
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Master's Theses Graduate School

2003

Denoising techniques - a comparison Denoising techniques - a comparison

Sarita Veera Dangeti
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation

Dangeti, Sarita Veera, "Denoising techniques - a comparison" (2003). LSU Master's Theses. 3789.

https://digitalcommons.lsu.edu/gradschool_theses/3789

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital
Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_theses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3789?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3789&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

DENOISING TECHNIQUES - A COMPARISON

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

by

Sarita Dangeti
B.E., Andhra University College of Engineering, Visakhapatnam, India, 2000

May 2003

 ii

Acknowledgements

 I would like to thank Dr. Suresh Rai, my major professor for his assistance and

constant support during my Master’ program. He came up with the very initial idea of

this thesis. I greatly appreciate his invaluable guidance, which helped me complete this

thesis.

 I thank my committee members Dr. Kak and Dr. Trahan for their support during

my work on this thesis. Special thanks to Rhett Smith for all software provided

especially, Fraclab. My sincere gratitude to the faculty and staff of the Department of

Electrical and Computer Engineering.

 I thank my parents and my sister, Betina for their support and guidance, which

gave me an opportunity to pursue higher studies. Special thanks to my husband Krishna

who was very patient and provided me the encouragement needed to complete my thesis.

I also thank Padma Maddi for helping me during my documentation of this thesis.

 Last but not the least I would like to thank all my friends whose support was very

valuable during my Master’s study at LSU.

 iii

Table of Contents

ACKNOWLEDGEMENTS…………………………………………….…………….

ABSTRACT……………………………………………………………………….

CHAPTER

1 INTRODUCTION…………………………………………………………..
1.1 Preliminaries…………………………………………………….

1.2 Problem Formulation and Thesis Layout………………………..

2 ADDITIVE AND MULTIPLICATIVE NOISES………………………………...

2.1 Gaussian Noise…………………………………………………..
2.2 Salt and Pepper Noise…………………………………………...

2.3 Speckle Noise……………………………………………………
2.4 Brownian Noise………………………………………………….
2.5 Summary………………………………………………………...

3 LINEAR AND NONLINEAR FILTERING APPROACH………………………….

3.1 Background……………………………………………………...

3.2 Linear Filtering………………………………………………….
3.2.1 Mean Filter…………………………………………...

3.2.2 LMS Adaptive Filter………………………………….…
3.3 Median Filter…………………………………………………….
3.4 Summary………………………………………………………...

4 WAVELET TRANSFORMS AND DENOISING………………………………..

4.1 Discrete Wavelet Transform (DWT) – Principles……………....
4.2 Properties of DWT……………………………………………....
4.3 Mallat’s Algorithm………………………………………………

4.4 Wavelet Thresholding…………………………………………...
4.4.1 VisuShrink………………………………………………

4.4.2 SureShrink……………………………………………….
4.4.3 BayesShrink………………………………………….….

4.5 Summary………………………………………………………..

5 MULTIFRACTAL IMAGE DENOISING……………………………………...

5.1 Introduction……………………………………………………...
5.2 Hölder Exponents………………………………………………..
5.3 Image Denoising Using Multifractal Analysis…………………..

5.3.1 Multifractal Regularization……………………………...
5.3.2 Multifractal Pumping……………………………………

5.4 Summary………………………………………………………...

ii

v

1
1

2

5

6
7

8
9
10

11
11

12
12

15
18
20

21

21
23
24

28
30

32
33
36

37

37
38
39

40
41

44

 iv

6 RESULTS AND CONCLUSION……………………………………………...
6.1 Results…………………………………………………………...

6.2 Conclusions and Future Work…………………………………...

BIBLOGRAPHY…………………………………………………………………...

APPENDIX: MATLAB FUNCTIONS………………………………………………...

VITA……………………………………………………………………………..

45
45

47

49

52

54

 v

Abstract

 Visual information transmitted in the form of digital images is becoming a major

method of communication in the modern age, but the image obtained after transmission is

often corrupted with noise. The received image needs processing before it can be used in

applications. Image denoising involves the manipulation of the image data to produce a

visually high quality image. This thesis reviews the existing denoising algorithms, such

as filtering approach, wavelet based approach, and multifractal approach, and performs

their comparative study. Different noise models including additive and multiplicative

types are used. They include Gaussian noise, salt and pepper noise, speckle noise and

Brownian noise. Selection of the denoising algorithm is application dependent. Hence, it

is necessary to have knowledge about the noise present in the image so as to select the

appropriate denoising algorithm. The filtering approach has been proved to be the best

when the image is corrupted with salt and pepper noise. The wavelet based approach

finds applications in denoising images corrupted with Gaussian noise. In the case where

the noise characteristics are complex, the multifractal approach can be used. A

quantitative measure of comparison is provided by the signal to noise ratio of the image.

 1

Chapter 1

Introduction

1.1 Preliminaries

A very large portion of digital image processing is devoted to image restoration.

This includes research in algorithm development and routine goal oriented image

processing. Image restoration is the removal or reduction of degradations that are

incurred while the image is being obtained [Ca79]. Degradation comes from blurring as

well as noise due to electronic and photometric sources. Blurring is a form of bandwidth

reduction of the image caused by the imperfect image formation process such as relative

motion between the camera and the original scene or by an optical system that is out of

focus [La91]. When aerial photographs are produced for remote sensing purposes, blurs

are introduced by atmospheric turbulence, aberrations in the optical system and relative

motion between camera and ground. In addition to these blurring effects, the recorded

image is corrupted by noises too. A noise is introduced in the transmission medium due

to a noisy channel, errors during the measurement process and during quantization of the

data for digital storage. Each element in the imaging chain such as lenses, film, digitizer,

etc. contribute to the degradation.

Image denoising is often used in the field of photography or publishing where an

image was somehow degraded but needs to be improved before it can be printed. For this

type of application we need to know something about the degradation process in order to

develop a model for it. When we have a model for the degradation process, the inverse

process can be applied to the image to restore it back to the original form. This type of

image restoration is often used in space exploration to help eliminate artifacts generated

by mechanical jitter in a spacecraft or to compensate for distortion in the optical system

of a telescope. Image denoising finds applications in fields such as astronomy where the

resolution limitations are severe, in medical imaging where the physical requirements for

 2

high quality imaging are needed for analyzing images of unique events, and in forensic

science where potentially useful photographic evidence is sometimes of extremely bad

quality [La91].

Let us now consider the representation of a digital image. A 2-dimensional digital

image can be represented as a 2-dimensional array of data s(x,y), where (x,y) represent

the pixel location. The pixel value corresponds to the brightness of the image at location

(x,y). Some of the most frequently used image types are binary, gray-scale and color

images [Um98].

Binary images are the simplest type of images and can take only two discrete

values, black and white. Black is represented with the value ‘0’ while white with ‘1’.

Note that a binary image is generally created from a gray-scale image. A binary image

finds applications in computer vision areas where the general shape or outline

information of the image is needed. They are also referred to as 1 bit/pixel images.

Gray-scale images are known as monochrome or one-color images. The images

used for experimentation purposes in this thesis are all gray-scale images. They contain

no color information. They represent the brightness of the image. This image contains 8

bits/pixel data, which means it can have up to 256 (0-255) different brightness levels. A

‘0’ represents black and ‘255’ denotes white. In between values from 1 to 254 represent

the different gray levels. As they contain the intensity information, they are also referred

to as intensity images.

Color images are considered as three band monochrome images, where each band

is of a different color. Each band provides the brightness information of the

corresponding spectral band. Typical color images are red, green and blue images and are

also referred to as RGB images. This is a 24 bits/pixel image.

1.2 Problem Formulation and Thesis Layout

The basic idea behind this thesis is the estimation of the uncorrupted image from

the distorted or noisy image, and is also referred to as image “denoising”. There are

various methods to help restore an image from noisy distortions. Selecting the

appropriate method plays a major role in getting the desired image. The denoising

methods tend to be problem specific. For example, a method that is used to denoise

 3

satellite images may not be suitable for denoising medical images. In this thesis, a study

is made on the various denoising algorithms and each is implemented in Matlab6.1

[Ma01]. Each method is compared and classified in terms of its efficiency. In order to

quantify the performance of the various denoising algorithms, a high quality image is

taken and some known noise is added to it. This would then be given as input to the

denoising algorithm, which produces an image close to the original high quality image.

The performance of each algorithm is compared by computing Signal to Noise Ratio

(SNR) besides the visual interpretation.

In case of image denoising methods, the characteristics of the degrading system

and the noises are assumed to be known beforehand (in two of the techniques considered

in Chapters 3 and 4). The image s(x,y) is blurred by a linear operation and noise n(x,y) is

added to form the degraded image w(x,y). This is convolved with the restoration

procedure g(x,y) to produce the restored image z(x,y).

Figure 1.1: Denoising concept

The “Linear operation” shown in Figure 1.1 is the addition or multiplication of the

noise n(x,y) to the signal s(x,y) [Im01] (Refer to Chapter 2 for a detailed discussion).

Once the corrupted image w(x,y) is obtained, it is subjected to the denoising technique to

get the denoised image z(x,y). The point of focus in this thesis is comparing and

contrasting several “denoising techniques” (Figure 1.1).

Three popular techniques are studied in this thesis. Noise removal or noise

reduction can be done on an image by filtering, by wavelet analysis, or by multifractal

analysis. Each technique has its advantages and disadvantages. Denoising by wavelets

s(x,y)
Linear operation

n(x,y)

w(x,y)

Denoising technique

z(x,y)

 4

and multifractal analysis are some of the recent approaches. Wavelet techniques consider

thresholding while multifractal analysis is based on improving the Hölder regularity of

the corrupted image.

 The rest of this thesis is organized as follows. Chapter 2 discusses noise types

considered during the implementation of the various denoising algorithms. It gives the

distribution of each type of noise and also presents their effect on an image. Chapter 3

discusses filtering approaches using a linear mean filter [Um98] and the adaptive Least

Mean Square (LMS) filter [Li93] to help denoise images. A nonlinear approach based on

median filtering is also described. In Chapter 4, we introduce discrete wavelet transforms

along with the implementation of Mallat’s algorithm [Ma89] and later discuss denoising

of images using wavelets. Chapter 5 considers denoising based on multifractal analysis

[Lu01]. In this chapter, a tool in Matlab called Fraclab [Ve00] is also introduced which

demonstrates the denoising of digital images based on multifractals. Chapter 6 provides a

comparative study of all these methods considered for denoising. The quantitative results

of comparison are also tabulated by calculating the Signal to Noise Ratio [St01] of the

output image. It also provides a future scope on the work described in the thesis.

 5

Chapter 2

Additive and Multiplicative Noises

 In this chapter we discuss noise commonly present in an image. Note that noise is

undesired information that contaminates the image. In the image denoising process,

information about the type of noise present in the original image plays a significant role.

Typical images are corrupted with noise modeled with either a Gaussian, uniform, or salt

and pepper distribution. Another typical noise is a speckle noise, which is multiplicative

in nature. The behavior of each of these noises is described in Section 2.1 through

Section 2.4.

Noise is present in an image either in an additive or multiplicative form [Im01].

An additive noise follows the rule

(,) (,) (,)w x y s x y n x y= + ,

while the multiplicative noise satisfies

(,) (,) (,)w x y s x y n x y= × ,

where s(x,y) is the original signal, n(x,y) denotes the noise introduced into the signal to

produce the corrupted image w(x,y), and (x,y) represents the pixel location. The above

image algebra is done at pixel level. Image addition also finds applications in image

morphing [Um98]. By image multiplication, we mean the brightness of the image is

varied.

The digital image acquisition process converts an optical image into a continuous

electrical signal that is, then, sampled [Um98]. At every step in the process there are

fluctuations caused by natural phenomena, adding a random value to the exact brightness

value for a given pixel.

 6

2.1 Gaussian Noise

Gaussian noise is evenly distributed over the signal [Um98]. This means that each

pixel in the noisy image is the sum of the true pixel value and a random Gaussian

distributed noise value. As the name indicates, this type of noise has a Gaussian

distribution, which has a bell shaped probability distribution function given by,

2 2() 2

2

1
()

2

g mF g e σ

πσ
− −= ,

where g represents the gray level, m is the mean or average of the function, and σ is the

standard deviation of the noise. Graphically, it is represented as shown in Figure 2.1.

When introduced into an image, Gaussian noise with zero mean and variance as 0.05

would look as in Image 2.1 [Im01]. Image 2.2 illustrates the Gaussian noise with mean

(variance) as 1.5 (10) over a base image with a constant pixel value of 100.

Figure 2.1: Gaussian distribution

g

F(g)

 7

 Image 2.1: Gaussian noise Image 2.2: Gaussian noise

 (mean=0, variance 0.05) (mean=1.5, variance 10)

2.2 Salt and Pepper Noise

Salt and pepper noise [Um98] is an impulse type of noise, which is also referred

to as intensity spikes. This is caused generally due to errors in data transmission. It

has only two possible values, a and b. The probability of each is typically less than

0.1. The corrupted pixels are set alternatively to the minimum or to the maximum

value, giving the image a “salt and pepper” like appearance. Unaffected pixels remain

unchanged. For an 8-bit image, the typical value for pepper noise is 0 and for salt

noise 255. The salt and pepper noise is generally caused by malfunctioning of pixel

elements in the camera sensors, faulty memory locations, or timing errors in the

digitization process. The probability density function for this type of noise is shown

in Figure 2.2. Salt and pepper noise with a variance of 0.05 is shown in Image 2.3

[Im01].

Figure 2.2: PDF for salt and pepper noise

a b Gray level

probability

 8

Image 2.3: Salt and pepper noise

2.3 Speckle Noise

Speckle noise [Ga99] is a multiplicative noise. This type of noise occurs in almost

all coherent imaging systems such as laser, acoustics and SAR(Synthetic Aperture

Radar) imagery. The source of this noise is attributed to random interference between

the coherent returns. Fully developed speckle noise has the characteristic of

multiplicative noise. Speckle noise follows a gamma distribution and is given as

1

()
(1)!

g

a
g

F g e
a

α

αα

− −
=

−
,

where variance is α2a and g is the gray level.

On an image, speckle noise (with variance 0.05) looks as shown in Image 2.4

[Im01]. The gamma distribution is given below in Figure 2.3.

Figure 2.3: Gamma distribution

g

F(g)

 9

Image 2.4: Speckle noise

2.4 Brownian Noise

Brownian noise [Fr99] comes under the category of fractal or 1/f noises. The

mathematical model for 1/f noise is fractional Brownian motion [Ma68]. Fractal

Brownian motion is a non-stationary stochastic process that follows a normal

distribution. Brownian noise is a special case of 1/f noise. It is obtained by integrating

white noise. It can be graphically represented as shown in Figure 2.4. On an image,

Brownian noise would look like Image 2.5 which is developed from Fraclab [Ve00].

Figure 2.4: Brownian noise distribution

 10

Image 2.5: Brownian noise

2.5 Summary

 In this chapter, we have discussed various types of noises considered in the thesis

along with their distributions. Gaussian noise, salt and pepper noise, and speckle

noise can be generated from the Matlab 6.0 Image Processing tool box function

library. Brownian noise is generated using Fraclab [Ve00], a tool in Matlab 6.0, and is

added to the image. Based on the background provided so far, the main body of the

thesis is discussed in Chapters 3 through 5. Chapter 3 first discusses the filtering

approach in denoising.

 11

Chapter 3

Linear and Nonlinear Filtering Approach

 Linear filtering using mean filter and Least Mean Square (LMS) adaptive filter

and nonlinear filtering based on median filter are discussed in this chapter. Further, the

process image denoising is illustrated considering Matlab 6.1 [Ma01] implementations.

3.1 Background

Filters play a major role in the image restoration process. The basic concept

behind image restoration using linear filters is digital convolution and moving window

principle [Ni86]. Let w(x) be the input signal subjected to filtering, and z(x) be the

filtered output. If the filter satisfies certain conditions such as linearity and shift

invariance, then the output filter can be expressed mathematically in simple form as

[Ni86]

∫ −= dttxhtwxz)()()(,

where h(t) is called the point spread function or impulse response and is a function that

completely characterizes the filter. The integral represents a convolution integral and, in

short, can be expressed as .* hwz =

 For a discrete case, the integral turns into a summation as

 ∑
+∞

∞−

−=)()()(tihtwiz . (3.1)

Although the limits on the summation in Equation (3.1) are ∞, the function h(t) is usually

zero outside some range. If the range over which h(t) is non-zero is (-k, +k), then the

above Equation (3.1) can be written as

 ∑
+

−

−=
ki

ki

tihtwiz)()()(. (3.2)

This means that the output z(i) at point i is given by a weighted sum of input pixels

surrounding i where the weights are given by h(t). To create the output at the next pixel

 12

i+1, the function h(t) is shifted by one and the weighted sum is recomputed. The total

output is created by a series of shift-multiply-sum operations, and this forms a discrete

convolution. For the 2-dimensional case, h(t) is h(t,u), and Equation (3.2) becomes

 ∑ ∑
+

−=

+

−=

−−=
ki

kit

lj

lju

ujtihutwjiz),(),(),(.

Values of h(t,u) are referred to as the filter weights, the filter kernel, or filter mask. For

reasons of symmetry h(t,u) is always chosen to be of size m×n where m and n are both

odd (often m=n). In physical systems, the kernel h(t,u) must always be non-negative

which results in some blurring or averaging of the image. If the coefficients are

alternating positive and negative, the mask is a filter that returns edge information only.

The narrower the h(t,u), the better the system in the sense of less blurring. In digital

image processing, h(t,u) maybe defined arbitrarily and this gives rise to many types of

filters. The weights of h(t,u) may be varied over the image and the size and shape of the

window can also be varied. These operations are no longer linear and no longer

convolutions. They become moving window operations. With this flexibility, a wide

range of linear, non-linear and adaptive filters may be implemented.

3.2 Linear Filtering

3.2.1 Mean Filter

A mean filter [Um98] acts on an image by smoothing it; that is, it reduces the

intensity variation between adjacent pixels. The mean filter is nothing but a simple

sliding window spatial filter that replaces the center value in the window with the average

of all the neighboring pixel values including itself. By doing this, it replaces pixels, that

are unrepresentative of their surroundings. It is implemented with a convolution mask,

which provides a result that is a weighted sum of the values of a pixel and its neighbors.

It is also called a linear filter. The mask or kernel is a square. Often a 3×3 square kernel

is used. If the coefficients of the mask sum up to one, then the average brightness of the

image is not changed. If the coefficients sum to zero, the average brightness is lost, and it

returns a dark image. The mean or average filter works on the shift-multiply-sum

 13

principle [Ni86]. This principle in the two-dimensional image can be represented as

shown below (refer to Figure 3.1).

Filter mask

 Multiply and sum for the

 pixel at (4,3) =

549538527

446435424

343332321

whwhwh

whwhwh

whwhwh

+++
+++

++

Figure 3.1: Multiply and sum process

The mask used here is a 3×3 kernel shown in Figure 3.2. Note that the coefficients of this

mask sum to one, so the image brightness is retained, and the coefficients are all positive,

so it will tend to blur the image.

h1 h2 h3

h4 h5 h6

h7 h8 h9

w32 w33 w34

w42 w43 w44

w52 w53 w54

 14

Figure 3.2: A constant weight 3×3 filter mask

Example 3.1: For the following 3×3 neighborhood, mean filtering is applied by

convoluting it with the filter mask shown in Figure 3.2.
















×

















919191

919191

919191

655761

6220066

635870

This provides a calculated value of 78. Note that the center value 200, in the pixel matrix,

is replaced with this calculated value 78. This clearly demonstrates the mean filtering

process.

Computing the straightforward convolution of an image with this kernel carries

out the mean filtering process. It is effective when the noise in the image is of impulsive

type. The averaging filter works like a low pass filter, and it does not allow the high

frequency components present in the noise to pass through. It is to be noted that larger

kernels of size 5×5 or 7×7 produces more denoising but make the image more blurred. A

trade off is to be made between the kernel size and the amount of denoising.

The filter discussed above is also known as a constant coefficient filter because

the weight matrix does not change during the whole process. Mean filters are popular for

their simplicity and ease of implementation. We have implemented the averaging filter

using Matlab 6.1 [Ma01]. The pixel values of an image “cameraman.tif” are read into the

program by using the function imread() [Appendix]. This image is of size 256×256. Salt

and pepper noise is added to this image by using the function imnoise() [Appendix]. The

pixel values of this corrupted image are copied into a 2-dimentional array of size

256×256. A 3×3 weight matrix is initialized. Selecting a 3×3 window over the 256×256

pixel matrix, the weighted sum of the selected window is computed. The result replaces

the center pixel in the window. For the next iteration, the window moves by one column

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

 15

to the right. The window movement is considered in the horizontal direction first and

then in the vertical direction until all the pixels are covered. The modified pixel matrix is

now converted to the image format with the help of the function imwrite() [Appendix].

Image 3.1 is the one corrupted with salt and pepper noise with a variance of 0.05.

The output image after Image 3.1 is subjected to mean filtering is shown in Image 3.2. It

can be observed from the output that the noise dominating in Image 3.1 is reduced in

Image 3.2. The white and dark pixel values of the noise are changed to be closer to the

pixel values of the surrounding ones. Also, the brightness of the input image remains

unchanged because of the use of the mask, whose coefficients sum up to the value one.

The mean filter is used in applications where the noise in certain regions of the

image needs to be removed. In other words, the mean filter is useful when only a part of

the image needs to be processed.

Image 3.1: Input to mean filter Image 3.2: Image after mean

corrupted with salt and pepper noise filtering

3.2.2 LMS Adaptive Filter

An adaptive filter does a better job of denoising images compared to the

averaging filter. The fundamental difference between the mean filter and the adaptive

filter lies in the fact that the weight matrix varies after each iteration in the adaptive filter

while it remains constant throughout the iterations in the mean filter. Adaptive filters are

capable of denoising non-stationary images, that is, images that have abrupt changes in

 16

intensity. Such filters are known for their ability in automatically tracking an unknown

circumstance or when a signal is variable with little a priori knowledge about the signal

to be processed [Li93]. In general, an adaptive filter iteratively adjusts its parameters

during scanning the image to match the image generating mechanism. This mechanism is

more significant in practical images, which tend to be non-stationary.

Compared to other adaptive filters, the Least Mean Square (LMS) adaptive filter

is known for its simplicity in computation and implementation. The basic model is a

linear combination of a stationary low-pass image and a non-stationary high-pass

component through a weighting function [Li93]. Thus, the function provides a

compromise between resolution of genuine features and suppression of noise.

The LMS adaptive filter incorporating a local mean estimator [Li93] works on the

following concept. A window, W, of size m×n is scanned over the image. The mean of

this window, µ, is subtracted from the elements in the window to get the residual matrix

W
r
.

µ−= WW r (3.3)

A weighted sum [Ni86] z~ , is computed in a way similar to the mean filter using

∑
∈

=
Wji

rWjihz
),(

),(~ (3.4)

where (,)h i j represents elements of the weight matrix shown in Figure (3.2). A sum of

the weighted sum, z~ , and the mean, µ, of the window replaces the center element of the

window. Thus, the resultant modified pixel value is given as

µ+= zz ~ (3.5)

For the next iteration, the window is shifted over one pixel in row major order and

the weight matrix is modified. The deviation e is computed by taking the difference

between the center value of the residual matrix and the weighted sum as Equation (3.6).

zWe r ~−= (3.6)

 17

The largest eigenvalue λ of the original window is calculated from the autocorrelation

matrix of the window considered. The use of the largest eigenvalue in computing the

modified weight matrix for the next iteration reduces the minimum mean squared error

[Tk99]. A value η is selected such that it lies in the range (0, 1/λ). In other words,

 0 < η < 1/λ.

The new weight matrix hk+1 is

r

kk Wehh ××+=+ η1 (3.7)

where hk is the weight matrix from the previous iteration. The weight matrix obtained this

way is used in the next iteration. The process continues until the window covers the entire

image.

 The LMS adaptive filter incorporating a local mean estimator is implemented in

Matlab 6.1 [Ma01]. The pixel values of an image “cameraman.tif” are read into the

program by using the function imread() [Appendix]. This image is of size 256×256. Salt

and pepper noise is added to this image by using the function imnoise() [Appendix]. The

pixel values of this corrupted image are copied into a 2-dimentional array of size

256×256. A 3×3 weight matrix, given in Figure 3.2, is initialized. A 5×5 window is

scanned over the pixel matrix but the operations from Equations (3.3) through (3.6) are

done on a 3×3. The remaining pixels in the 5×5 window are used in the calculation of

the autocorrelation matrix of the 3×3 window. The largest eigenvalue of the

autocorrelation matrix is obtained with the help of the function max(eig()) [Appendix].

The modified weight matrix is now computed based on Equation (3.7). The window

traverses right by one column and the procedure is repeated with “for” loops until the

window covers the entire image. The modified pixel matrix is now converted to the

image format with the help of the function imwrite() [Appendix].

When the image is corrupted with salt and pepper noise, it looks as shown in

Image 3.3. When Image 3.3 is subjected to the LMS adaptive filtering, it gives an output

image shown in Image 3.4. Similar to the mean filter, the LMS adaptive filter works well

for images corrupted with salt and pepper type noise. But this filter does a better

denoising job compared to the mean filter.

 18

Image 3.3: Input to LMS adaptive filter Image 3.4: Image after LMS adaptive

 corrupted with salt and pepper noise filtering

3.3 Median Filter

A median filter belongs to the class of nonlinear filters unlike the mean filter. The

median filter also follows the moving window principle similar to the mean filter. A 3×3,

5×5, or 7×7 kernel of pixels is scanned over pixel matrix of the entire image. The

median of the pixel values in the window is computed, and the center pixel of the

window is replaced with the computed median. Median filtering is done by, first sorting

all the pixel values from the surrounding neighborhood into numerical order and then

replacing the pixel being considered with the middle pixel value. Note that the median

value must be written to a separate array or buffer so that the results are not corrupted as

the process is performed. Figure 3.3 illustrates the methodology.

Figure 3.3: Concept of median filtering

Neighborhood values:

115,119,120,123,124,125,126,127,150

Median value: 124

 19

The central pixel value of 150 in the 3×3 window shown in Figure 3.3 is rather

unrepresentative of the surrounding pixels and is replaced with the median value of 124.

The median is more robust compared to the mean. Thus, a single very

unrepresentative pixel in a neighborhood will not affect the median value significantly.

Since the median value must actually be the value of one of the pixels in the

neighborhood, the median filter does not create new unrealistic pixel values when the

filter straddles an edge. For this reason the median filter is much better at preserving

sharp edges than the mean filter. These advantages aid median filters in denoising

uniform noise as well from an image.

The image processing toolbox [Im01] in Matlab 6.1 [Ma01] provides the

medfilt2() [Appendix] function to do median filtering on an image. The input image and

the size of the window are the parameters the function takes. As mentioned earlier, the

image “cameraman.tif” is corrupted with salt and pepper noise with the imnoise()

[Appendix] function after loading the image using imread() [Appendix]. Image 3.5 is the

image corrupted with salt and pepper noise and is given to the function medfilt2() for

median filtering. The window specified is of size 3×3. Image 3.6 is the output after

median filtering. It can be observed that the edges are preserved and the quality of

denoising is much better compared to the Images 3.2 and 3.4.

 Image 3.5: Input to median filter Image 3.6: Output from median filter

 20

3.4 Summary

In this chapter, we have focused on the denoising of images using the linear and

nonlinear filtering techniques where linear filtering is done using the mean filter and the

LMS adaptive filter while the nonlinear filtering is performed using a median filter.

These filters are good for removing noise that is impulsive in nature. The mean filters

find applications where a small region in the image is concentrated. Besides,

implementation of such filters is easy, fast, and cost effective. It can be observed from the

output Images (3.2) and (3.4) that the filtered images are blurred. The median filter

provides a solution to this, where the sharpness of the image is retained after denoising.

From our experimentation, it has been observed that the filtering approach does not

produce considerable denoising for images corrupted with Gaussian noise or speckle

noise. Wavelets play a very important role in the removal of the noise, especially when it

is of the Gaussian type. We consider this technique in Chapter 4.

 21

Chapter 4

Wavelet Transforms and Denoising

4.1. Discrete Wavelet Transform (DWT) - Principles

 Wavelets are mathematical functions that analyze data according to scale or

resolution [Gr95]. They aid in studying a signal in different windows or at different

resolutions. For instance, if the signal is viewed in a large window, gross features can be

noticed, but if viewed in a small window, only small features can be noticed.

 Wavelets provide some advantages over Fourier transforms. For example, they do

a good job in approximating signals with sharp spikes or signals having discontinuities.

Wavelets can also model speech, music, video and non-stationary stochastic signals.

Wavelets can be used in applications such as image compression, turbulence, human

vision, radar, earthquake prediction, etc. [Gr95].

The term “wavelets” is used to refer to a set of orthonormal basis functions

generated by dilation and translation of scaling function φ and a mother wavelet ψ

[An01]. The finite scale multiresolution representation of a discrete function can be

called as a discrete wavelet transform [Wa01]. DWT is a fast linear operation on a data

vector, whose length is an integer power of 2. This transform is invertible and orthogonal,

where the inverse transform expressed as a matrix is the transpose of the transform

matrix. The wavelet basis or function, unlike sines and cosines as in Fourier transform, is

quite localized in space. But similar to sines and cosines, individual wavelet functions are

localized in frequency.

The orthonormal basis or wavelet basis is defined as [Ti92]

)2(2)(2

),(kxx jj/

kj −= ψψ . (4.1)

The scaling function is given as [Ti92]

)2(2)(2/

),(kxx jj

kj −= φφ , (4.2)

 22

where ψ is called the wavelet function and j and k are integers that scale and dilate the

wavelet function. The factor ‘j’ in Equations (4.1) and (4.2) is known as the scale index,

which indicates the wavelet’s width. The location index k provides the position. The

wavelet function is dilated by powers of two and is translated by the integer k. In terms of

the wavelet coefficients, the wavelet equation [Ti92] is

∑
−

−=
1

)2(2)(
N

k

k kxgx φψ , (4.3)

where g0, g1, g2,…. are high pass wavelet coefficients. Writing the scaling equation

[Ti92] in terms of the scaling coefficients as given below, we get

∑
−

−=
1

)2(2)(
N

k

k kxhx φφ . (4.4)

The function φ(x) is the scaling function and the coefficients h0, h1, h2,… are low pass

scaling coefficients. The wavelet and scaling coefficients are related by the quadrature

mirror relationship, which is

Nn
n

n hg +−−= 1)1(

The term N is the number of vanishing moments [Ti92]. A graphical representation of

DWT is shown in Figure 4.1. Note that, Y0 is the initial signal.

Figure 4.1: A 1-Dimensional DWT - Decomposition step

Lo_D 2

Hi_D 2

Hj+1

Gj+1

Yj

level j

where X convolve with filter X and

 2 downsampling

level j+1

 23

As mentioned earlier, the wavelet equation produces different wavelet families

like Daubechies, Haar, coiflets, etc. [Wa01]. Wavelets are classified into a family by the

number of vanishing moments N. Within each family of wavelets there are wavelet

subclasses distinguished by the number of coefficients and by the level of iterations. The

filter lengths and the number of vanishing moments for four different wavelet families

are tabulated in Table 4.1.

Table 4.1: Wavelet families and their properties [Ma01]

Wavelet Family Filters length Number of vanishing moments, N

Haar 2 1

Daubechies M 2M M

Coiflets M 6M 2M-1

Symlets 2M M

4.2 Properties of DWT

Some of the properties of discrete wavelet transforms are listed below [Gr95, Vi99].

• DWT is a fast linear operation, which can be applied on data vectors having

length as integer power of 2.

• DWT is invertible and orthogonal. Note that the scaling function φ and the

wavelet function ψ are orthogonal to each other in L
2
(0, 1), i.e., < φ, ψ > = 0.

• The wavelet basis is quite localized in space and frequency.

• The coefficients satisfy some constraints

∑
−

=

=
12

0

2
N

i

ih (4.5)

∑
−

=

+ =
12

0

0,12

N

i

liihh δ (4.6)

Here δ is the delta function and l is the location index.

∑
−

=

=−
12

0

0)1(
N

i

i
ki hi (4.7)

 24

In all the above relations, N represents the number of vanishing moments.

• The wavelet coefficients of a fractional Brownian motion (fBm) supports

Stationarity, i.e., () (0),j jg k g k= ∀ .

• Wavelet coefficients exhibit Gaussianity:

 2() ~ (0, 2)jH

jg k N ψσ , where σψ is a constant depending on ψ and H, the Hurst

parameter for fBm. This property aids wavelets in the removal of Gaussian noise

from images.

• The wavelet coefficients are almost decorrelated,

 2()[() ()] | 2 2 |j j H N

j jE g k g k k k− − −
′ ′ ′≈ − , where N refers to the number of vanishing

 moments.

Equations (4.5) through (4.7) are used to compute the scaling and wavelet

coefficient values of the corresponding wavelet family. For Haar wavelet transform,

2110 == hh and 2110 =−= gg . In the case of Daubechies 2 wavelets,

24

31
,

24

33
,

24

33
,

24

31
3210

−
=

−
=

+
=

+
= hhhh and

24

)31(
,

24

33
,

24

)33(
,

24

31
3210

+−
=

+
=

−−
=

−
= hggg .

The Gaussianity property exhibited by wavelets aids in denoising images corrupted

with additive Gaussian noise. The decorrelation exhibited by the wavelet coefficients

is important because it explains a Karhunen-Loeve-like expansion that is implicitly

performed for 1/f processes using orthogonal wavelet bases.

4.3 Mallat’s Algorithm

 Mallat’s algorithm [Ma68] is a computationally efficient method of implementing

the wavelet transform. It calculates DWT wavelet coefficients for a finite set of input

data, which is a power of 2. This input data is passed through two convolution functions,

each of which creates an output stream that is half the length of the original input. This

procedure is referred to as down sampling [Wi92]. The convolution functions are filters.

One half of the output is produced by the low pass filter function defined by Equation

 25

(4.4) and the other half is produced by the high pass filter function defined by Equation

(4.3). The low pass outputs contain most of the information of the input signal and are

known as “coarse” coefficients. The outputs from the high pass filter are known as

“detail” coefficients.

The coefficients obtained from the low pass filter are used as the original signal

for the next set of coefficients. This procedure is carried out recursively until a trivial

number of low pass filter coefficients are left. The final output contains the remaining

low pass filter outputs and the accumulated high pass filter outputs. This procedure is

termed as decomposition.

In certain applications, some form of processing is done to the wavelet

coefficients obtained after the DWT. Once the processing is done, the data vector is built

back from the coefficients. This processes of reconstruction is referred to as the inverse

Mallat’s algorithm.

 In the reconstruction procedure, quadrature mirror filters Equation (4.3) and

Equation (4.4) are supplied with the coarse coefficients and the accumulated detail

coefficients. The so obtained outputs of the two filters are summed and are treated as the

coarse coefficients for the next stage of reconstruction. This procedure is continued until

the data vector is obtained. The numerical example below demonstrates Mallat’s

algorithm and the inverse Mallat’s algorithm.

Example 4.1: Consider the one dimensional signal

Y = [1 0 -3 2 1 0 1 2]

Applying the Haar wavelet transform to the above signal, with

2

122 ++
=

kk YY
H , which gives the coarser approximation coefficients and

2

122 +−
=

kk YY
G , which gives the detail coefficients.

2110 == hh , the low pass filter coefficients

2110 =−= gg , the high pass filter coefficients.

 26

Stage 1, j = 3:

 Stage 2, j=2:

 Coarse coefficients

 Detail coefficients

 Stage 3, j=1:

 Coarse coefficients

 Detail coefficients

Stage 4, j=0:

 Coarse coefficients

 Detail coefficients

Figure 4.2: Mallat’s algorithm (decomposition phase)

The original signal containing 8 elements is decomposed to the final stage containing

only two elements by applying the Mallat’s algorithm. For reconstruction, consider these

two elements. Figure 4.3 illustrates the reconstruction procedure. Note that the final
output of the reconstruction algorithm is the original data vector.

4.4 Wavelet Thresholding

 Donoho and Johnstone [Do94] pioneered the work on filtering of additive

Gaussian noise using wavelet thresholding. From their properties and behavior, wavelets

play a major role in image compression and image denoising. Since our topic of interest

is image denoising, the latter application is discussed in detail. Wavelet coefficients

calculated by a wavelet transform represent change in the time series at a particular

resolution. By considering the time series at various resolutions, it is then possible to

filter out noise.

1 0 -3 2 1 0 1 2

1/√2 -1/√2 1/√2 3/√2

1/√2 -5/√2 1/√2 -1/√2

0 2

1 -1

 √2

-√2

H

H

H G

G

G

 27

Figure 4.3: Inverse Mallat’s algorithm (reconstruction phase)

√2 -√2

1 1

 -1 1

0 2 1 -1

1/√2 -1/√2 1/√2 3/√2 1/√2 -5/√2 1/√2 -1/√2

0 0 √2 √2

1/√2 -1/√2 -1/√2 1/√2

1/2 1/2 -1/2 -1/2 1/2 1/2 3/2 3/2

1/2 -1/2 -5/2 5/2 1/2 -1/2 -1/2 1/2

1 0 -3 2 1 0 1 2

H G

Sum Detail Coefficients

H G

Sum Detail Coefficients

H G

Sum

 28

 The term wavelet thresholding is explained as decomposition of the data or the

image into wavelet coefficients, comparing the detail coefficients with a given threshold

value, and shrinking these coefficients close to zero to take away the effect of noise in the

data. The image is reconstructed from the modified coefficients. This process is also

known as the inverse discrete wavelet transform. During thresholding, a wavelet

coefficient is compared with a given threshold and is set to zero if its magnitude is less

than the threshold; otherwise, it is retained or modified depending on the threshold rule.

Thresholding distinguishes between the coefficients due to noise and the ones consisting

of important signal information.

 The choice of a threshold is an important point of interest. It plays a major role in

the removal of noise in images because denoising most frequently produces smoothed

images, reducing the sharpness of the image. Care should be taken so as to preserve the

edges of the denoised image. There exist various methods for wavelet thresholding,

which rely on the choice of a threshold value. Some typically used methods for image

noise removal include VisuShrink, SureShrink and BayesShrink [An01, Ch00, Do94].

 Prior to the discussion of these methods, it is necessary to know about the two

general categories of thresholding. They are hard- thresholding and soft-thresholding

types. The hard-thresholding TH can be defined as [Do92]



 ≥

=
regions.other allin 0

||for txx
TH

Here t is the threshold value. A plot of TH is shown in Figure 4.4.

Figure 4.4: Hard thresholding

t

-t

 29

Thus, all coefficients whose magnitude is greater than the selected threshold value

t remain as they are and the others with magnitudes smaller than t are set to zero. It

creates a region around zero where the coefficients are considered negligible.

Soft thresholding is where the coefficients with greater than the threshold are

shrunk towards zero after comparing them to a threshold value. It is defined as follows

[Do92],



 >−

=
regions.other allin 0

||for)|)(|(sign txtxx
Ts

Figure 4.5: Soft thresholding

In practice, it can be seen that the soft method is much better and yields more visually

pleasant images. This is because the hard method is discontinuous and yields abrupt

artifacts in the recovered images. Also, the soft method yields a smaller minimum mean

squared error compared to hard form of thresholding.

Now let us focus on the three methods of thresholding mentioned earlier. For all

these methods the image is first subjected to a discrete wavelet transform, which

decomposes the image into various sub-bands. Graphically it can be represented as

shown in Figure 4.6.

t

-t

 30

Figure 4.6: DWT on 2-dimensional data

The sub-bands HHk, HLk, LHk, k = 1, 2, …, j are called the details, where k is the

scale and j denotes the largest or coarsest scale in decomposition. Note, LLk is the low-

resolution component. Thresholding is now applied to the detail components of these sub

bands to remove the unwanted coefficients, which contribute to noise. And as a final step

in the denoising algorithm, the inverse discrete wavelet transform is applied to build back

the modified image from its coefficients.

4.4.1 VisuShrink

VisuShrink was introduced by Donoho [Do92]. It uses a threshold value t that is

proportional to the standard deviation of the noise. It follows the hard thresholding rule. It

is also referred to as universal threshold and is defined as

2logt nσ= (4.8)

σ2
 is the noise variance present in the signal and n represents the signal size or number of

samples. An estimate of the noise level σ was defined based on the median absolute

deviation [Do94] given by

{ }()1

1,| |: 0,1,..., 2 1
ˆ

0.6745

j

j kmedian g k
σ

−
− = −

= (4.9)

LH1 HH1

HL1

HH2LH2

HL2

LH3

LL3 HL3

HH3

 31

where gj-1,k corresponds to the detail coefficients in the wavelet transform.

VisuShrink does not deal with minimizing the mean squared error [Ch00]. It can

be viewed as general-purpose threshold selectors that exhibit near optimal minimax error

properties and ensures with high probability that the estimates are as smooth as the true

underlying functions [Do92]. However, VisuShrink is known to yield recovered images

that are overly smoothed. This is because VisuShrink removes too many coefficients.

Another disadvantage is that it cannot remove speckle noise. It can only deal with an

additive noise. VisuShrink follows the global thresholding [An01] scheme where there is

a single value of threshold applied globally to all the wavelet coefficients.

The VisuShrink algorithm has been implemented using Matlab 6.1 [Ma01]. The

images “cameraman.tif” and “moon.tif” are read using the imread() function. Noise is

added to the image using imnoise(). The threshold value using Equation (4.8) is

computed from the function ddencmp(). A global thresholding is applied over the

wavelet coefficients with wdencmp(). The modified image is obtained with imwrite()

function. The images shown from Image 4.1 through 4.4 exhibit the effect of VisuShrink

thresholding. Note that all Matlab 6.1 functions are given in Appendix.

Image 4.1: Image corrupted with Image 4.2: Image after application

 Gaussian noise, variance 0.005 of VisuShrink

 32

Image 4.3: Image corrupted with Image 4.4: Image after application

 Gaussian noise, variance 0.05 of VisuShrink

4.4.2 SureShrink

A threshold chooser based on Stein’s Unbiased Risk Estimator (SURE) was

proposed by Donoho and Johnstone [Do94] and is called as SureShrink. It is a

combination of the universal threshold and the SURE threshold. This method specifies a

threshold value tj for each resolution level j in the wavelet transform which is referred to

as level dependent thresholding [An01]. The goal of SureShrink is to minimize the mean

squared error, defined as [Ch00]

2

2
, 1

1
MSE ((,) (,))

n

x y

z x y s x y
n =

= −∑ ,

where z(x,y) is the estimate of the signal while s(x,y) is the original signal without noise

and n is the size of the signal. SureShrink suppresses noise by thresholding the empirical

wavelet coefficients. The SureShrink threshold t* is defined as

()* min , 2 logt t nσ= ,

where t denotes the value that minimizes Stein’s Unbiased Risk Estimator, σ is the noise

variance computed from Equation (4.9), and n is the size of the image. SureShrink

follows the soft thresholding rule. The thresholding employed here is adaptive, i.e., a

threshold level is assigned to each dyadic resolution level by the principle of minimizing

the Stein’s Unbiased Risk Estimator for threshold estimates. It is smoothness adaptive,

 33

which means that if the unknown function contains abrupt changes or boundaries in the

image, the reconstructed image also does.

 SureShrink is implemented using Matlab 6.1 [Ma01]. With the function imread(),

the image “moon.tif” is loaded into the Matlab workspace. This image is corrupted with

Gaussian noise with the help of imnoise() function. Daubechies wavelet decomposition is

done on the corrupted image with wavedec2() function. The threshold values are

computed using the function, wdcbm2(). Sure thresholding is done on the detail

coefficients with wdencmp() specifying the parameter, ‘lvd’ in the function which means

that level dependent thresholding is done on the coefficients.

 Image 4.5: Input corrupted with Image 4.6: Image after SureShrink

 Gaussian noise thresholding

Image 4.5 is the image corrupted with Gaussian noise. Image 4.6 is the one obtained after

Image 4.5 is subjected to SureShrink thresholding. The modified image is obtained using

imwrite(). All Matlab 6.1 functions used here are listed in Appendix.

4.4.3 BayesShrink

BayesShrink was proposed by Chang, Yu and Vetterli [Ch00]. The goal of this

method is to minimize the Bayesian risk, and hence its name, BayesShrink. It uses soft

thresholding and is subband-dependent, which means that thresholding is done at each

band of resolution in the wavelet decomposition. Like the SureShrink procedure, it is

smoothness adaptive. The Bayes threshold, tB, is defined as

 34

2 /B st σ σ= . (4.10)

where σ2
is the noise variance and σs

2
 is the signal variance without noise. The noise

variance σ2
is estimated from the subband HH1 in Figure 4.6 by the median estimator

shown in Equation (4.9). From the definition of additive noise we have

(,) (,) (,)w x y s x y n x y= + .

Since the noise and the signal are independent of each other, it can be stated that

2 2 2

w sσ σ σ= + .

σ2
w can be computed as shown below:

2 2

2
, 1

1
(,)

n

w

x y

w x y
n

σ
=

= ∑ .

The variance of the signal, σ2
s is computed as

2 2max(,0)s wσ σ σ= − . (4.11)

With σ2
 and σ2

s, the Bayes threshold is computed from Equation (4.10). Using this

threshold, the wavelet coefficients are thresholded at each band shown in Figure 4.6.

Matlab 6.1 [Ma01] is used for the implementation of BayesShrink. The image

“cameraman.tif” is loaded into the workspace by using imread(). This image is corrupted

with Gaussian noise using the imnoise() function. The image obtained is subjected to a

discrete wavelet transform using Daubechies wavelets with the help of the dwt2()

function. This function generates wavelet coefficients for the corrupted image. There are

four bands namely, cA, cH, cV and cD, where cA corresponds to the approximation

coefficients, while cH, cV, and cD are the detail coefficients over which thresholding is

done. The noise variance for each band is computed using Equation (4.9) and the signal

variance is computed using Equation (4.11). With these two values, the threshold value is

computed from Equation (4.10). Thresholding of the wavelet coefficients is brought

about using the function wthresh(). Inverse wavelet transform using idwt2() is done on

the modified wavelet coefficients to get the signal. The image is built from this signal

using imwrite() function. All the Matlab 6.1 functions used here are listed in Appendix.

BayesShrink has been experimented to remove Gaussian noise (mean=0, variance = 0.05)

and speckle noise (variance = 0.05). The input and output images after applying

BayesShrink can be seen in the Images 4.7 through 4.10.

 35

 Image 4.7: Image corrupted with Image 4.8: Image subjected to

 Gaussian noise BayesShrink

 Image 4.9: Image corrupted with Image 4.10: Image subjected to

 speckle noise BayesShrink

 36

4.5 Summary

 Denoising of images using VisuShrink, SureShrink and BayesShrink using

Matlab 6.1 is discussed in this chapter. All these methods are based on the application of

wavelet transforms. Each of these methods is compared in terms of the signal to noise

ratio discussed in Chapter 6 of this thesis. Chapter 5 deals with denoising of images using

the multifractal approach.

 37

Chapter 5

Multifractal Image Denoising

This chapter deals with one of the most recent techniques in image denoising,

known as multifractal analysis. A brief introduction on multifractals is given first before

we describe the use of multifractals in image noise removal. The denoising algorithms are

implemented in Matlab [Ma01] using Fraclab [Ve00] tools.

5.1 Introduction

 The phenomenon of multifractals was first described by B. B. Mandelbrot in the

context of fully developed turbulence [Ga96]. Multifractal structures are generated by

the multiplicative cascade of random processes, while additive processes generally

produce simple fractals or monofractals. Functions that are everywhere continuous but

nowhere differentiable are called fractals. They are objects of a complex structure, which

exhibit the scaling property, that is, they exhibit the same properties at different scales. A

fractal describes the local singularity and is usually measured using the Hurst parameter.

The fractal dimension is the basic notion for describing structures that have scaling

symmetry and is closely related to Hölder regularity (see Section 5.2). Fractal dimension

is a non-integer value. Multifractal analysis gives a compact representation of the spectral

decomposition of a signal into parts of equal strength of regularity [Ri98]. This property

makes multifractals very useful in image denoising. Other applications of multifractals

are in the fields of turbulence, rainfall, dynamical systems and in earthquake modeling

[Ha01].

 Denoising by multifractal analysis is based on the fact that signal enhancement is

equivalent to increasing the Hölder regularity at each point [Ve01]. It is well adapted to

the case where the signal to be recovered is very irregular and nowhere differentiable, a

property relevant to fractal or self-similar structures. The local regularity of a function is

measured by the local Hölder exponent, which is a local notion. Since the Hölder

 38

exponent is a local notion, this scheme is valid for signals that have sudden changes in

regularity like discontinuities. To any continuous function we can associate its Hölder

function, which gives the value of the Hölder exponent of the function at every point. In

image denoising using multifractal analysis, the Hölder regularity of the input signal is

manipulated so that it is close to the regularity of the desired signal (see section 5.3.1 and

5.3.2). The regularity of a function can be determined by geometrical and analytical

ways. In the geometrical case, the regularity is obtained by computing the fractional

dimensions of its graph. The analytical way considers a family of nested functional

spaces and determines the ones to which the function actually belongs [Ve01]. Generally,

the second method is more practical and, hence, popular.

Denoising by multifractal analysis makes no assumptions on the type of noise

present in the signal. Also, noise is considered to be independent of the signal. This

procedure is suitable for signals, that are everywhere irregular, and the regularity of the

original signal may vary rapidly in time or space.

Section 5.2 describes the concept of Hölder exponent and provides the reason for

its importance in image denoising.

5.2 Hölder Exponents

Holder exponent αx of a function f at x can be defined as [Ma94]

0

log | () () |
liminf | ()

log | |
x

f x f y
y B x

x y
α ∈∈→

 −
= ∈ − 

,

where B∈(x) denotes a ball of radius ∈>0 centered at x. The Hölder exponent is a widely

used tool for measuring the pointwise regularity of signals. The regularity

characterizations are widely used in fractal analysis because they have direct

interpretations in various applications. Computing the Hölder exponent at each point in

an image gives an idea of its structure, especially of the edges [Ve97]. There are two

types of Hölder exponents, namely, pointwise Hölder exponent and local Hölder

exponent. The mathematical definitions of each of these terms is discussed in [Ve01].

Since our point of interest is image denoising using the multifractal analysis, the detailed

mathematical treatment is not given here.

 39

The pointwise Hölder exponent characterizes the regularity of a function under

consideration at any given point. It is represented as αp, and it corresponds to the auditive

perception of smoothness for voice signals [Ve01]. The pointwise Hölder exponent is not

stable under the action of differential operators, and this exponent is not sufficient to

predict the pointwise Hölder exponent of its derivative. The local Holder exponent is

related to the regularity of a function under consideration around any given point. It is

always smaller than the pointwise Holder exponent. It is stable under differentiation and

integration, unlike the pointwise exponent [Ve01]. Fraclab [Ve00] provides various

methods for the estimation of these two exponents. In the following sections where the

Hölder regularity is used for image denoising, the local Holder exponent αl and the

pointwise Holder exponent αp are assumed to be the same, ie., l pα α= . To illustrate

Hölder exponent, consider the wavelet coefficients that behave like)21(2)(+≈ αj

j kg as j

tends to -∞. Here, α represents the Hölder exponent and quantifies local variation, gj(k)

are the detail coefficients obtained from the wavelet transform at resolution j. At a

particular point t0, the Hölder exponent α(t0) behaves like
)(0)(

t
t

αδ as 0→tδ in an

interval [t0, t0+δt] of length δt. Informally, signals with Ht =)(0α (H is the Hurst

parameter) at all instants t0 are called monofractals while signals with nonconstant Hölder

exponent α(t0) are termed multifractals.

5.3 Image Denoising Using Multifractal Analysis

A lot of research is going on in the use of mutlifractal analysis in image

denoising. Denoising is done based on factors such as spectrum shift value and Hölder

exponent shift of the input signal. Two methods for image denoising using multifractal

analysis are considered here. They are multifractal regularization [Ve01] and multifractal

pumping [Ve00]. Each of these methods is discussed in detail in Sections 5.3.1 and 5.3.2,

respectively.

Following the notations of previous chapters, the original signal is represented as

s(x,y), noise as n(x,y), observed signal as w(x,y), and (x,y) as the pixel location. The

Hölder regularity of w(x,y) represented as αw will be less than the Hölder regularity of

 40

s(x,y) αs. This is because s(x,y) denotes the image without noise. The goal therefore, is to

increase αw. If the Hölder regularity of s(x,y) be known, it can be used as a target. But in

most practical cases, it is unknown. In such circumstances, it is estimated from w(x,y).

Let z(x,y) be the estimate of the signal after regularization that has a regularity αz which is

close to αs. Assuming that the regularity of the original signal without noise is unknown,

we choose a positive parameter δ such that

z wα α δ= + , (5.1)

where αz is the Hölder regularity of the estimated signal. The next step would be to

estimate the local Hölder exponent of a signal from discrete observations. A wavelet-

based procedure discussed in Chapter 4, Section 4.1 is used for estimating and controlling

the Hölder exponent. It is to be noted that regularity is an abstraction and is valid only

asymptotically. So the true value of Holder regularity is not the point of interest but only

a resultant value, that is greater than that of the input signal is of interest [Ve01].

5.3.1 Multifractal Regularization

Multifractal regularization is a process by which the Hölder regularity of the input

image is increased by the use of a wavelet-based approach. As mentioned above,

according to the functional analysis point of view, no assumptions about the noise

structure are made. A regularized version of the observed data is obtained that fulfills

some constraints. These constraints [Ve01] are as follows.

1. The signal estimate, z(x,y) is close to the observed signal w(x,y) in the L
2
 sense

which means that 2),(),(
L

yxwyxz − is minimum.

2. The local Holder function of z(x,y) is prescribed.

Applying the wavelet-based procedure, let }{ ,kjψ be the orthonormal wavelet basis

where j denotes scale and k the position. It is assumed that }{ ,kjψ and has sufficiently

many vanishing moments. The wavelet coefficients behave like (1 2)() 2 j

jg k α +≈ as j tends

to -∞. Here, α represents the Hölder exponent and quantifies local variation. It is obtained

from the regression of the logarithm of the wavelet coefficients of z(x,y) above any point i

 41

with respect to scale, which is)
2

1
)((+− iα [Lu01]. There are two points noteworthy

during this estimation.

1. The estimation is obtained through a regression on a finite number of scales,

defined as a subset of the scales available on the discrete data. In particular, it is

possible to express the Hölder function of the noisy signal

s(,) (,) Gaussian white noise as a function of w x y s x y α= + , and thus estimate

conversely αs from αw [Lu01].

2. The use of (orthonormal) wavelets allows performing the reconstruction in a

simple way. This reconstruction or the inverse discrete wavelet transform is

discussed in Section 4.3.

A direct implementation of this can be done using the Fraclab [Ve00] tool in Matlab

6.1 [Ma01]. Using this toolbox, an image “cameraman.tif” which is corrupted with

Gaussian noise with the help of imnoise() [Appendix] function is loaded into the Fraclab

warkspace with the help of “scan workspace” option present in the interface. The loaded

image can be viewed by clicking on the “view” button. Once the image is loaded, it can

be denoised by selecting the “multifractal regularization” option in the denoising menu

present in the interface. This option opens a window where the Hölder exponent shift

value can be specified over a range of [-5, +5]. The regularized image obtained when the

corrupted Image 5.1 is subjected to multifractal regularization is shown in Image 5.2. The

Hölder exponent shift specified is 2.5. Typically the shift value is around 2 [Ve00].

5.3.2 Multifractal Pumping

Multifractal pumping is a procedure by which the Hölder exponent of a received

signal is increased so that the regularity of the signal is improved and the signal is close

to the desired signal. In this method, initially, a wavelet transform is applied and the

image is decomposed into its wavelet coefficients. The wavelet coefficients obtained

from the wavelet transform at scale j are multiplied by 2 jδ− . (Here, δ refers to the user-

 42

 Image 5.1: Image corrupted with Image 5.2: Image after multifractal

 Gaussian noise regularization

defined parameter in Equation (5.1).) This results in increasing the Hölder exponent by

an amount δ. This roughly amounts to performing a fractional integration of order δ.

Also, the local Hölder exponent is related to a notion of local fractional derivative.

Using Fraclab [Ve00], multifractal pumping has been experimented on a

Synthetic Aperture Radar (SAR) image. This image namely “sar.tif” is loaded into the

Fraclab workspace by using the “load” option, provided in the interface. When this

image is viewed using the “view” option present in the Fraclab interface, it looks as

shown in Image 5.3. It can be noticed from the input image that it is very irregular and no

details are visible. This image is subjected to multifractal pumping which is selected from

the “multifractal pumping” option from the denoising menu present in the interface. The

value of δ can be specified here. It is referred to as the spectrum shift value and varies

over the range –5 to +5. A value of 1.5 is specified for this image, and multifractal

pumping is done on Image 5.3 by hitting the “compute” button. The resultant image is

shown in Image 5.4. It can be observed from Image 5.4 that the inverted ‘V’ shaped river

which is cannot be seen in Image 5.3 can be seen in the output image 5.4.

 43

 Image 5.3: Input image to Image 5.4: Image after multifractal

 multifractal pumping pumping (spectrum shift value of 1.5)

With the Fraclab toolbox, we get an opportunity to observe the effect of

decreasing the regularity of an image by specifying negative values for the spectrum shift

value. This effect can be observed in Image 5.5 where the spectrum shift value specified

is –2.0. The input image is degraded further has become more irregular. On the other

hand, if a large positive value for the spectrum shift value is given, the input image gets

too blurred. This effect can be seen in Image 5.6. The details of the image cannot be read

from the output. Typical value for spectrum shift is around 0.5 [Ve01].

Image 5.5: Output of multifractal Image 5.6: Output of multifractal

pumping (spectral shift value –2.0) pumping(spectral shift value +4.0)

 44

5.4 Summary

 This chapter considered one of the latest techniques in denoising of images, i.e.,

multifractal analysis. This method is very helpful for the removal of noise from an image

that has a complex and irregular nature. This method finds applications in denoising of

Synthetic Aperture Radar (SAR) images. It is also observed that multifractal pumping is

more effective than multifractal regularization. The next chapter provides a comparative

study of all the techniques discussed so far. A quantitative result is given by the

computation of signal to noise ratio of the output image.

 45

Chapter 6

Results and Conclusion

This chapter deals with the comparison of the denoising techniques, namely, linear

and non-linear filtering, wavelet based denoising, and denoising by multifractal analysis.

The signal to noise ratio of the output image is calculated which acts as a quantitative

standard for comparison.

6.1 Results

The selection of the denoising technique is application dependent. So, it is necessary

to learn and compare denoising techniques to select the technique that is apt for the

application in which we are interested.

By far there is no criterion of image quality evaluation that can be accepted generally

by all. A technique to calculate the signal to noise ratio in images has been proposed

which can be used with some approximation [St01]. This method assumes that the

discontinuities in an image are only due to noise. For this reason, all the experiments are

done on an image with very little variation in intensity. A test image where all pixel

values having a magnitude of 100 is created and noise is added to it with the imnoise()

function. Denoising is carried out following the techniques discussed in Chapter 3

through 5. Signal to Noise Ratio (SNR) for each of these outputs is computed.

The SNR is defined as

max min
10SNR 20log

n

a a

s

 −
=  

 
 (6.1)

The variable amax refers to the pixel value with maximum intensity while amin refers to the

pixel value with minimum intensity in the image of interest. Variable sn is the standard

deviation of the noise defined as

 46

2

(,)

1
([,])

1
n a

m n R

s a m n m
∈

= −
Λ − ∑ ,

where ma is the sample mean of the pixel brightness in the region R which is the entire

image in all the experiments done in this thesis. The parmeter Λ refers to the number of

pixels in the region R and a[m,n] is the pixel value. Sample mean is computed as

(,)

1
[,]a

m n R

m a m n
∈

=
Λ ∑ .

Tables 6.1 and 6.2 shows the SNR of the input and output images for the filtering

approach and wavelet transform approach, respectively.

Table 6.1: SNR values for filtering approach

Method SNR of input

image

SNR of output

image

Noise type and

variance, σ

Mean filter 18.88 27.43 Salt and pepper, 0.05

Mean filter 13.39 21.24 Gaussian, 0.05

LMS adaptive filter 18.88 28.01 Salt and pepper, 0.05

LMS adaptive filter 13.39 22..40 Gaussian, 0.05

Median filter 18.88 47.97 Salt and pepper, 0.05

Median filter 13.39 22.79 Gaussian, 0.05

Table 6.2: SNR values for the wavelet transform approach

Method SNR of input

image

SNR of output

image

Noise type and

variance, σ

VisuShrink 13.39 31.17 Gaussian, 0.05

VisuShrink 18.88 19.01 Salt and

pepper,0.05

SureShrink 13.39 36.46 Gaussian, 0.05

SureShrink 18.88 40.67 Salt and

pepper,0.05

BayesShrink 13.39 30.98 Gaussian, 0.05

BayesShrink 18.88 18.92 Salt and

pepper,0.05

 47

From Tables 6.1 and 6.2, it can be seen that the mathematical results obtained from

the SNR computation and the experimental results shown in the image outputs in

Chapters 3 through 5 match closely. For the multifractal denoising, the SNR computation

is not compatible because, the brightness of the output image has been decreased.

6.2 Conclusions and Future Work

From the experimental and mathematical results it can be concluded that for salt

and pepper noise, the median filter is optimal compared to mean filter and LMS adaptive

filter. It produces the maximum SNR for the output image compared to the linear filters

considered. The LMS adaptive filter proves to be better than the mean filter but has more

time complexity. From the output images shown in Chapter 3, the image obtained from

the median filter has no noise present in it and is close to the high quality image. The

sharpness of the image is retained unlike in the case of linear filtering. In the case where

an image is corrupted with Gaussian noise, the wavelet shrinkage denoising has proved to

be nearly optimal. SureShrink produces the best SNR compared to VisuShrink and

BayesShrink. However, the output from BayesShrink method is much closer to the high

quality image and there is no blurring in the output image unlike the other two methods.

VisuShrink cannot denoise multiplicative noise unlike BayesShrink. It has been observed

that BayesShrink is not effective for noise variance higher than 0.05. Denoising salt and

pepper noise using VisuShrink and BayesShrink has proved to be inefficient. When the

noise characteristics of the image are unknown, denoising by multifractal analysis has

proved to be the best method. It does a good job in denoising images that are highly

irregular and are corrupted with noise that has a complex nature. In the two methods

considered, namely multifractal regularization and multifractal pumping, the second

method produces visually high quality images.

 Since selection of the right denoising procedure plays a major role, it is important

to experiment and compare the methods. As future research, we would like to work

further on the comparison of the denoising techniques. If the features of the denoised

signal are fed into a neural network pattern recognizer, then the rate of successful

classification should determine the ultimate measure by which to compare various

denoising procedures [Ta99]. Besides, the complexity of the algorithms can be measured

 48

according to the CPU computing time flops. This can produce a time complexity standard

for each algorithm. These two points would be considered as an extension to the present

work done.

 49

Bibilography

[An01] Anestis Antoniadis, Jeremie Bigot, “Wavelet Estimators in Nonparametric

Regression: A Comparative Simulation Study,” Journal of Statistical

Software, Vol 6, I 06, 2001.

[Ca79] Castleman Kenneth R, Digital Image Processing, Prentice Hall, New

Jersey, 1979.

[Ch00] S. Grace Chang, Bin Yu and Martin Vetterli, “Adaptive Wavelet

Thresholding for Image Denoising and Compression,” IEEE

Trans. Image Processing, Vol 9, No. 9, Sept 2000, pg 1532-1546.

[Do92] David L. Donoho, “De-noising by soft-thresholding,”

http://citeseer.nj.nec.com/cache/papers/cs/2831/http:zSzzSzwww-

stat.stanford.eduzSzreportszSzdonohozSzdenoiserelease3.pdf/donoho94de

noising.pdf, Dept of Statistics, Stanford University, 1992.

[Do94] David L. Donoho and Iain M. Johnstone, “Adapting to Unknown

Smoothness via Wavelet Shrinkage,” Journal of American Statistical

Association, 90(432):1200-1224, December 1995.

 [Fr99] 1/f noise, “Brownian Noise,”

http://classes.yale.edu/99-00/math190a/OneOverF.html, 1999.

[Ga96] B.M.Gammel, “Multifractals,”

 http://www1.physik.tu-

muenchen.de/~gammel/matpack/html/Mathematics/Multifractals.html,

September 1996.

 [Ga99] Langis Gagnon, “Wavelet Filtering of Speckle Noise-Some Numerical

Results,” Proceedings of the Conference Vision Interface 1999, Trois-

Riveres.

[Gr95] Amara Graps, “An Introduction to Wavelets,” IEEE Computational

Science and Engineering, summer 1995, Vol 2, No. 2.

[Ha01] David Harte, Multifractals Theory and applications, Chapman and

Hall/CRC, New York, 2001.

[Im01] Matlab 6.1, “Image Processing Toolbox,”

http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.

shtml

 50

[La91] Reginald L. Lagendijk, Jan Biemond, Iterative Identification and

Restoration of Images, Kulwer Academic, Boston, 1991.

[Li93] J.N. Lin, X. Nie, and R. Unbehauen, “Two-Dimensional LMS Adaptive

Filter Incorporating a Local-Mean Estimator for Image Processing,” IEEE

Transactions on Circuits and Systems-II: Analog and Digital Signal

Processing, Vol 40, No.7 July 1993, pg. 417-428.

[Lu01] Jacques Lèvy Vèhel and Evelyne Lutton, “Evolutionary signal

enhancement based on Hölder regularity analysis,” Project Fractales-

INRIA, 2001.

[Ma68] Mandelbrot, B., and Wallis, J., "Noah, Joseph and operational hydrology,"

Water Resources Research 4, 909-918, 1968.

[Ma89] Mallat S.G, “A theory for multiresolution signal decomposition: The

wavelet representation,” IEEE Trans. Pattn Anal. Mach. Intell., 11, 674-

693, 1989.

[Ma94] Peter R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets,

Academic press, San Diego, 1994.

[Ma01] Matlab6.1, “Matlab,” http://www.mathworks.com/, May 2001.

[Ni86] Wayne Niblack, An Introduction to Digital Image Processing, Prentice

Hall, New Jersey, 1986.

[Ri98] Rudolf H. Riedi, “Multifractals and Wavelets: A potential tool in

Geophysics,” SEG Expanded Abstracts, Rice University, Houston, Texas,

1998.

[St01] Image Processing Fundamentals-Statistics, “Signal to Noise ratio,”

http://www.ph.tn.tudelft.nl/courses/FIP/noframes/fip-Statisti.html, 2001.

[Ta99] Carl Taswell, “The What, How, and Why of Wavelet Shrinkage

Denoising,”, http://www.toolsmiths.com/docs/CT199809.pdf,

Technical Report, Stanford, CA, 1999.

[Ti92] Tim Edwards, “Discrete Wavelet Transforms: Theory and

Implementation,” Discrete Wavelet Transforms, Stanford University,

Draft #2, June 4, 1992

[Tk99] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic

Press, San Diego, CA, 1999.

 51

[Um98] Scott E Umbaugh, Computer Vision and Image Processing, Prentice Hall

PTR, New Jersey, 1998.

[Ve97] Jacques Lèvy Vèhel, Bertrand Guiheneuf, “Multifractal image denoising,”

Project Fractales-INRIA, April, 1997.

[Ve01] Jacques Lèvy Vèhel, “Signal Enhancement Based on Hölder Regularity

Analysis,” Project Fractales-INRIA, 2001.

[Ve00] Jacques Lévy Véhel, “Fraclab,” www-rocq.inria.fr/fractales/, May 2000

[Vi99] B. Vidakovic, Statistical modeling by wavelets, John Wiley and Sons, Inc.

New York, 1999.

[Wa01] Matlab 6.1, “Wavelet tool box,”

http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet

.shtml

 52

Appendix: Matlab Functions

Matlab

function

Description Usage Location

ddencmp() Returns the

Default

threshold values

for

denoising and

compression

[THR,SORH,KEEPAPP]=

ddencmp(IN1,'wv',X)

Wavelet

toolbox

double() Convert data to

double

precision

B = double(A)

Image

processing

toolbox

dwt2() Performs single

level discrete 2-

D

wavelet

transform

[cA,cH,cV,cD] =

dwt2(X,'wname')

Wavelet

toolbox

eig() Returns matrix

eigen values

and

eigen vectors

lambda = eig(A) Symbolic

Math

toolbox

idwt2() Performs single

level inverse

discrete 2-D

wavelet

transform

X = idwt2(cA,cH,cV,cD,'wname')

Wavelet

toolbox

imnoise() Adds noise to

an image

J = imnoise(I,type)

Image

processing

toolbox

imread() Read image

from graphics

files

[A] = imread(filename)

Image

processing

toolbox

imshow() Displays an

image

imshow(A)

Image

processing

toolbox

imwrite() Writes image to

graphics file

imwrite(A,filename)

Image

processing

toolbox

medfilt2() Performs two-

dimensional

median filtering

B = medfilt2(A,[m n])

Image

processing

toolbox

uint8() Converts data

to unsigned 8-

B = uint8(A)

Image

processing

 53

bit

integers

toolbox

wavedec2() Performs

multilevel 2-D

wavelet

decomposition

[C,S] = wavedec2(X,N,'wname')

Wavelet

toolbox

wdcbm2() Returns 2-D

threshold value

based

on SureShrink

[THR,NKEEP] =

wdcbm2(C,S,ALPHA)

Wavelet

toolbox

wdencmp() Performs

De-noising or

compression

using wavelets

[XD] =

wdencmp('gbl',X,'wname',N,THR,SOR

H,KEEPAPP)

[XC] =

wdencmp('lvd',C,L,'wname',N,THR,SO

RH)

Wavelet

toolbox

wthresh() Performs hard

or soft

thresholding

Y = wthresh(X,SORH,T)

Wavelet

toolbox

 54

Vita

Sarita Dangeti was born in Kakinada, India, on August 22
nd

, 1978. She received the

degree of Bachelor of Engineering in Electronics and Communications Engineering from

Andhra University College of Engineering, Visakhapatnam, India, in May 2000. This

was where she felt the need to pursue higher studies in her chosen field and decided to do

a graduate program in the Department Electrical and Computer Engineering at Louisiana

State University in Fall 2000 semester. She is a Graduate Assistant with School of the

Coast and Environment at Louisiana State University (LSU). She expects to receive the

degree of Master of Science in Electrical Engineering in May 2003.

	Denoising techniques - a comparison
	Recommended Citation

	tmp.1483774927.pdf.s9Y_r

