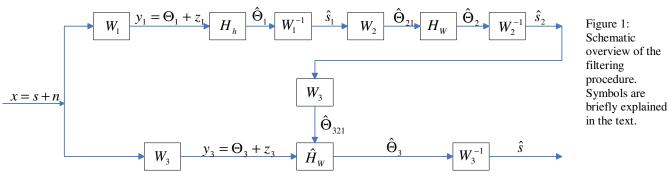
Denoising of complex MRI data by wavelet-domain filtering: Application to high b-value diffusion weighted imaging

R. Wirestam¹, A. Bibic¹, J. Lätt¹, S. Brockstedt¹, F. Ståhlberg¹ ¹Dept. of Medical Radiation Physics, Lund University, Lund, Sweden

Introduction

The recent interest in high b-value diffusion MRI, e.g. for q-space imaging, has emphasised the noise sensitivity of the acquired data [1]. At high bvalues the signal is influenced by the rectified noise floor in magnitude MR images, associated with the Rician noise distribution. Furthermore, noise is a well-documented problem in the assessment of diffusion anisotropy by, for example, the fractional anisotropy (FA) index [1, 2]. In this study, appropriate filtering in the wavelet domain [3] is proposed as a non-parametric tool for noise reduction in quantitative diffusion MRI.

Methods



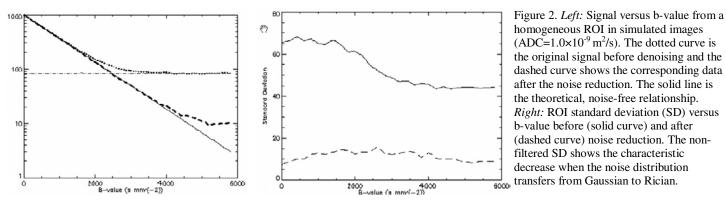
The real and imaginary parts of complex MRI data in the image domain (i.e. after Fourier transform of k-space data) were filtered, before construction of the magnitude image. The filtering procedure is illustrated in Fig. 1 above. *W* denotes a wavelet transform and W^{-1} denotes an inverse wavelet transform (different indices refer to the use of different wavelet families). The original signal is x = S + n (true signal plus noise) and $y_1 = W_1 x_1$, $\Theta_1 = W_1 s_1$ and $z_1 = W_1 n_1$. H_h is a hard threshold filter that provides the initially filtered signal $\hat{s}_1 = W_1^{-1} H_h W_1 x$. The hard threshold filter is given by Eq. 1:

 $h_{h}(i,j) = \begin{cases} 1, & \text{if } |y(i,j)| > \rho\sigma \\ 0, & \text{otherwise} \end{cases} \text{ (Eq. 1)} \quad \text{where y is the wavelet coefficient, } \rho \text{ is an empiric threshold factor and } \sigma \text{ is standard } deviation of the noise (determined from the finest-scale wavelet coefficients).} \end{cases}$

Thereafter, a Wiener-like filter H_W was constructed from the $\hat{\Theta}_{21} = W_2 \hat{s}_1$ data (being the best approximation to true signal at this point) and applied to the hard-threshold filtered data. The Wiener-like filter is, in principle, given by Eq. 2. To achieve additional noise reduction, the estimated signal

 $h_{w}(i,j) = \frac{\left|\hat{\theta}(i,j)\right|^{2}}{\left|\hat{\theta}(i,j)\right|^{2} + \sigma^{2}} (Eq. 2)$ value \hat{s}_{2} (after the first Wiener-like filtering) was used to construct a new Wiener-like filter \hat{H}_{w} that was applied to to the original noisy signal *x*, giving the final denoised estimate \hat{s} . The above filter approach was applied to simulated images (SNR=15 at b=0, 30 images with b-values 0 - 6000 s/mm²) as well as to experimental data.

Results



Discussion

The described wavelet-based noise-reduction algorithm considerably reduced the noise floor as well as the standard deviation. A specific advantage with the present approach, compared with previously proposed wavelet-domain filtering of the complex k-space data, is that image artefacts caused by filtering-induced phase errors in k-space data are avoided.

References: [1] Jones & Basser, MRM 52, 2004, 979; [2] Skare et al., JMR 147, 2000, 340; [3] Ghael et al., Proc. SPIE, San Diego, July 1997.