of spectral peaks. In
practice, L2 is larger than the number of spectral peaks but
much smaller than the number of available samples M .

An important property of model (6) is that the discrete time-
domain signal is linearly predictable, i.e.,

s0[m] =

L2∑
l=1

βls0[m− l], (8)

where s0[m] = s0(mΔt) with Δt being the sampling interval.
A Hankel matrix formed from s0[m] is low-rank. Specifically,
{s0[m]}Mm=1 is L2th-order linearly predictable as defined in
(8) if and only if the following Hankel matrix

H0 =

⎡
⎢⎢⎣

s0[1] ... s0[K]
s0[2] ... s0[K + 1]

· · ·
s0[M −K + 1] ... s0[M ]

⎤
⎥⎥⎦ (9)

has rank L2 [27].

C. Proposed algorithm

For the measured noisy data s(k, t) = s0(k, t) + ξ(k, t),
the corresponding Casorati and Hankel matrices in (5) and (9)
can be expressed respectively as C = C 0 + EC and H =
H0 + EH , where EC and EH denote noise matrices. The
proposed algorithm reduces ξ(k, t) by performing low-rank
approximation on C and H , respectively.
1) Low-rank matrix approximation
Assume that an arbitrary rank-L matrix A0 is perturbed by
noise (denoted by a random matrix E) as

A = A0 +E. (10)

In the case when rank L is known a priori, the low-rank
approximation of A is given by

Ā = arg min
rank(Â)=L

||A− Â||, (11)

where the norm ||·|| denotes either spectral or Frobenius norm.
It is well known that Ā can be obtained using singular value
decomposition (SVD) as

Ā =

L∑
l=1

λl(A)ulv
H
l , (12)

where λl, ul, and vl are the singular values, left singular
vectors, and right singular vectors of A, respectively.
2) Rank determination
Case 1: A0 is a general N × M low-rank matrix and E
is an N ×M random Gaussian matrix. In this case, L can
be determined using the results from random matrix theory.
Specifically, we first estimate noise standard deviation σ0 from

the measured data s(kn, tm) and use σ0 to estimate ||E||2
based on the Marchenko-Pastur distribution of the eigenvalues
of EHE [28]. We then choose rank L̂ so that

λL̂+1(A) ≤ ||E||2 ≤ λL̂(A). (13)

Case 2: A0 is a low-rank Hankel matrix and E is a Gaussian
Hankel matrix. The rank selection problem in this case has
been well studied and is related to the model order estimation
problem for autoregressive models. The rank L̂ can be deter-
mined using various criteria such as the Akaike Information
Criterion (AIC) [29]. Specifically, L̂ is chosen to yield a
minimum change in AIC(L̂)−AIC(L̂+ 1), where

AIC(L̂) =M log e(L̂) + 2L̂ (14)

and e(L̂) is the error of a least squares fit of model (6) to the
noisy data, given a particular candidate value L̂.
3) Denoising by LOw-Rank Approximations (LORA)
The proposed denoising algorithm consists of two key steps:
PS-based low-rank filtering and LP-based low-rank filtering,
which are summarized below:

1) Given noisy data s(kn, tm), construct matrix C according
to (5) and solve the following optimization problem:

C̄ = arg min
rank(Ĉ)=L1

||C − Ĉ|| (15)

by performing rank-L1 approximation on C using SVD.
2) Take the 2-D discrete Fourier transform (DFT) of each

column of matrix C̄ to obtain s̃(rn, tm).
3) For each voxel rn, construct matrix H from s̃(rn, tm)

according to (9) and solve the following optimization
problem:

H̄ = arg min
rank(Ĥ)=L2

||H − Ĥ || (16)

by performing rank-L2 approximation using SVD.
4) Denoised data at each voxel rn is obtained by extracting

the elements from the first row and last column of H̄ .

III. ALGORITHM CONSIDERATIONS

A. Improved LP-based low-rank filtering

Our empirical results indicate that PS-based low-rank fil-
tering can be applied in a wide range of SNRs, while the
performance of LP-based low-rank filtering is rather sensitive
to the noise level. One reason for the high sensitivity of LP-
based low-rank filtering is that the signal subspace in the
Hankel matrix H is usually not well-conditioned and is not
well separated from the noise subspace. This is a well-known
limitation with LP-based analysis of MRSI data [9], [14]. We
have observed that for the low SNR values in typical in-vivo
MRSI data, the LP-based low-rank filtering step alone often
resulted in spectral artifacts such as loss of signal components
and introduction of spurious peaks. This is especially the case
if both low-rank and Hankel structures are imposed on Ĥ
as it is done in the Cadzow signal enhancement algorithm
[14], which has been used for denoising [4], [9], [10]. By
not imposing the Hankel structure on Ĥ in step 3 of the
proposed algorithm, the “rank” constraint is actually weakly



4

imposed. This “softening” of the LP-based low-rank filtering
seems to enable the algorithm to accommodate non-Lorentzian
lines and avoid spectral artifacts in low-SNR cases. In addition,
it is important that the PS-based low-rank filtering is applied
first, which is followed by the LP-based low-rank filtering.
In this way, the data SNR is improved before LP-based low-
rank filtering is applied. Another step that can further help to
reduce the noise sensitivity of LP-based low-rank filtering is to
perform “segmented” low-rank filtering. Specifically, instead
of forming a single Hankel matrix using the entire signal, we
can divide a given signal {s[m]}N−1

m=0 into two (or multiple)
segments, say {s[m]}N/2−1

m=0 and {s[m]}N−1
m=N/2, and then form

two (or multiple) Hankel matrices, each of which will be
processed using the proposed LP-based low-rank filtering.

Figure 1 shows a set of simulation results to illustrate
the sensitivity (to noise and model order) of LP-based low-
rank filtering. Figure 1(a) shows ground truth (red) and noisy
(black) spectra at two SNR levels. The denoised spectra in
Figs. 1(b)-(e) were obtained using LP-based low-rank filtering
with the Hankel constraint (as is done in Cadzow [14]) and
without the Hankel constraint (step 2 of LORA), respectively,
for two model orders (L2 = 20 and 8). Note that in the high-
SNR case, the Hankel constraint helped to produce almost
“perfect” denoised result with a correct model order (top
row, (b)) but lost some spectral components with an under-
estimated model order (top row, (d)). In the low SNR case,
the Hankel constraint introduced spurious spectral features
(bottom row, (b)) even with the correct model order. The
problem can be alleviated with a small model order but at
the expense of missing spectral components (such as the loss
of the smallest peak at 6.05 ppm and over-smoothing of the
non-Lorentzian, closely-spaced spectral peaks in the regions
from 2.2 ppm to 2.8 ppm and from 3.3 ppm to 3.8 ppm, see
bottom row in (d)). Both problems (spurious peaks and missing
peaks) were alleviated by not imposing the Hankel structure
(see (e)).

B. Rank selection

For PS-based low-rank filtering, in the case of
high/moderate SNR (ideally as long as ||E||2 ≤ λL(A0)
or in the range above 18 dB for the simulated 1H MRSI
dataset described in Section IV) we choose rank L1 of
C0 according to (13). To evaluate the performance of the
described rank selection method, we performed rank selection
on the simulated dataset with true rank L1 = 8. Specifically,
we performed a Monte-Carlo study with 9 different noise
levels, 32 noise realizations per noise level and estimated
||E||2 using the Marchenko-Pastur distribution ( [28]). The
effective rank L̂1 was selected according to (13). Figure
7(a) shows some representative noisy spectra at the highest,
medium, and lowest SNRs used in the experiment. For this
experiment and the rest of the paper, we define SNR in terms
of signal energy and signal amplitude as

SNRe = 10 log10
||s0||2

||s− s0||2 ,

SNRp =
amplitude of the largest peak

standard deviation of the noise
, (17)

where s and s0 are the noisy and noiseless signals, respec-
tively.

Table I shows the mean effective rank L̄1, averaged over all
the noise realizations. Notice that ||E||2 is closely estimated
using the Marchenko-Pastur distribution at every SNR level,
as can be seen from the reported relative error ||E||2−||Ê||2

||E||2 .
The results also show that as the SNR decreases, the discussed
approach under-estimates L1. In practice, the choice of L1 can
also be guided by the known number of spectral components
present in the spectrum [30].

For LP-based low-rank filtering, the choice of rank L 2 of
matrix H0 is based on the AIC criteria as specified in (14).
We performed a Monte-Carlo study on rank L2 selection
with the simulated dataset at 3 different noise levels, for
each noise level 256 noise realizations were considered. The
corresponding representative noisy spectra are shown in Fig.
8(a). Figure 2 shows the computed mean AIC values (averaged
over the noise realizations) as a function of candidate rank
values. The effective rank L̂2 is typically chosen to minimize
AIC. However, this usually leads to an over-estimated rank
[29]. To achieve a closer estimate, we suggest choosing the
rank to be the threshold point at which there is no significant
reduction in the AIC value when the rank is further increased.
In practice, the choice of L2 can also be guided by the known
number of spectral peaks present in the spectrum.

Inaccurate rank estimation is more problematic for LP-
based low-rank filtering than for PS-based low-rank filtering.
Specifically, an over-estimated rank L2 (L̂2 > L2) can result
in spurious peaks. Using an under-estimated rank (without
imposing the Hankel structure) can alleviate the problem.
However, a highly under-estimated rank L̂2 can lead to a
loss of useful spectral information, which is undesirable.
Typically, peaks with small amplitudes are distorted or lost first
[31]. Possible peak loss due to rank under-estimation can be
alleviated by not imposing the Hankel constraint as discussed
in Section III-A. For PS-based low-rank filtering, severe rank
under-estimation can lead to spatial blurring and spectral line
broadening. An over-estimated rank L1 in this case does not
directly introduce bias and spurious peaks, but would reduce
its filtering effectiveness.

IV. RESULTS AND DISCUSSIONS

In this section, results from simulated and experimental data
are presented to demonstrate the denoising performance of the
proposed technique.

A. Simulations

We simulate a spatial-spectral distribution function based on
literature values of 1H metabolites and experimental data. We
consider 5 commonly MR-observable metabolites in the hu-
man brain [24], [30]: N-acetylaspartate (NAA), creatine (Cr),
choline (Cho), glutamate/glutamine (Glx), and myo-inositol
(m-Ins). For each metabolite, a spectral profile was obtained
from quantum mechanical simulations of a spin-echo MR
experiment [32]. The spatial distribution of each metabolite
was created based on commonly reported literature values
from 3 segmented regions of cerebrospinal fluid, grey matter
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Fig. 1. Simulation results of LP-based low-rank filtering with and without Hankel constraint: (a) original (red) and noisy (black) spectra at low (I) and high
(II) noise levels; (b) and (d) denoised spectra with Hankel constraint (Cadzow) for L2 = 20 and 8, respectively; (c) and (e) denoised spectra without Hankel
constraint (step 2 of LORA) for L2 = 20 and 8, respectively. Note that the Hankel constraint helped reduce noise but at the expense of spectral artifacts.

TABLE I
MONTE-CARLO EXPERIMENT ON CHOOSING EFFECTIVE RANKL̄1 AT 9 DIFFERENT SNR LEVELS. TRUE RANK L1 = 8. VOXEL 1 IS IN THE REGION OF

LOW-SNR, WHILE VOXEL 2 IS IN THE REGION OF HIGH-SNR. ALL SNR VALUES ARE REPORTED IN DECIBELS.

SNRe(s(k, t)) 23.72 22.23 20.94 19.83 18.85 17.97 17.17 16.45 15.78
SNRe(s(f)) at voxel 1 6.42 5.17 4.45 3.83 3.26 2.83 2.27 1.99 1.86
SNRe(s(f)) at voxel 2 32.46 31.31 29.96 28.52 27.82 27.01 26.22 25.41 24.83

||E||2−||Ê||2
||E||2 0.0057 0.0051 0.0053 0.0058 0.0046 0.0050 0.0054 0.0050 0.0058

L̄1 8 8 7.03 6.63 6.06 6.00 5.25 5.03 4.97
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Fig. 2. Monte-Carlo study of rank L2 selection based on AIC: top row shows mean AIC value (averaged over 256 noise realizations) as a function ofL̂2

at (a) low noise level with SNRe=26.61 dB, SNRp=94.4; (b) medium noise level with SNRe=17.03 dB, SNRp=30.4; (c) high noise level with SNRe=12.76
dB, SNRp=17.9. The true rank L2 in this experiment was 20.

(GM), and white matter (WM) [30], [33], [34]. To evaluate the
ability of the proposed method to handle non-ideal conditions,
Gaussian (instead of pure Lorentzian) lineshape was used
with an additional baseline signal. Lineshape parameters were
chosen based on commonly reported values in the literature
[35], [36]. The baseline signal was extracted from single-voxel
CSI PRESS experimental data of the brain with TE=30 ms.
MRSI data were simulated at the magnetic field strength of 3 T
with a spectral bandwidth of 1, 200 Hz and complex Gaussian
noise was added.

Figures 3 and 4 show the spatial distribution of the spatial-

spectral function at a high-SNR frequency of 3.94 ppm and
a low-SNR frequency of 6.66 ppm, both indicated in Fig.
5(f) as “f1” and “f2”, respectively. We compare the proposed
approach with 3D wavelet soft shrinkage (Daubechies 4-tap
kernel filter, 4 levels), sparse 3D transform-domain collabora-
tive filtering [37] (code is available at http://www.cs.tut.fi/∼foi/
GCF-BM3D/), and conventional Gaussian apodization. The
wavelet shrinkage threshold and apodization constant were
chosen to yield the same level of the residual noise variance
as that for the proposed approach (threshold T = 2.28σ0). It
can be clearly seen that the corresponding wavelet-denoised
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(a) (b) (c) (d) (e)

 

 

1
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(f) (g) (h) (i) (j)

Fig. 3. Denoising results - spatial distributions ρ(r, f1) at a high-SNR frequency (3.94 ppm, see Fig. 5(f)) obtained from (a) noisy data; (b) LORA denoising;
(c) wavelet denoising; (d) sparse 3D transform-domain collaborative filtering; (e) Gaussian apodization; and (f) noiseless data. Corresponding errors of (b)-(e)
are shown in (g)-(j), respectively.

(a) (b) (c) (d) (e)

 

 

(f) (g) (h) (i) (j)

Fig. 4. Denoising results - spatial distributions ρ(r, f2) at a low-SNR frequency (6.66 ppm, see Fig. 5(f)), obtained from (a) noisy data; (b) LORA denoising;
(c) wavelet denoising; (d) sparse 3D transform-domain collaborative filtering; (e) Gaussian apodization; and (f) noiseless data. Corresponding errors of (b)-(e)
are shown in (g)-(j), respectively.

spatial-spectral function in Fig. 3(c) and Fig. 4(c) has an
improved SNR at the expense of blurring the spatial features
significantly, while the proposed denoising preserves the spa-
tial features better. Collaborative filtering performed well at a
high-SNR frequency such as the one shown in Fig. 3, but at a
lower-SNR freqency shown in Fig. 4 the spatial features such
as edges in the GM region were smoothed out noticeably by
the collaborative filtering while the residual noise variance in
the denoised spectrum was larger than that of obtained from
LORA (see Fig. 5(d)). Gaussian apodization shown in Fig.
3(e) and Fig. 4(e) has the poorest trade-off between SNR and
resolution among all methods, as expected.

Figure 5 shows representative spectra from a particular

voxel marked as “1” in Fig. 3(f). Both Gaussian apodization
and wavelet denoising improve SNR at an expense of line
broadening and loosing metabolite amplitudes, with Gaussian
apodization performing the worst. This amplitude loss can be
seen from the corresponding residual spectra, which are not
centered at zero, as shown in Figs. 5(h),(j).

B. Denoising performance

To analyze the denoising performance of the proposed low-
rank filtering, we rewrite C and C̄ as C = C0 + E and
C̄ = C0 +Δ, where C0 is an N ×M data matrix with rank
L1 as described in (5), E is the noise matrix, C̄ is formed from
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Fig. 5. Denoising results - spectra at a particular voxel, marked as “1” in Fig. 3(f), obtained from (a) noisy data; (b) LORA denoising; (c) wavelet shrinkage;
(d) sparse 3D transform-domain collaborative filtering; (e) Gaussian apodization; (f) noiseless data. Corresponding errors of (b)-(e) are shown in (g)-(j),
respectively. All spectra are shown in the real-valued mode.

the denoised data as obtained from (15), and Δ is the residual
error, which can contain both residual noise and possible signal
loss due to low-rank filtering. Without loss of generality, we
assume M < N . The denoised matrix C̄ is obtained according
to (15). We define the noise reduction factor as

g =
||E||F
||Δ||F . (18)

By defining the SNR before and after denoising as
20 log10

Ps

||E||F and 20 log10
Ps

||Δ||F , where Ps denotes the
signal power, the SNR gain can be calculated as 20 log10 g.
Ideally, one would want g = ∞. In the full-rank case when
L1 =M and no denoising is achieved, g equals to 1.

Computing g as in (18) requires knowing the ground truth
in order to compute ||Δ||F . However, notice that we only
need to estimate the norm ||Δ||F rather than knowing Δ
completely. Thus, one would hope that there is a signal-
independent expression to predict ||Δ||F closely. In general,
it is hard to accurately characterize singular values of C 0, C,
and C̄ . However, under assumptions that:
Cond1: the signal and noise (before and after denoising)
subspaces are uncorrelated in the sense that C0

HE = 0 and
C0

HΔ = 0;
Cond2: the noise is complex white, i.e. EHE and ΔHΔ
are scalar multiples of identity matrix [38], we can obtain the
following approximate formula based on the theoretical results
of SVD of noisy matrices in [38]:

g =

√√√√∑M
i=1 λ

2
i (E)∑L̂1

i=1 λ
2
i (E)

, if L̂1 ≥ L1. (19)

Expression (19) provides a signal-independent prediction of
g. It suggests that (i) in the case of accurate rank estimation
(L̂1 = L1) and λi(E) are all equal, the noise reduction factor
is on the order of

√
M
L̂1

; (ii) in the case of over-estimated rank

(L̂1 > L1), the residual noise level is larger than the residual

noise level with correct rank determination. In practice, the
conditions (Cond1) and (Cond2) which are required for (19)
to hold are never satisfied exactly. However, we observed that
a mild violation of these conditions may still give a rough
guess of g, as shown in our simulation study discussed below.

Based on the simulated 1H MRSI dataset described in
Section IV-A, we performed a Monte-Carlo study to compute
g according to (18), averaged over 32 noise realizations. The
noise reduction factor g is plotted as a function of the estimated
rank L̂1 in Fig. 6. We observe that when the rank is properly
chosen, g reaches its maximum value (about 7.6 for the
simulated dataset). As the rank is over-estimated (L̂1 > L1)
and approaches the full rank, g decreases to 1, as expected. The
reduction of g reflects the residual noise variance in the over-
estimated rank case and the signal loss in the under-estimated
rank case. A nice feature of this plot is that it shows how
much of the noise reduction we can achieve even in the case
when the rank is incorrectly estimated. For example, if the
rank was over-estimated to be 32, while the true rank is 8,
then according to this plot, we still achieve a factor of about
3 (or 9.5 dB) of improvement in the SNR. Thus, for the sake
of improving SNR, estimating rank precisely is not a critical
point, as long as we do not under-estimate the rank causing the
signal loss. Note that with the considered dataset in Fig. 6, the
relative error ||EHE−Mσ2

0I||F
Mσ0

= 0.99 for condition (Cond1)

and ||CH
0 E||F√

||CH
0 C0||F ||EHE||F

= 0.15 for condition (Cond2). These

numbers did not significantly change as the SNR was varied
from low to high (see Fig. 7(a) for representative SNR levels).
Conditions (Cond1) and (Cond2) for Δ are satisfied closer as
L̂ approaches M . Predicted value from (19) is plotted in the
same figure as the empirical value of g in Fig. 6. Notice that
in the region L̂1 > L1 the theoretically predicted values of g
approach its empirical value as L̂1 tends to the full-rank case.

We have performed a similar analysis on the noise reduction
factor g, for the case of low-rank filtering of linear prediction
matrix. However, to evaluate the level of SNR improvement
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Fig. 7. Monte-Carlo study of low-rank filtering based on partial separability: (a) representative noisy and denoised spectra at three SNR levels; (b) error
distributions calculated as the histograms of e and ē according to (21) at a particular location (r0, f0). For this illustrative example, r0 is a representative
voxel in the white matter region marked as “2” in Fig. 3(e) and f0 is the frequency point marked in Fig. 7(a). Notice the reduced noise variances achieved
by denoising.

for low-rank filtering of linear prediction matrix, we rather
define the following factor:

h =
||ξ||2
||η||2 , (20)

where ξ and η are vectors extracted from the first row and last
column of E and Δ, respectively. We performed a Monte-
Carlo study with 256 noise realizations to compute h at
different noise levels shown in Fig. 8(a). The reduction factor h
depends on the conditioning of the Hankel matrix H 0. For the
case considered here, we observed that h achieves the value of
around 1.7. However, for better-conditioned cases with well-
separated spectral peaks, h can be significantly bigger (in
the range of 5 for a spectrum with 3 peaks, separated by
0.57 ppm). This experiment suggests that LP-based low-rank
filtering can be less-effective than PS-based low-rank filtering,
although both are used in LORA.

We performed a Monte-Carlo study to further evaluate the
denoising effectiveness of low-rank filtering with 2048 noise
realizations to obtain histograms of the errors before and after

denoising as

e = s− s0

ē = s̄− s0, (21)

where s̄ denotes the denoised data. Figure 7 shows some
representative results for the low-rank filtering based on partial
separability. It is easy to see that a significant reduction in the
noise variance was achieved at every SNR level. Note that low-
rank filtering is a “biased” estimator. However, the resulting
bias is negligible once the rank is correctly chosen and SNR is
not extremely low. In the case of extremely low SNR, using an
over-estimated rank reduces bias but at the expense of reduced
filtering effect.

Figure 8 shows some representative results from a Monte-
Carlo study of low-rank filtering based on linear predictability.
Notice that the denoising performance is frequency-dependent.
Histogram at a low-SNR frequency f2 in Fig. 8(c) shows that
a significant noise variance reduction is still achieved, however
a larger bias is introduced, compared to the case of a higher-
SNR frequency f1 in Fig. 8(b). For the frequency regions that
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Fig. 8. Monte-Carlo study of low-rank filtering based on linear predictability: (a) representative noisy and denoised spectra at three noise levels; (b)-(d)
error distributions calculated as the histograms of e and ē according to (21) at a particular locations (r0, f1), (r0, f2), and (r0, f3), respectively. For this
illustrative example, r0 is a representative voxel in the white matter region marked as “2” in Fig. 3(f) and f1, f2, f3 are the frequency points marked in Fig.
8(a). Notice that the denoising performance is frequency-dependent.

contain mostly noise (such as the frequency f3 in Fig. 8(d)),
we observe significant noise variance reduction with no bias.

C. In-vivo experiments

We have applied LORA to denoise in-vivo MRSI data of
the mouse brain, acquired using a Varian INOVA 11.74 T (500
MHz) MRI scanner at Washington University in St. Louis.
This dataset was previously described and used in [39]. A
craniectomy was performed on the mouse and the Middle
Cerebral Artery (MCA) was electrocoagulated. In-vivo MRSI
data was acquired using a CSI sequence with CHESS water
suppression, TE=270 ms, TR=1500 ms, bandwidth=6000 Hz,
1024 FID data points, and 8 averages. The CSI dataset was
pre-processed to compensate for field inhomogeneity and
remove water resonance using HSVD [3]. Notice that the
residual water and artifacts from field inhomogeneity was
not completely removed. For a detailed description of the

dataset, see [39]. Before performing LORA-denoising, data
was preprocessed with spatial denoising using anatomical
reconstruction [40] to protect spatial features from field in-
homogeneity artifacts during the low-rank filtering due to
spatiotemporal partial separability. NAA, lactate (Lac), and
glutamate/glutamine (Glx) spatial maps were obtained by
integrating the complex spectrum at 2.02 ppm, 1.33 ppm, and
in the region from 2.7 to 2.8 ppm respectively. Figure 9 shows
NAA and Lac maps obtained from the measured, spatially-
denoised, and LORA-denoised data after each individual low-
rank filtering. Figure 10 shows spectra obtained from these
reconstructions at voxels outside of electrocogualation area
(voxels marked as “1” and “3” in Fig. 9(a)) and in the region
of electrocogualation (voxel marked as “2” in Fig. 9(a)).
It can be clearly seen that the noise has been significantly
suppressed. Electrocoagulation blocked MCA, resulting in a
stoppage of blood supply and lack of oxygen. Thus, we
expect elevated Lac and reduced NAA concentrations in the
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Fig. 9. Denoising results from in-vivo experimental data. Spatial distributions corresponding to NAA in the region from 1.9 to 2.1 ppm (top row), Lac in
the region from 1.2-1.37 ppm (middle row), and Glx in the region from 2.7 to 2.8 ppm (bottom row) obtained from: (a) noisy data; (b) spatial denoising; (c)
PS-based low-rank filtering; (d) LP-based low-rank filtering of the results in (c) (the final output of LORA).

electrocogualation region, which can be seen from the LORA-
denoised reconstruction in Fig. 9(d).

It is also interesting to observe the filtering results of each
individual filtering step. While spatial filtering is useful, its
output is often still too noisy for practical application. The
results were significantly improved by subsequent PS-based
and LP-based low-rank filterings. Note that while PS-based
low-rank filtering performs spatial-spectral denoising, LP-
based low-rank filtering is just a spectral filter. These filtering
characteristics can be clearly observed from Figs. 9 and 10.
Note also that the denoised spectra in Fig. 10(d) show minimal
spectral distortions with impressive SNR improvement as
compared to the results in Fig. 10(a).

V. CONCLUSIONS

This paper has presented a new method (LORA) for spatial-
spectral filtering of MR spectroscopic imaging data. LORA
exploits the low-rank properties of MRSI data, one due to
partial separability and the other due to linear predictability.
The combined use of partial separability and linear pre-
dictability provides a new principled way to improve SNR for

spatiotemporal imaging. Simulation and experimental results
demonstrate that LORA can effectively denoise MRSI data
with very low SNRs. It should prove useful for practical MRSI
applications.
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