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Abstract. The transient electromagnetic method (TEM) is

extremely important in geophysics. However, the secondary

field signal (SFS) in the TEM received by coil is easily dis-

turbed by random noise, sensor noise and man-made noise,

which results in the difficulty in detecting deep geological in-

formation. To reduce the noise interference and detect deep

geological information, we apply autoencoders, which make

up an unsupervised learning model in deep learning, on the

basis of the analysis of the characteristics of the SFS to de-

noise the SFS. We introduce the SFSDSA (secondary field

signal denoising stacked autoencoders) model based on deep

neural networks of feature extraction and denoising. SFS-

DSA maps the signal points of the noise interference to the

high-probability points with a clean signal as reference ac-

cording to the deep characteristics of the signal, so as to re-

alize the signal denoising and reduce noise interference. The

method is validated by the measured data comparison, and

the comparison results show that the noise reduction method

can (i) effectively reduce the noise of the SFS in contrast

with the Kalman, principal component analysis (PCA) and

wavelet transform methods and (ii) strongly support the spec-

ulation of deeper underground features.

1 Introduction

Through the analysis of the secondary field signal (SFS) in

the transient electromagnetic method (TEM), the information

of underground geological composition can be obtained and

has been widely used in mineral exploration, oil and gas ex-

ploration, and other fields (Danielsen et al., 2003; Haroon et

al., 2014). Due to the small amplitude of the late field sig-

nal in the secondary field, it may be disturbed by random

noise, sensor noise, human noise and other interference (Ras-

mussen et al., 2017), which leads to data singularities or in-

terference points, and thus the deep geological information

can not be reflected well. Therefore, it is necessary to make

full use of the characteristics of the secondary field signal to

reduce the noise in the data and increase the effective range

of the data.

Many methods have been developed for noise reduction of

the transient electromagnetic method. These methods can be

broadly categorized into three groups: (1) Kalman filter algo-

rithm (Ji et al., 2018), (2) wavelet transform algorithm (Ji et

al., 2016; Li et al., 2017) and (3) principal component analy-

sis (PCA) (Wu et al., 2014). Kalman filtering is an effective

method in linear systems, but it has little effect in nonlinear

fields such as transient electromagnetic signals. The acqui-

sition of the wavelet threshold is cumbersome, and wavelet

base selection is very difficult. In order to achieve the de-

sired separation effect, it is necessary to design an adaptive

wavelet base. Likewise, the PCA algorithm is cumbersome

too; some researchers applied PCA to denoise the transient

electromagnetic signal, but the process of PCA requires at

least five steps (Wu et al., 2014).

However, deep learning has been used to reduce noise

from images, speech and even gravitational waves (Jifara et

al., 2017; Grais et al., 2017; Shen et al., 2017). Meanwhile,
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14 F. Lin et al.: Denoising stacked autoencoders

Figure 1. The flow chart of the model. Total loss is the sum of the mean absolute error (MAE) calculation and regularization loss. The MAE

calculation is the difference of the theoretical signal and output. The regularization loss is calculated by the L2 function. Autoencoders (AEs)

are trained one by one and then fine-tuning is used.

Figure 2. (a) Actual signal curves. (b) Inversion of theoretical sig-

nal curves.

the autoencoder (AE) (Bengio et al., 2007), the representa-

tive model of deep learning, has been successfully applied

in many fields (Hwang et al., 2016). AEs with noise reduc-

tion capability (denoising autoencoders, DAEs) (Vincent et

al., 2008) have been widely used in image denoising (Zhao

et al., 2014), audio noise reduction (Dai et al., 2014), the re-

construction of holographic image denoising (Shimobaba et

al., 2017) and other fields.

Nevertheless, in the field of geophysics, the application of

the deep learning model is limited (Chen et al., 2014). The

use of the deep learning model to reduce the noise of geo-

physical signals has not been applied. Therefore, in this pa-

per, the SFSDSA (secondary field signal denoising stacked

autoencoders) model is proposed to reduce noise, based on a

deep neural network with SFS feature extraction. SFSDSA

will map the signal points affected by noise to the high-

probability points with geophysical inversion signal as ref-

erence according to the deep characteristics of the signal, so

as to realize the signal denoising and reduce noise interfer-

ence.

2 Related work

Many studies about the denoising of the second field sig-

nal of the transient electromagnetic method have been car-

ried out. Ji et al. proposed a method using the wavelet

threshold-exponential adaptive window width-fitting algo-

rithm to denoise the second field signal (Ji et al., 2016).

According to this method, stationary white noise and non-

stationary electromagnetic noise can be filtered using the

wavelet threshold-exponential adaptive window width-fitting

algorithm to denoise the second field signal; Li et al. used the

stationary-wavelet-based algorithm to denoise the electro-

magnetic noise in grounded electrical source airborne tran-

sient electromagnetic signal (Li et al., 2017). This denois-

ing algorithm can remove the electromagnetic noise from

the grounded electrical source airborne transient electromag-

netic signal. Wang et al. used the wavelet-based baseline drift
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correction method for grounded electrical source airborne

transient electromagnetic signals; it can improve the signal-

to-noise ratio (Wang et al. 2013). An exponential fitting-

adaptive Kalman filter was used to remove mixed electro-

magnetic noises (Ji et al., 2018). It consists of an exponential

fitting procedure and an adaptive scalar Kalman filter. The

adaptive scalar Kalman uses the exponential fitting results in

the weighting coefficients calculation.

The aforementioned Kalman filter and wavelet transform

are universal traditional filtering methods, which have their

own defects. However, the SFS itself has distribution charac-

teristics, and the distortion of the waveform generated by the

noise causes deviation from the signal point of the distribu-

tion.

Theoretical research (Bengio et al., 2007) indicates that the

incomplete representation of autoencoders will be forced to

capture the most prominent features of the training data and

the high-order feature of data is extracted, so autoencoders

can be applied to the feature extraction and abstract repre-

sentation of the SFS. Theoretical research (Vincent et al.,

2008) also shows that denoising autoencoders can map the

damaged data points to the estimated high-probability points

according to the data characteristics, to achieve the target of

repairing the damaged data. Therefore, DAEs can be applied

to map the SFS data points that will be disturbed by noise to

the estimated high-probability points, to achieve the purpose

of SFS noise reduction. Studies have found (Vincent et al.,

2010) the stacked DAEs (SDAEs) have a strong feature ex-

traction capability and can improve the effect of feature ex-

traction and enhance the ability of calibrating the deviation

points disturbed by noise. SDAEs are also commonly used

in the compression encoding of the preprocessing height of

complex images (Ali et al., 2017).

We also noticed that supervised learning performs well

in classification problems such as image recognition and se-

mantic understanding (He et al., 2016; Long et al., 2014). At

the same time, unsupervised learning also has a good perfor-

mance in clustering and association problems (Klampanos et

al., 2018), and the goal of unsupervised learning is usually

to extract the distribution characteristics of the data in or-

der to understand the deep features of the data (Becker and

Plumbley, 1996; Liu et al., 2015). Both supervised learning

and unsupervised learning have their own application fields,

so we need to choose different learning styles and models

for different problems. For the noise suppression problem

of the SFS in the TEM, our goal is to extract the deep fea-

tures and map the data points affected by noise to the esti-

mated high-probability points according to their own signal

features. We also found that the purpose of extracting the

distribution characteristics of the SFS data is similar to that

of unsupervised learning. Meanwhile, unsupervised learning

models are widely used in different signal noise reduction

problems.

Therefore, based on the study of the distribution character-

istics of the secondary field signal and autoencoder denois-

Figure 3. (a) Actual detection signal. (b) Inversion of theoretical

detection signal.

Table 1. The training cost of the combination of learning rate and

regularization rate. The value represents the MAE of the first 50

data points. Based on experience, about the first 50 data points have

a better effect for extracting time-domain order waveforms. The best

combination result of the learning rate and the regularization rate is

the smallest value, which is shown in bold.

Learning rate 0.05 0.1 0.15 0.2

and regularization rate

0.1 61 515.3 12 670.3 14 448.9 11 112.1

0.01 1735.2 1918.1 2126.6 1825.7

0.001 1526.6 1669.5 1377.3 1780.6

0.0001 1493.2 1678.1 1392.3 1955.5

ing method, we propose SFSDSA, which is a deep learning

model of transient electromagnetic signal denoising.

1. SFSDSA will be stacked by multiple AEs to form a deep

neural network of multilayer undercomplete encoding,

and multiple AEs are used as a higher-order feature ex-

traction part, which can utilize its deep structure to max-

imize the characteristics of the secondary field signal.

2. Based on the principle of DAEs, SFSDSA will set the

secondary field measured data (received data) as the in-

put data, and the geophysical inversion method is used

to process the measured data of the secondary field to

obtain the inversion signal as the clean signal data. SFS-
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Figure 4. The training cost comparison of MAE and MSE (mean

squared error): (a) is the training cost of fine-tuning, and (b) is the

training cost of reconstructing.

DSA maps the signal points of the noise interference to

the high-probability points with a clean signal as ref-

erence according to the deep characteristics of the sig-

nal. Because maintaining the original data dimension

is especially important for the undistorted processing

and post-processing of the signal, it is necessary to set

the original dimension after the last coding as the out-

put layer dimension. Although the output method may

produce the decoding loss, it can have high abstract re-

tention of the secondary field signal characteristics and

map the affected signal points to the high-probability

position points.

3. The problem of too many nodes dying is a general

disadvantage for rectified linear unit (RELU) activa-

tion function, and improved RELU activation functions

like Leaky RELU all consistently outperform the RELU

function in some tasks (Xu et al., 2015). Therefore, it

is necessary to apply the improved RELU function to

reduce the impact of the shortcomings of the RELU

function. We choose the scaled exponential linear units

(SELUs) that have the capability of overcoming vanish-

ing and exploding gradient problems in a sense and pre-

form the best in full connection networks (Klambauer

et al., 2017). We chose the Adam algorithm, which has

the advantages of calculating different adaptive learn-

ing rates for different parameters and requiring little

memory (Kingma and Ba, 2014). The SFSDSA model

will address the problem of overfitting due to increased

depth and the problem of only learning an identity func-

tion, because the regularized loss is introduced.

3 Mathematical derivation of SFSDSA

Firstly, the secondary field data (actual detection signal) are

treated as a noisy input. Since the secondary field data are

mainly a time-amplitude value, we can sample the signal as

a point-amplitude value, in the form of matrix A; the dimen-

sions are 1 × N :

A =
[
a11 a12 · · · a1n−1 a1n

]
. (1)

Secondly, the geophysical inversion method is used to ob-

tain the theoretical signal, which can be used as a clean sig-

nal, and then the theoretical signal is sampled as a point-

amplitude value, in the form of matrix Ã; the dimensions are

1 × N :

Ã =
[
ã11 ã12 · · · ã1n−1 ã1n

]
. (2)

Thirdly, the SFSDSA training model can be built, and Adam,

which is a stochastic gradient descent (SGD) method, is ap-

plied to prevent gradient disappearance; regularization loss is

used to prevent overfitting; and the SELU activation function

is utilized to prevent too many points of death.

gθ (a1n) = fSELU(Waln + b), (3)

gθ (a1n) = λ

{
Wa1n + b a1n > 0

αeWa1n+b − α aln <= 0
, (4)

where θ = (w,b), w denotes the N × N ′ parameter matrix

(N ′ < N ) and b denotes the offset of the N ′ dimensions. Af-

ter the first compression coding layer, the signal is the ex-

tracted feature and is represented as the 1 × N ′ parameter

matrix. In order to extract high-level features while removing

as much noise as possible and other factors, we can compress

again.

gθ ′(a′
1N ′) = λ

{
W ′a′

1N ′ + b′ a′
1N ′ > 0

αeW ′a′
1N ′+b′

− α a′
1N ′ <= 0

(5)

W denotes the N ′ × N ′′ parameter matrix (N ′′ < N ′) and b

denotes the offset of the N ′′ dimensions, and the features of

the actual detection signal are extracted again after more fea-

ture extraction layers can be stacked. For the secondary field

Nonlin. Processes Geophys., 26, 13–23, 2019 www.nonlin-processes-geophys.net/26/13/2019/
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Figure 5. Training cost of each process.

signal, it is necessary to maintain the same input and output

dimensions to ensure that the signal is not distorted and later

processed. When feature extraction reaches a certain extent,

it is necessary to reconstruct back to input dimensions.

Reconstruction can be regarded as the process that the

noisy signal points map back to the original dimensions after

the features are highly extracted. At the same time, recon-

struction is the process of signal characteristic amplification.

Finally output matrix Ā with the same dimensions as the in-

puts can be retrieved:

Ā =
[
ā11 ā12 · · · ā1n−1 ā1n

]
. (6)

The output Ā we obtained can be used to get the loss from

the clean signal Ã using the loss function. The general loss

function has the squared loss, which is mostly used in the

linear regression problem. However, the secondary field data

are mostly nonlinear, and the absolute loss is used in this

paper:

L(Ā,Ã) = |Ā − Ã|. (7)

In the meantime, regularization loss optimization is used in

this paper in order to avoid the problem of overfitting, and

then

loss = θ∗,θ ′∗ = argθ,θ ′min
1

n

n∑

i=1

L(xi,gθ ′(fθ (x
i)))

+ λR(w). (8)

After the loss is calculated, the Adam algorithm is used to

reverse the optimization of parameters.

Figure 1 is the algorithm structure diagram of SFSDSA.

With reference to the theory of DAEs, SFSDSA maps the

signal points of the noise interference to the high-probability

points with a clean signal as reference according to the deep

characteristics of the signal, so as to realize the signal noise

and reduce noise interference. This high-probability position

Figure 6. Iteration sampling points.

Figure 7. SFSDSA hidden layer number and MAE values.

is determined by the theoretical clean signal and the multi-

layer model of the feature extraction ability. The multilayer

feature extraction preserves the deep feature of secondary

field data, and the effect of noise is reduced.

For the noise suppression problem of the secondary field

signal in the transient electromagnetic method, our goal is

to extract the deep features of the secondary field signal and

map the data points affected by noise to the estimated high-

probability points according to their own signal features. We

also found that the purpose of extracting the distribution

characteristics of the secondary field signal data is similar

to that of unsupervised learning.

4 Experiment and analysis

In this paper, the secondary field signal of a certain place is

used as the experimental analysis signal. Usually, the sec-

ondary field signals can be obtained continuously on a pe-

riod of time, so a large number of signals can be extracted

conveniently as the training samples.The secondary field ac-

tual signals are extracted as 1 × 434 as input signals of noise

pollution, as is shown in Fig. 2a. At the same time, based

www.nonlin-processes-geophys.net/26/13/2019/ Nonlin. Processes Geophys., 26, 13–23, 2019
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Table 2. Comparison of MAE models.

Model name Parameter setting MAE

SFSDSA+SELU+REGULARAZTION+ADAM Learning_rate_base:0.00103 150.36

SFSDSA+RELU+REGULARAZTION+ADAM Learning_rate_base:0.00103 1500.20

SFSDSA+SELU+ADAM Learning_rate_base:0.00103 164.30

SFSDSA+SELU+REGULARAZTION Learning_rate_base:0.00103 5112.30

Wave transform Three layers of wavelet transform 451.20

Kalman filter Q = e − 4 R = e − 3 503.20

on the secondary field actual signals, the geophysical inver-

sion method is used to obtain the theoretical detection signal

as a clean signal uncontaminated by noise, as is shown in

Fig. 2b. In order to be able to highlight the differences be-

tween the data, data are expressed in a double logarithmic

form (loglog), as is shown in Fig. 3a and b.

The deep features of original data are extracted by fea-

ture extraction layers (compression coding layers). As the

number of layers increases, SFSDSA can be a more com-

plex abstract model with limited neural units (to get higher-

order features for this small-scale input in this paper), and

more feature extraction layers will inevitably lead to overfit-

ting. Moreover, the reconstruction effect can be affected by

the number of feature extraction layer nodes. If the SFSDSA

model has too few nodes, the characteristics of the data can

not be learned well. However, if the number of feature extrac-

tion layer nodes is too large, the designed lossy compression

noise reduction can not be achieved well and the learning

burden is increased.

Therefore, based on the aforementioned questions, we de-

sign the SFSDSA model (Fig. 1), and the number of nodes

in the latter feature extraction layer is half the number of

nodes in the previous feature extraction layer, until it is fi-

nally reconstructed back to the original dimension. The SFS-

DSA model is a layer-by-layer feature extraction, which can

be regarded as the process of stacking AEs. Low dimensions

are represented by the high-dimensional data features, which

can learn the input features. At the same time, since the re-

construction loss is the loss of the output related to the clean

signal, it can also be said that the input signal can be regarded

as a clean signal based on the noise, the training measure of

the DAE model increases the robustness of the model and re-

constructs the lossy signal, and mapping the signal point to

its high-probability location can be viewed as a noise reduc-

tion process.

In the training experiment, we collected 2400 periods

of transient electromagnetic method secondary field signals

from the same collection location, and we selected 434 data

points in each period. Meanwhile, 100 periods of signals are

randomly acquired as a test and validation set for improving

the robustness of the model. We use Google’s deep learning

framework – Tensorflow, which is used to build the SFSDSA

model. The parameter settings for the model are as follows:

Figure 8. Actual secondary field data after SFSDSA model noise

reduction.

Figure 9. Specific points analysis.

batch size = 8, epochs = 2. We do a grid search and get the

good parameter combination of learning rate and regulariza-

tion rate as shown in Table 1 (learning rate = 0.001 and reg-

ularization rate = 0.15).

We analyzed and compared the selection of the two loss

functions of mean absolute error (MAE) and mean squared

error (MSE) in experiments as shown in Fig. 4. Meanwhile,

according to the previous work and the SFS denoising task of

the transient electromagnetic method, we think that MAE is

Nonlin. Processes Geophys., 26, 13–23, 2019 www.nonlin-processes-geophys.net/26/13/2019/
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Figure 10. (a) Kalman filter. (b) Wavelet transform filter. (c) PCA filter. (d) SFSDSA denoising.

a better choice. On the one hand, our task is to map the out-

liers affected by noise to the vicinity of the theoretical signal

point; in other words, the model should ignore the outliers

affected by noise to make it more consistent with the dis-

tribution of the overall signal. We know that MAE is quite

resistant to outliers (Shukla, 2015). On the other hand, the

squared error is going to be huge for outliers, which tries to

adjust the model according to these outliers at the expense

of other good points (Shukla, 2015). For signals that are sub-

ject to noise interference in the secondary field of the tran-

sient electromagnetic method, we do not want to overfit out-

liers that are disturbed by noise, but we want to treat them

as data with noise interference. The evaluation index is the

mean absolute error of output reconstruction data and clean

input data. The smaller the MAE, the closer the output re-

construction data are to the theoretical data. The model also

performs better in noise reduction.

MAE(x,y) =
1

m

m∑

i=1

|h(x)(i) − y(i)|, (9)

where x denotes the noise interference data, m denotes the

number of sampling points, h denotes the model and y de-

notes theoretical data.

In the previous experiments, we set hyper-parameters

(batch size = 8, learning rate = 0.1, regularization rate = 0,

epochs = 20) based on experience, but we initially take the

measure of a small number of epochs (epochs = 2) accord-

ing to the experiment. We added the experiment as shown in

Fig. 5 to support our standpoint. The model oscillates quickly

and converges. Training with fewer epochs can avoid useless

training and overfitting, maintaining the distribution charac-

teristics of the signal itself. As shown in Fig. 6, the recon-

struction error oscillates and converges as the training pro-

gresses. This phenomenon is similar to the tail of the actual

signal. We try to stop training when the convergence occurs;

the idea similar to early stopping makes the model more ro-

bust (Caruana et al., 2000).

By analyzing Fig. 7, the relationship between MAE and

the number of hidden layers, we found that the result of

stacking two AEs has a good effect. We guess that the size

of the AE hidden layer is too small after multiple stacking

(for instance, the fourth AE only has 27 nodes because the

size of the latter AE is half that of the previous AE in order

www.nonlin-processes-geophys.net/26/13/2019/ Nonlin. Processes Geophys., 26, 13–23, 2019
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Figure 11. The geographic distribution of the collection points (first

to seventh).

to extract the better feature), and the representation of signal

characteristics is not complete, resulting in large reconstruc-

tion costs. If we want to get a better result, more iterations

may be used but this tends to cause overfitting. Meanwhile,

we found that the reconstruction loss of the second AE is al-

ready very small (shown in Fig. 5). So it is not necessary to

stack more AEs.

The training time will be less when the small-scale deep

learning model is applied. By analyzing Fig. 2a, we found

that, because the amplitude of the tail of the actual signal is

small and the influence of the noise is significant, the tail of

the signal oscillates violently. Meanwhile, after the feature

extraction and noise reduction to a certain extent, the noise

interference can not be completely removed, the reconstruc-

tion can not completely present the clean signal and it is only

possible to map the signal points as high-probability points

to reduce reconstruction loss.

4.1 Training results

After several experiments, the MAE of actual signals fell

from 534.5 to about 215. Compared with the secondary field

actual signals and signals denoised by the SFSDSA model,

the noise reduction effect of SFSDSA is obvious in Fig. 8.

The 35th to 55th points are selected for specific analy-

sis in Fig. 7. Through noise reduction in the training SFS-

DSA model, the singular points (large amplitude deviation

from theoretical signal) affected by the noise are mapped to

the high-probability positions (e.g., point no. 38 and point

no. 51). This process is the process of damage reconstruc-

tion that the DAE model has verified. At the same time, our

stacked AE model also keeps extracting the features, and the

singular points are restored to the corresponding points ac-

cording to the characteristics of the data. The whole process

realizes the noise reduction of the secondary field actual sig-

nal based on the secondary field theoretical signal, and the

model maps the singular points to locations where there is a

high probability of occurrence, which is also similar to the

most estimative method based on observations and model

predictions by Kalman filtering.

5 Comparison with traditional noise reduction

methods

We also conducted wavelet transform, PCA and Kalman fil-

ter method experiments, in which the number of layers of the

wavelet transform is three, called DWT() and construction

function IDWT() in Matlab. By using the PCA method, we

perform the experiment to verify the effect of noise reduc-

tion. But the process of programming is more complicated

when using mathematical derivation, so we use the scikit-

learn library to realize noise reduction. Kalman filtering is

implemented in Python, where the system noise Q is set to

1e − 4 and the measurement noise R is set to 1e − 3. Fig-

ure 10 shows the absolute error distribution for that method.

We can find from the figure model of noise reduction based

on the SFSDSA model of secondary field data that the SFS-

DSA model is better than Kalman filter, wavelet transform

and PCA methods. At the same time, as the Kalman filter is

a linear filter, its noise reduction effect is very poor in this

paper. Moreover, the underlying structure is not easy to mod-

ify, resulting in the scikit-learn library being unable to adjust

parameters adaptively based on signal characteristics. After

the filtering test, and then the MAE corresponding to the cal-

culation of the theoretical data, it can be seen that the effect

of PCA filtering is lower than that of SFSDSA.

At the same time, we compared the optimization results of

various models using the traditional method with those of the

SFSDSA model, as shown in Table 2.

Figure 11 is the diagram of the mine where the exploration

experiment was conducted. The thick red curve is the actual

mine vein curve. A data collection survey line, which is the

southwest–northeast pink curve shown in the figure, is de-

signed with seven points marked as number 1 to 7 along it,

and the distance between each point is 50 m.

In the data analysis, we analyzed the first 50 points in

the second field, which were collected in the actual mine.

The early signal of the secondary field is stronger than the

later one, and it is not easily disturbed by the noises. So in

Fig. 12 we take out the later 21 points in each collection

point, which are used for further analysis. Figure 12a shows

extracted time-domain order waveforms formed by the ac-

tual data acquired at the seven collection points at the same

time. Figure 12b shows extracted time-domain order wave-

forms formed by the data denoised by the SFSDSA model.

Nonlin. Processes Geophys., 26, 13–23, 2019 www.nonlin-processes-geophys.net/26/13/2019/
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Figure 12. (a) The original 30th to 50th points from seven actual detecting locations. (b) The denoising 30th to 50th points from seven actual

detecting locations.

By comparing the two images in Fig. 12, it can be clearly

seen that the curves in Fig. 12a have obvious intersections,

and the intersections in Fig. 12b are almost invisible. In the

transient electromagnetic method, the intersected curve can

not indicate the deeper underground geological information.

It can be explained that the curve after the denoising model

can reflect the deep geological information.

6 Conclusions

Based on the transient electromagnetic method, the deep-

seated information is reflected in the late stage of the sec-

ond field signal when deep-level surveys are conducted, but

the late-stage signals are very weak and easily contaminated

by noise. Therefore, we use the measured data for modeling

to obtain the theoretical model, which will perform noise re-

duction based on the geological features represented by the

previous training data set. Meanwhile, it is necessary to an-
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alyze the known geological features carefully and apply the

model according to the actual geological conditions before

using our method. And this method has a good generalization

for different collection points of the same geological feature

area. By introducing the deep learning algorithm integrated

with the characteristics of the secondary field data, SFSDSA

can map the contaminated signal to a high-probability po-

sition. By comparing several filtering algorithms by using

same sample data, the SFSDSA method has better perfor-

mance and the denoising signal is conducive to further im-

proving the effective detection depth.
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