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Denoising Nonlinear Time Series by Adaptive
Filtering and Wavelet Shrinkage: A Comparison

Jianbo Gao, Member, IEEE, Hussain Sultan, Jing Hu, Member, IEEE, and Wen-Wen Tung

Abstract—Time series measured in real world is often nonlinear,
even chaotic. To effectively extract desired information from mea-
sured time series, it is important to preprocess data to reduce noise.
In this Letter, we propose an adaptive denoising algorithm. Using
chaotic Lorenz data and calculating root-mean-square-error,
Lyapunov exponent, and correlation dimension, we show that
our adaptive algorithm more effectively reduces noise in the
chaotic Lorenz system than wavelet denoising with three different
thresholding choices. We further analyze an electroencephalo-
gram (EEG) signal in sleep apnea and show that the adaptive
algorithm again more effectively reduces the Electrocardiogram
(ECG) and other types of noise contaminated in EEG than wavelet
approaches.

Index Terms—Adaptive denoising algorithm, EEG signal,
Lorenz, wavelet.

I. INTRODUCTION

T IME series analysis for parameter estimation, system
identification, pattern classification, prediction, and so

on, is an important exercise in many areas of science and en-
gineering. When data is noisy, however, such tasks may not be
effectively handled. Therefore, reducing noise in experimental
time series is an important issue. With the rapid accumu-
lation of complex data in health sciences, systems biology,
nanosciences, information systems, and physical sciences, this
issue has become increasingly important.

Noise reduction for time series may be classified as model-
based and model-free. In the former case, if the model is a
state-space model, then one may use extended Kalman filtering
or particle filtering. As example applications, we refer to [1], [2].
In this letter, however, we shall focus on model-free noise-re-
duction techniques.

Three of the major model-free noise reduction techniques are
linear lowpass filtering, chaos-based smoothing [3], [4], and
wavelet thresholding [5], [6]. When a time series is nonlinear,
especially chaotic, linear lowpass filtering is not a viable ap-
proach for reducing noise, since chaotic signals usually have a
broad-band spectrum that overlaps with the spectrum of noise
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significantly. In fact, linear filtering even distorts clean chaotic
signals severely [7]. Chaos-based approaches [3], while con-
ceptually elegant, often are computationally expensive and may
not be very effective either, especially when noise is strong
[4]. It is thus no wonder that wavelet-based noise reduction
techniques have found the broadest applications. However, it
has not been systematically studied for chaotic signals whether
wavelet-based noise reduction techniques are truly the best. In
this Letter, we propose a nonlinear adaptive denoising algo-
rithm, and show that our approach is more effective in reducing
noise in nonlinear signals than a number of wavelet thresh-
olding based noise reduction approaches. Note that the adap-
tive method was originally developed to determine the 11-year
cycle of the sunspot numbers [9]. However, its capability for de-
noising nonlinear signals has not been examined.

The remainder of the letter is organized as follows. In Sec-
tion II, we describe our adaptive denoising algorithm and three
wavelet thresholding techniques. In Section III, we compare the
effectiveness of our algorithm and wavelet based approaches in
reducing noise from the chaotic Lorenz data and a measured
EEG signal. In Section IV, we make a few concluding remarks.

II. NONLINEAR ADAPTIVE AND WAVELET

SHRINKAGE DENOISING

A. Nonlinear Adaptive Denoising

Our nonlinear adaptive denoising algorithm works as fol-
lows. It first partitions a time series into segments (or windows)
of length points, where neighboring segments overlap
by points. Thus, the time scale introduced by the algo-
rithm is sample points. For each segment, we fit a best
polynomial of order . Note that and 1 correspond
to piece-wise constant and linear fitting, respectively. Denote
the fitted polynomial for the -th and -th segments by

, respectively. Note
the length of the last segment may be smaller than . We
define the fitting for the overlapped region as

(1)

where can be written
as , where denotes the distances be-
tween the point and the centers of and , respectively.
This means the weights decrease linearly with the distance be-
tween the point and the center of the segment. Such a weighting
ensures symmetry and effectively eliminates any jumps or dis-
continuities around the boundaries of neighboring segments. In
fact, the scheme ensures that the fitting is smooth at the non-
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boundary points, and has at least the right- or left-derivative at
the boundary points.

Note that the method contains two free parameters, , the
order of the polynomial, and , the segment length (or
window size)—by properly choosing and making
small enough, the fitting can be very precise, since the differ-
ence between the data and the fitting (which may be called
the residual data) can be exactly zero. When analyzing exper-
imental data, both parameters may be determined by requiring
that the variance of the residual data no longer decreases sig-
nificantly when is further increased and/or is further
decreased. For an example illustrating this point, we refer to our
work on determining the 11-year cycle of the sunspot numbers
[9].

B. Wavelet Shrinkage Denoising

Assume that the observed data is obtained with a sam-
pling time and contains the true signal and an additive
noise

(2)

Wavelet shrinkage denoising consists of three steps [5]:
1) wavelet transform of the observed data;
2) thresholding the resulting wavelet coefficients;
3) inverse wavelet transform to obtain an estimation of the

signal.
More precisely, one uses wavelet multiresolution analysis and

obtains [8]

(3)

where is the chosen maximal scale, is the approximate
coefficients corresponding to time scale , and

, are detail coefficients corresponding to time
scales . Now step 2 may be expressed as

(4)

where denotes wavelet detail coefficients, is 1 when
and when and is a threshold. Depending on

how is chosen, there are many alternatives to implement step
2. One popular soft threshold is

(5)

where is a rough estimate of the signal variance,
is the median absolute deviation of detail coefficients at level

, and is the total number of points.
To take into account that detail coefficients at different levels

may have different variances, Han et al. [6] have examined two
scale-dependent thresholding schemes. One is to replace in
(5) by the variance of the detail coefficients at scale ,

(6)

The other scheme consists of using (5) for detail coefficients at
scale 1, and

(7)

Fig. 1. Phase diagrams (with delay time � � ��) for (a) the clean Lorenz
signal, (b) the noisy Lorenz signal, (c) the signal filtered by adaptive algorithm,
and (d) the signal filtered by wavelet thresholding.

where for and for .
Below, we shall simply denote the three wavelet thresholding
algorithms, corresponding to (5)–(7), by wavelet-1, wavelet-2,
wavelet-3, respectively.

III. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of our adaptive
denoising algorithm by studying two nonlinear time series: the
chaotic Lorenz data and EEG corrupted by ECG.

A. Lorenz System

Following Han et al. [6], we study the Lorenz system

(8)

with . The system is solved using a
4th order Runge-Kutte method. The -component is recorded
with a sampling time of 0.01. To facilitate computation of in-
variant measures including Lyapunov exponent and fractal di-
mension, we have simulated a time series of length
points. Gaussian white noise of zero mean is added to the data
such that the SNR of the resulting data is 13.89 dB. The phase
diagrams of the clean and noisy data are shown in Fig. 1(a) and
(b), respectively.

We have denoised the noisy Lorenz data by the three wavelet
thresholding techniques using the same as in [6]. The
phase diagram obtained after using “wavelet-3” is shown in
Fig. 1(d) (for ease of presentation, the corresponding curves in
Figs. 2–4 are also based on wavelet-3). For ease of comparison,
we also have calculated the root-mean-square-error (RMSE) de-
fined by

(9)
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Fig. 2. ���� curves for the clean, noisy, and filtered Lorenz data. Here, � �
�� � � �. In estimating the LE, a common time interval of 10–30 ��, where ��
is the sampling time, is used for all the four curves. The estimated LE does not
change much when different ��� are used.

Fig. 3. Correlation dimension for the clean, noisy, and filtered Lorenz data with
� � �� � � �. Again, the results remain almost the same when different ���

are used.

where and are the clean and denoised data, re-
spectively. By experimenting with more than ten mother
wavelets, we have found that the smallest RMSE obtained
using “wavelet-1” and “wavelet-2” is slightly smaller than that
reported by Han et al. [6], while the RMSE with ‘wavelet-3” is
consistent with their results. See Table I.

We have also denoised the data by our adaptive algorithm
using . The phase diagram for the cleaned
data is shown in Fig. 1(c). We observe that it is cleaner than
Fig. 1(d). The resulting RMSE, shown also in Table I, is slightly
less than 0.34, indicating that it is indeed better than the three
wavelet thresholding methods.

To assess whether a noisy chaotic signal has been properly
denoised, it is important to check if the invariant measures for
the clean chaotic signal, including the Lyapunov exponent (LE),
the Kolmogorov entropy, and the fractal dimension [10], can
be properly estimated from the denoised signal. Noting that the
Kolmogorov entropy is equal to the summation of all positive
LEs, while the Lorenz system only has one positive LE, we thus
only need to compute LE and the fractal dimension from the
denoised signal.

Fig. 4. (a), (b) EEG and ECG signals measured with a sampling frequency of
250 Hz and a unit of mV; (c), (d) noise extracted from EEG by using adaptive
algorithm and wavelet thresholding. The arrows in (a) highlight the ECG com-
ponents contained in EEG signal.

TABLE I
RMSE AND THE ESTIMATED LARGEST POSITIVE LYAPUNOV EXPONENT FOR

THE NOISY LORENZ SIGNALS DENOISED BY THREE WAVELET THRESHOLDING

METHODS AND OUR ADAPTIVE FILTERING ALGORITHM

The LE, often denoted by , is a dynamical quantity. It char-
acterizes the exponential growth of an infinitesimal line segment

, i.e., . While the classical Wolf et al.’s
algorithm [11] does a good job in estimating LE from clean
chaotic signals, estimation of LE from noisy and filtered data
is a much harder task. Here, we employ the algorithm of Gao
and Zheng [8], [12], which has found numerous applications,
including characterization of noise-induced chaos [13], [14] and
development of a new multiscale complexity measure, the scale-
dependent Lyapunov exponent [8], [15], [16]. The algorithm
involves constructing vectors of the form

, where and are the the embed-
ding dimension and the delay time, respectively, then monitors
how grows with time. Concretely, one (arbitrarily) chooses
a set of shells defined by

(10)

where are reconstructed vectors, (the radius of the
shell) and (the width of the shell) are arbitrarily chosen
small distances ( is not necessarily a constant). Then one
monitors the evolution of all pairs of points (where

is greater than certain chosen window size) within a shell
and computes

(11)
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For truly chaotic signals, (and thus ) is linear for a
range of , with the slope estimates the LE. The curve for
the clean Lorenz data is shown in Fig. 2, with the estimated LE
being about 0.90, the same as the known value in the literature
[8]. When such a procedure is applied to the noisy data, the LE
is only about 0.5. In fact, the shown in Fig. 2 is not very
linear, suggesting that noise is too high for the LE to be objec-
tively determined. Filtering using wavelet and adaptive methods
recovers the linearity of the curves. Since the curve using
adaptive filtering is closer to that of the clean curve than that
using wavelet thresholding, we conclude that adaptive filtering
is indeed better. In fact, LE for the filtered data using adaptive
filtering and wavelet thresholding is 0.89 and 0.80, respectively.
See Table I.

We now discuss fractal dimension of the Lorenz signal. It is
a geometrical quantity characterizing the minimal number of
variables that are needed to fully describe the dynamics of a
motion. It is often estimated by the correlation dimension
using the Grassberger-Procaccia’s algorithm.

(12)

where is called the correlation integral, is the Heavi-
side step function, and are reconstructed vectors,

is the number of points in the reconstructed phase
space, and is a prescribed small distance. Fig. 3 shows the vari-
ation of vs. for the clean, noisy, and filtered Lorenz
data. We observe that for the clean data, there is a plateau with a
value consistent with the correlation dimension of 2.02; for the
noisy data, a plateau is hardly detectable; the plateau is recov-
ered a little after denoising by wavelet thresholding; it is recov-
ered more after adaptive denoising. Therefore, adaptive filtering
is more effective than wavelet thresholding.

B. EEG

As an example application, we consider denoising non-
stationary EEG in sleep apnea. The EEG analyzed here is
downloaded from MIT-BIH polysomnography database, which
is downloadable at http://www.physionet.org/physiobank/data-
base/slpdb/. It was originally recorded for the purpose of
determining sleep stages. A short segment of the data is shown
in Fig. 4(a). Also shown in Fig. 4(b) is the simultaneously
measured ECG data. Comparison between Fig. 4(a) and (b)
makes it clear that the EEG signal contains a component of
ECG. In order to reliably determine the sleep stages from the
EEG data, this ECG component has to be properly removed.
Note that this ECG component is typically time-varying—the
ECG component can be stronger or weaker depending on
one’s posture of sleep, breathing, etc. Trying to remove it by
subtracting from EEG data a signal of the form , where

is certain constant, does not work well [17].
We have tried to remove the ECG component from EEG using

adaptive (with ) and wavelet denoising
(with ). The resulting noise signals are shown in Figs. 4(c)
and (d), respectively. Evidently, the ECG component obtained
by adaptive filtering resembles more the original ECG signal
than that by wavelet thresholding. We have further analyzed the
data filtered by our adaptive algorithm as well as by wavelet
denoising using recurrence time statistics [18]–[21], and found

that the sleep stages can be much more accurately determined
from the data filtered by adaptive algorithm. Due to space lim-
itations, the details of this study will be published elsewhere.
From these brief discussions, we can conclude that adaptive fil-
tering is more effective in removing the ECG component from
the EEG signals in sleep apnea.

IV. CONCLUDING REMARKS

In this Letter, we have proposed an adaptive denoising algo-
rithm. Using chaotic Lorenz data and calculating RMSE, LE,
and correlation dimension, we have shown that the adaptive al-
gorithm more effectively reduces noise in the chaotic Lorenz
system than wavelet denoising with three different thresholding
choices. We have further analyzed an EEG signal in sleep apnea.
Again, the adaptive algorithm more effectively reduces the ECG
component contaminated in EEG than wavelet approaches.
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