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ABSTRACT 
Multiplicative noise is signal dependent and is difficult to be 
removed without impairing image details.  It causes 
difficulties for many real world imaging applications.  
Previously, a hypothesis test based wavelet denoising 
algorithm had been proposed with promising results.  In this 
paper, the algorithm has been further studied by fitting it 
into the framework of contourlet transform, an emerging 
two-dimensional technique for image processing and 
analysis.  The developed contourlet denoising algorithm has 
been evaluated with standard test images, yielding 
successful results.  It has also been demonstrated that the 
proposed algorithm outperformed the original wavelet based 
approach. 

1. INTRODUCTION 

Multiplicative noise is commonly found in many real world 
signal processing applications.  Unlike additive noise, this 
kind of noise is much more difficult to be removed from the 
corrupted signal, mainly because of its multiplicative nature.  
Take an image as an example, when such noise is present in a 
bright area, it will be multiplied by high intensity values, thus 
its random variation will increase, or be “magnified.”  On the 
other hand, if the noise is introduced into a dark area, the 
change of the random variation may be much less significant.  
Since the noise variation greatly depends on the intensity 
levels of the image pixels being corrupted, it is not easy to 
establish an appropriate statistical model for the noise by 
simply examining the corrupted image. 
 
To develop effective approaches for removing multiplicative 
noise, various filtering techniques have been proposed.  
Normally, they assume that statistical characteristics of the 
noise are available.  Many researchers have also proposed 
wavelet based approaches for this filtering problem.  Among 
them, the Variance Dependent Spatially Adaptive 
Multiplicative Denoising (VDSAMD) algorithm is a 
promising approach [1].   
 
The VDSAMD algorithm is established on the basis of a 
statistical analysis of the wavelet coefficients.  It takes each 
wavelet coefficient as a realization of a certain random 
process and estimates variances for each random process 
associated with the coefficients.  By applying a hypothesis 
test to the estimated variances, this approach is capable of 

determining if a wavelet coefficient shares the same 
statistical characteristics with other coefficients in its 
neighborhood.  If yes, then the wavelet coefficient under test 
is considered to fall in a region of smooth appearance, which 
may be filtered to remove the noise.  Otherwise, the 
coefficient is considered to represent some image details and 
should be kept intact.  This approach is adaptive in nature 
because the determination regarding each wavelet coefficient 
is made according to its local neighborhood only.  Its 
effectiveness had been verified by simulation experiments. 
 
In this paper, the denoising of images with multiplicative 
noise corruption has been further studied on the basis of the 
VDSAMD algorithm.  In particular, an emerging two-
dimensional transform for image processing – contourlet 
transform [2], has been adopted to replace the wavelet 
transform in VDSAMD, since image denoising for additive 
noise in the contourlet domain generated better results than in 
the wavelet domain [2,3].  This modified denoising algorithm 
is denoted as Contourlet-based VDSAMD, or C-VDSAMD.  
It has been implemented and tested with several standard 
images.  The experimental results show that this modified 
approach outperformed the original VDSAMD in removing 
multiplicative noise from images.   
 
The remaining of this paper is organized as follows: section 2 
discusses the contourlet transform and the C-VDSAMD 
algorithm; section 3 presents experimental results and 
analysis; and section 4 gives conclusions about the study. 

2. METHODOLOGY 

As introduced above, the approach developed in this paper 
for denoising multiplicative noise is a hypothesis test based 
algorithm performed in the contourlet domain.  In this 
section, the principles and the procedures related to the 
approach will be discussed briefly. 

2.1 The Contourlet Transform 
The contourlet transform is a 2-D transform technique 
recently developed for image representation and analysis [2].  
Also referred to as the pyramidal directional filter bank, it 
consists of two filter banks.  The first filter bank, known as 
the Laplacian pyramid, is utilized to generate a multiscale 
representation of an image of interest.  Subsequently, the 
subband images from the multiscale decomposition are 
processed by a directional filter bank to reveal the directional 



details at each specific scale level.  The output values from 
the second filter bank are called “contourlet coefficients.”  
Any analysis performed with the contourlet coefficients is 
considered as in the “contourlet domain.”  The contourlet 
transform is illustrated in Figure 1. 
 
The contourlet transform provides a multiscale and 
multidirectional representation of an image.  Similar to the 
wavelet transform, it conforms to the multiresolution nature 
of the human visual systems.  It is also easily adjustable for 
detecting fine details in any orientation at various scale 
levels, resulting in good potential for effective image 
analysis.  Moreover, the decoupling of the multiscale 
decomposition (the Laplacian pyramid) from the 
multidirectional decomposition guarantees a flexible 
structure for image analysis.  As demonstrated in [2,3], the 
contourlet transform is more powerful than the state of the art 
techniques such as the wavelet transform in characterizing 
natural images rich of directional details and smooth 
contours. 

 
Figure 1.  An illustration of the contourlet transform. 

 
2.2 The C-VDSAMD Algorithm 
A common approach for image denoising is to convert the 
noisy image into a transform domain such as the wavelet 
domain, and then compare the transform coefficients with a 
fixed threshold.  Given the inflexibility of this approach, a 
hypothesis test based denoising algorithm in the wavelet 
domain, that is, the VDSAMD algorithm, has been proposed 
[1].  This algorithm performs a hypothesis test to determine if 
a pixel is corrupted or not, thus not depending on a fixed 
threshold.  In this paper, this algorithm has been extended 
into the contourlet domain.  The resulted C-VDSAMD 
algorithm follows similar processes of the VDSAMD, with a 
more sophisticated windowing scheme for variance 
estimation and hypothesis test. 
 
Assume that contourlet coefficients at each pixel position 
are realizations of zero mean Gaussian distributions, that is, 
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This provides the basis for the hypothesis test for noise 
detection in the contourlet domain. 
 
Figure 2 is the block diagram for the C-VDSAMD algorithm.  
As the first step, a noisy image is transformed into the 
contourlet domain by the contourlet decomposition.  Then, 
for each coefficient, variance for the associated Gaussian 
distribution is estimated.  Subsequently, hypothesis tests are 
performed with the variance image.  For each variance, a 
series of F-tests are carried out to determine if the associated 
contourlet coefficient is statistically equal to its neighbors.  If 
it is, then it is determined to fall into a smooth region and 
may be processed for noise suppression.  If it is not, then it 
should stand for an image feature pixel and be preserved.  
Afterwards, the processed contourlets are utilized to 
reconstruct the image, which is the final denoised output. 

 
Figure 2.  The block diagram for the C-VDSAMD algorithm. 

 
Both the variance estimation and the hypothesis test are 
performed within a local neighborhood of a certain location.  
Such neighborhoods are determined by a set of window 
templates, which are illustrated in Figure 3.  These window 
templates were designed to fit for the multi-directional nature 
of the contourlet transform.  They are more complicated than 
the templates utilized in the VDSAMD algorithm [1], where 
only horizontal, vertical, and diagonal directions are 
considered. 
 
For variance estimation, the window template used for a 
specific directional subband should show a matching 
orientation.  On the other hand, for hypothesis test, the 
window template used for a certain directional subband 

Image 
Contourlet 
Coefficients 

Band Pass 
Output Laplacian 

Pyramid 
Directional 
Filter Bank 

Low Pass
Output Directional 

Filter Bank 

Band Pass 
Output 

Low Pass
Output

Contourlet 
Coefficients 

Finest Scale Level 

Coarser Scale Level 

Laplacian 
Pyramid 

Contourlet 
Decomposition

Variance 
Estimation 

Hypothesis 
Test 

Feature 
Preservation

Noise 
Suppression 

Contourlet 
Reconstruction 

Noisy 
Image

Contourlet 
Coefficients 

Variance
Image

Noise 

Feature 

Processed Contourlet 
Coefficients

Denoised Image 

Contourlet Domain 



should represent a “perpendicular” orientation, which means 
that the orientation of this template is obtained by rotating the 
template used for variance estimation at the same location by 
90 degrees in the clockwise direction.  As an example, for the 
first directional subband from a four-directional contourlet 
transform, the first template in the top row of the figure 
should be used for variance estimation, while the third 
template of the same row should be used for hypothesis test, 
or noise detection. 

Figure 3.  Window templates used for variance estimation and 
hypothesis test (noise detection).  The four templates from the first 
row are utilized for four-directional contourlet decomposition.  The 
remaining eight templates are utilized for eight-directional 
contourlet decomposition. 

 
Figures 4 and 5 illustrate how to perform the noise detection 
for a given variance estimate at the location (i, j).  To do this, 
two quantities are needed.  One is the “Adjacent Maximum,” 
or the maximum of the adjacent variance estimates around 
the position within the window template.  The other is the 
“Neighboring Minimum,” or the minimum of the two me-
dian values obtained from the two sub-windows within the 
template, separated by the target pixel point.  As shown in 
Figure 4, for a four-directional decomposition, Adjacent 
Maximum = Max(V1,V2,V3,V4); while for an eight-
directional decomposition, Adjacent Maximum = 
Max(V1,V2).  For both cases, Neighboring Minimum = 
Min(Median1, Median2). 
 

 
Figure 4.  An illustration of how to apply window templates to noise 
detection.  The two templates on the top are for a four-directional 
decomposition, while the two on the bottom are for an eight-
directional decomposition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  The flow chart for the F-tests used for noise detection. 

The two quantities are compared with the target variance 
estimate through a series of hypothesis tests, or F-tests, as 
described in Figure 5.  Here, the determined parameter α is 
then multiplied to the original contourlet coefficients to 
obtain the processed coefficients for image reconstruction, 
and the equation ),,(
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3. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the performance of the C-VDSAMD algorithm 
for removing multiplicative noise from images, simulation 
experiments have been carried out with three standard test 
images: “Lena,” “Barbara,” and “Peppers” [5].  All these 
gray scale images are of 256 x 256 pixels, cropped from the 
512 x 512 original ones, as shown in Figure 6.  In the 
experiments, the three images were corrupted with Rayleigh 
multiplicative noise.  These noisy images were then 
processed by the proposed algorithm with the parameter 
settings as shown in Table 1.  Here, β and ξ are the 
parameters controlling the degree of attenuation of the 
contourlet coefficients.  γ1 and γ2 are the confidence levels 
involved in the F-tests.  For comparison purpose, the same 
parameter values as reported in [1] were utilized here. 

   
Figure 6.  Test images utilized in the simulation experiments (from 
left to right): “Lena,” “Barbara,” and “Peppers.” 
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For the contourlet decomposition, three scale levels were 
utilized.  The number of directions for the directional filter 
bank at each scale level (from the finest to the coarsest level) 
was set to 8, 8, and 4, respectively.  The filters adopted were 
the “9-7” bi-orthogonal filters.  For an objective evaluation of 
the denoising performance, the Peak Signal-to-Noise Ratio 
(PSNR) was calculated for each denoising experiment as: 
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These calculated PSNR values are presented in Table 2.  
Example images are also provided in Figure 7 to demonstrate 
the visual quality of the denoised images. 

Table 1.  Parameter settings for the simulation experiments. 

Parameters β ξ γ1 γ2 
Scale Level 1 0 0 0.98 0.52 
Scale Level 2 0 0 0.92 0.52 
Scale Level 3 0 0 0.84 0.52 

 

Table 2.  Denoising results (PSNR) for the standard test images. 

Images Noisy  
(dB) 

C-VDSAMD 
(dB) 

VDSAMD 
(dB) 

Lena 13.26 17.30 16.83 
Barbara 13.36 17.32 16.79 
Peppers 12.60 17.02 16.54 

 

  
 

  
Figure 7.  Denoising results for “Barbara”.  The images are: (top 
row, from left to right) the original, the noisy (PSNR = 13.36dB); 
and (bottom row, from left to right) the denoised with the proposed 
C-VDSAMD algorithm (PSNR = 17.32dB), and the denoised with 
the VDSAMD algorithm (PSNR = 16.79dB). 

 

From Table 2, it can be observed that for all three test 
images, the proposed C-VDSAMD algorithm achieved good 
results.  It outperformed the wavelet based VDSAMD 
algorithm in all three cases, as well.  Another observation is 
that the performance of the algorithm was consistent across 
the whole test data set. 
 
A further examination of the visual appearance of the 
denoised images verified that the C-VDSAMD algorithm 
outperformed its wavelet counterpart.  As illustrated in 
Figure 7, the C-VDSAMD denoised image provided better 
smoothness than the VDSAMD algorithm.  At the same 
time, it preserved the details of the image as well as the 
other did, if not better.  Such observation was consistent 
with all the denoised images, just as was the case with the 
objective PSNR values.  This improvement of the denoising 
performance is reasonably explained by the fact that the 
contourlet transform is more powerful than the wavelet 
transform in representing directional details. 

4. CONCLUSIONS 

In this paper, the removal of multiplicative noise from 
images has been discussed.  A hypothesis test based 
contourlet denoising algorithm, denoted as the C-VDSAMD 
algorithm, has been developed.  This algorithm has been 
evaluated with several standard images, generating 
successful denoising results.  The performance of the 
algorithm has also been compared with that of the original 
VDSAMD algorithm.  The comparison indicated that the 
proposed algorithm outperformed the other one in terms of 
both the objective PSNR values and the subjective visual 
quality assessment. 
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