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Abstract
New cameras such as the Canon EOS 7D and Pointgrey

Grasshopper have 14-bit sensors. We present a theoretical

analysis and a practical approach that exploit these new cam-

eras with high-resolution quantization for reliable HDR imag-

ing from a moving camera. Specifically, we propose a unified

probabilistic formulation that allows us to analytically com-

pare two HDR imaging alternatives: (1) deblurring a single

blurry but clean image and (2) denoising a sequence of sharp

but noisy images. By analyzing the uncertainty in the estima-

tion of the HDR image, we conclude that multi-image denois-

ing offers a more reliable solution. Our theoretical analysis

assumes translational motion and spatially-invariant blur. For

practice, we propose an approach that combines optical flow

and image denoising algorithms for HDR imaging, which en-

ables capturing sharp HDR images using handheld cameras

for complex scenes with large depth variation. Quantitative

evaluation on both synthetic and real images is presented.

1. Introduction
High Dynamic Range (HDR) Imaging has been an active

topic in vision and graphics in the last decade. Debevec and

Malik [14] developed the widely-used approach that combines

multiple photos with different exposure to create an HDR im-

age. This approach is well suited to early digital cameras,

which often have 8-bit Analog-to-Digial conversion (ADC).

Today, many consumer SLRs or machine vision cameras have

higher resolution ADC; for example, Canon EOS 7D and Point

Grey Grasshopper have 14-bit ADC, and many others have at

least 12-bit ADC. In this paper, we present an effective ap-

proach that exploits new cameras with high-resolution ADC

to widen the operating range of HDR imaging.

The inconvenient requirement of [14] is that the camera

must remain still during the image acquisition and the scene

must be static. The requirements of a still camera and scene

are due to the need for long-exposure shots to record dark im-

age regions accurately. Any motion of the camera or of the

scene will introduce blur in the image. This requirement will

not be simply relieved by using a 14-bit sensor, because the

lower bits of each pixel only encode the noise accurately.

To capture a good HDR image in a flexible setting, without

assuming stationary scenes or cameras, we have to either accu-

mulate more photons using a long exposure and later remove

the motion blur, or accumulate less photons using a short ex-

posure and later remove the noise. Since the second approach

takes less time, within a fixed time budget, we can take more

images for better noise reduction. In this paper, we present

a probabilistic formulation that allows us to compare which

of denoising and deblurring can produce better HDR images.

Specifically, we compare the following HDR imaging choices:

• Deblurring a single blurry but clean image captured with

a long exposure time ∆ and a low ISO setting;

• Denoising a series of sharp but noisy images, each cap-

tured with a high ISO, together captured within time ∆.

We note that a high-resolution ADC is essential for both the

procedures to succeed, in particular for denoising, because the

noise must be digitized accurately to be averaged out among

the multiple frames. Our contributions include:

• We propose a novel probability formulation that unifies

both single-image deblurring and multi-image denoising.

These two problems are formulated differently in the lit-

erature; comparing their solutions analytically is difficult.

• Using variational inference with motion as hidden vari-

ables, we derive the approximate uncertainty in the es-

timation of HDR images analytically for both imaging

procedures. Our conclusion is that denoising is a better

approach for HDR imaging.

• To put our analytical insight to practical use, we present

a novel approach that combines existing optical flow and

image denoising techniques for HDR imaging. This ap-

proach enables capturing sharp HDR images using hand-

held cameras for complex scenes with large depth varia-

tion. Such scenes cause spatially-varying motion blur for

handheld cameras, which cannot be handled by the latest

HDR imaging method [22].

Large depth-of-field, high dynamic range, and small mo-

tion blur are three of the major goals of computational camera

research. Our work shows that, if a camera has high-resolution

ADC, high frame rate, and high ISO, it is possible to achieve

all the three goals through computation without resorting to

specialized optical designs. This feature makes our approach

suitable to micro-cameras with simple optics, such as those

found in cellphones or used in performing surgeries.

2. Related Work
Our work is related to the recent research combining multi-

ple images of different exposure to produce a sharp and clean

image. Yuan et al. [27] and Tico and Vehvilainen [24] com-

bined a noisy and blurry image pair, and Agrawal et al. [3]

combined multiple blurry image with different exposure; all

this research is limited to spatially-invariant blur.

One approach to address this limitation is to use video

denoising techniques on multiple noisy images. In particu-

lar, our work is inspired by Boracchi and Foi [6], who com-

bined a state-of-the-art video denoising method, VBM3D [12],

and homography-based alignment for multi-frame denoising.

They compared debluring a noisy and blurry image pair and
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denoising two noisy images, but found no clear winner: on one

hand, denoising produces good results without many artifacts;

on the other hand, deblurring better preserves details but may

occasionally introduce ringing artifacts. This observation mo-

tivates our work, which, for the first time, theoretically predicts

when multi-frame denoising performs better than deblurring.

Motion-compensated filtering for video denoising [5, 12,

11] has existed for three decades [18]. Optical flow, how-

ever, is difficult to compute for complex motion. Several

recent works exploiting temporal information for image en-

hancement assume simplified transformation between frames,

such as translation in [5] and homography in [10, 23]. Han-

dling more complex motion requires user assistance as in [5].

Indeed, state-of-the-art video denoising methods [8, 12] rely

on block matching and argue that accurate motion estimation

is unnecessary. We show that such an argument may be pre-

mature and accurate flow estimation significantly boosts the

performance of denoising.

Debevec and Malik [14] introduced the classic method of

combining multiple photos to create an HDR image, assuming

a fixed camera and a static scene. Subsequent works general-

ize it to varying viewpoints [21, 25] and dynamic scenes [19];

none of the works considered motion blur during long expo-

sure. Lu et al. [22] recently combined deblur and HDR cre-

ation, but their method is limited to spatially-invariant kernel.

Our approach is the first, to the best of our knowledge, that

demonstrates how to automatically create sharp HDR images

using a handheld camera for scenes with complex geometry,

for which the spatially-invariant motion blur assumption is of-

ten violated. Our approach is built upon an existing flow algo-

rithm [7] and we describe techniques to deal with flow error.

Bennett and McMillan’s work [5] is probably the closest

work to ours, because it also seeks to create HDR images from

a noisy video. Their method is based upon a denoising ap-

proach that is similar to the non-local mean [9] combined with

a global translation estimation. We now know that non-local

mean does not perform as well as BM3D denoising meth-

ods [20], and we demonstrate our approach is more effective

than BM3D video denoising [12] for creating HDR images.

Finally, Hasinoff [16] presented the first framework that

models the tradeoff between denoising and removing defocus

blur for a stationary camera. Our analysis can be viewed as a

first step to study the tradeoff between denoising and removing

motion blur for a moving camera.

3. Problem Formulation: Deblur or Denoise?

Given a fixed time interval ∆, consider the following two

alternative imaging procedures for the same scene: (1) take

a single photo B with exposure time ∆, and (2) take a se-

quence of N photos {Ik}N
k=1, each with a shorter exposure

time τ = (1 − ǫ)∆
N but a higher ISO, where ǫ is the camera

overhead for saving images from the sensor to storage. During

the imaging process, if the camera may move, the first proce-

dure often produces a blurry image, while the second captures

a sequence of sharper but noisier images.

We next present a common probabilistic model that de-

scribes both procedures. The main goal of this model is to

provide analytical insight regarding which procedure leads to a

more reliable estimation of the underlying sharp and clean im-

age J . To simplify this theoretical analysis, we assume that the

motion is global translation and the blur is spatially-invariant.

In Section 4, we describe an approach that deals with more

general spatially-varying image motion in practice.

3.1. Known Image Motion

We start with the simpler case in which camera motion is

known. Let uk be the translation motion of the kth noisy im-

age Ik with respect to the clean image J ; we model Ik as

Ik = δuk
J + nIk

, (1)

where δuk
represents the linear transformation that shifts an

image using the global motion vector uk. In principle, the

noise nIk
has spatially-varying, signal-dependent variance,

which is important to model for optimal noise reduction [28].

As a simplification, we assume nIk
is a Gaussian noise whose

variance is spatially constant but depends on the mean image

intensity of Ik, as in [16].

We model the blurry image B as

B = F{uk}J + nB (2)

where F{uk} is the linear blur filter induced by the motion

trajectory {uk}N
k=1 during exposure and can be modeled as

F{uk} =
1

N

N∑

k=1

δuk
(3)

and nB is a Gaussian noise whose spatially-constant variance

depends on the mean image intensity of B.

We want to decide which of the following two gives a better

estimation of J : N number of Eq. (1), each with a large noise;

or a single equation of Eq. (2) with a small noise. Since the

motion {uk} is assumed to be known in this subsection, the

answer is easy to see. We can compute a sharp and less noisy

image Ī{uk} by averaging all noisy images along motion tra-

jectory {uk} as

Ī{uk} =
1

N

N∑

k=1

δ−uk
Ik (4)

and Ī{uk} deviates from J as

Ī{uk} = J + nĪ (5)

where nĪ = 1
N

N∑
k=1

δ−uk
nIk

is the averaged noise. If the noise

nIk
in each noisy image Ik has variance of σ2

n
, the averaged

noise nĪ has a variance of 1
N σ2

n
.

Comparison between σ2
n

and σ2
b

When capturing noisy im-

ages with a short exposure time, we use a high ISO to stretch

the intensity range so that the noise can be accurately digi-

tized and later effectively averaged out in Eq. (4). Without loss

of generality, we assume unity gain ISO: one photoelectron



corresponds to one integer increment of the pixel value—any

higher ISO is unnecessary.1 In this setting,
1

N
σ2
n

=
1

N
(J + ρ2

0 + ρ2
1) (6)

where ρ2
0 and ρ2

1 are the read noise variance before and after

the gain amplifier, respectively.

When capturing the blurry image, we use a longer exposure

time ∆ with a lower ISO, which corresponds to a gain factor

g = ∆
τ . In this setting,

σ2
b

=
1

g
J +

1

g2
ρ2
0 + ρ2

1 (7)

where the shot noise is reduced (relative to the same intensity

range) due to the increased incoming light, the pre-amplifier

read noise is reduced due to the gain factor, and the post-

amplifier read noise is unchanged.

In modern cameras, read noise can be made extremely low;

for example, Canon 5D has [ρ0, ρ1] ≈ [3.4, 1.9] and Canon 1D

Mark III has [ρ0, ρ1] ≈ [3.9, 1.2], both normalized for a 12-bit

ADC.2 Therefore, the read noise is about 4 electrons at the

unity gain ISO and can be neglected even for an underexposed

shot with mean intensity 160 (out of 212 − 1 = 4095).

Conclusion Building on the analysis above, if we neglect

read noise ρ2
0 and ρ2

0 and ignore the camera overhead ǫ, then

σ2
b

= 1
N σ2

n
because g = N ; therefore nĪ and nB have the

same noise variance σ2
b
. Now, comparing Eq. (2) and Eq. (5),

we see that their noise variance is the same, but J can be more

reliably estimated from Eq. (5) because it does not involve the

additional blurring operation F{uk} as in Eq. (2).

In practice, to instrument this comparison, we have to as-

sume N is not too large, because we need to ensure (1) the

noisy images are reasonably bright compared to the read noise

and (2) the pixel has a large enough Full Well Capacity3 to

hold at least NJ photons for the blurry image and (3) there is

a low ISO with g = ∆
τ . However, in theory, we can always

argue that, capturing a sequence of not-too-dark noisy images

is better than a blurry image even if the blurry image is cap-

tured by a hypothetical ideal camera with infinitely low ISO

and infinitely large full well capacity, and therefore is better

than a blurry image captured by a real non-ideal camera.

3.2. Unknown Image Motion
Now we consider the case where the image motion is un-

known. We estimate the clean image J from the noisy im-

age sequence {Ik}N
k=1 by maximizing the posterior probabil-

ity P (J |{Ik}N
k=1, σ

2
n
). Similarly, we estimate the clean image

J from the blurry image B by maximizing P (J |B, σ2
b
).

To compare which estimation is more reliable, we eval-

uate the Hessian matrices of log P (J |{Ik}N
k=1, σ

2
n
) and

log P (J |B, σ2
b
) with respect to J . From an optimization point

of view, the Hessian matrix with a better condition number

1For example, Canon 5D and 1D Mark III have the unity gain at ISO 1600

and 1900, respectively, as per Fig. 6a of “Camera Sensor Performance” in [1].
2The values are calculated from the read noise v.s. ISO plots in [2] and the

unity gain ISO data in [1].
3The amount of photons that an individual pixel can hold before saturating.

will give rise to a more reliable estimation of J . From a sta-

tistical perspective, the Hessian matrix serves as the precision

(inverse covariance) matrix of the Laplacian (local Gaussian)

approximation of the distribution of J and therefore reveals

the uncertainty associated with the estimation of J [4].

3.2.1 Approximate Hessian of log P (J |B, σ2
b
)

The blurry image B is related to J through blurring opera-

tion F{uk} induced by motion trajectory {uk}. To evaluate

P (J |B, σ2
b
), we marginalize over all possible motion trajecto-

ries {uk}. Using Bayesian and total probability rules, we have

P (J |B, σ2
b
) ∝

∑

{uk}
P (B|J, {uk}, σ2

b
)P ({uk})P (J) (8)

where the left and right hand sides differ by a constant factor
1

P (B|σ2

b
)
. On the right hand side, P ({uk}) is the prior prob-

ability for the motion sequence {uk}, and P (J) is the prior

probability for the clean image J . Since we assume imaging

noise is Gaussian, P (B|J, {uk}, σ2
b
) = N (B;F{uk}J, σ2

b
).

Since Eq. (8) involves summation of Gaussians, computing

its log analytically is difficult. However, we view it as a mix-

ture of Gaussian distribution, in which each possible motion

sequence {uk} corresponds to one Gaussian whose center is a

|J |-dimensional vector Fuk
J ; there are a total of (2U + 1)2N

number of such Gaussians where [−U, U ] × [−U,U ] is the

range of the motion. In this view, {uk} is the hidden variable

and the motion prior P ({uk}) is the mixture proportion.

Viewing Eq. (8) as a |J |-dimensional mixture of Gaussian

allows us to apply the variational inference technique to ap-

proximate its log with an exact lowerbound. Specifically, at

a particular J , we compute a q-distribution over all possible

motion paths {uk} as

q({uk}) ∝ P ({uk}) exp(− 1

2σ2
b

‖B − F{uk}J‖2) (9)

q({uk}) describes the likelihood of {uk} at this particular

J . With this q({uk}), we compute the lower bound Lb(J ; q)
to approximate log P (J |B, σ2

n
)

Lb(J ; q)
∆
=

∑

{uk}
−q({uk})

2σ2
b

‖F{uk}J − B‖2 + log P (J) − C1

where Lb(J ; q) ≤ log P (J |B, σ2
n
), and “=” holds when q is

computed using Eq. (9).4.

Note that Lb(J ; q) consists of a summation of quadratic

terms. Using the definition of F{uk} in Eq. (3), we simplify

Lb(J ; q) to compute its Hessian and gradient as

Lb(J ; q) = − 1
2σ2

b

JTHbJ + 1
σ2

b

gb
TJ + log P (J) − C2

Hb = 1
N I + 1

N2

∑
k 6=l

∑
uk,ul

q(uk,ul)δul−uk

gb = 1
N

∑
k

∑
uk

q(uk)δ−uk
J

(10)

where q(uk) and q(uk,ul) are marginal distribution of uk and

(uk,ul), respectively, for the joint distribution q({uk}).5

4
C1 = log P (B|σ2

b
) +

|J|
2

log(2πσ2
b
) + KL(q{uk} ‖ P{uk})

5
C2 = C1 +

‖B‖2

2σ2
b



In Eq. (10), we see that the Hessian for the lower bound

Lb(J ; q) is − 1
2σ2

b

Hb plus the Hessian of log P (J). Hb is

a convex combination of permutation matrices (I and all

δul−uk
); therefore it is a doubly-stochastic matrix, in which

each element is within [0, 1] and the sum of each row and the

sum of each column is 1.

3.2.2 Approximate Hessian of log P (J |{Ik}N
k=1, σ

2
n
)

Our derivation in this case is very similar to Section 3.2.1. We

evaluate P (J |{Ik}N
k=1, σ

2
n
) by marginalizing over all the pos-

sible motion trajectories. Using Bayesian rule and total prob-

ability rule, we have

P (J |{Ik}, σ2
n
) ∝

∑

{uk}
P ({Ik}|J, {uk}, σ2

n
)P ({uk})P (J)(11)

where the left and right hand sides differ by a constant factor
1

P ({Ik}|σ2
n
) . Since we assume imaging noise is Gaussian and

independent among different images, P ({Ik}|J, {uk}, σ2
n
) =∏

k

N (Ik; δuk
J, σ2

n
).

As in Section 3.2.1, we view Eq. (11) as a mixture of

Gaussian distribution, in which each possible motion sequence

{uk} corresponds to one Gaussian whose center is formed by

concatenating all {δuk
J}N

k=1 as a N |J |-dimensional vector;

there are also a total of (2U +1)2N number of such Gaussians

as in Section 3.2.1. In this view, {uk} is the hidden variable

and the motion prior {uk} serves as the mixture proportion.

With this view, we apply the variational inference technique

to approximate its log with an exact lowerbound. Specifically,

at a particular J , we compute a q-distribution over all possible

motion paths {uk} as

q({uk}) ∝ P ({uk}) exp(− 1

2σ2
n

∑

k

‖Ik − δuk
J‖2) (12)

With this q({uk}), we compute the variational lower bound

Ln(J ; q) to approximate log P (J |{Ik}, σ2
n
) as

Ln(J ; q)
∆
=

∑

{uk}
−q({uk})

2σ2
n

∑

k

‖δuk
J−Ik‖2+log P (J)−C3

where Ln(J ; q) ≤ log P (J |{Ik}, σ2
n
), and the “=” holds when

q is computed using Eq. (12).6 Ln(J ; q) can be simplified as

Ln(J ; q) = − N

2σ2
n

‖J − Īq‖2 + log P (J) − C4 (13)

where Īq =
∑

{uk}
q({uk})Ī{uk} is a weighted sum of motion-

compensated average images Ī{uk} defined in Eq. (4).7

From Eq. (13), we see that the Hessian for the variational

lower bound Ln(J ; q) is the negative of a scaled identity matrix

− N
2σ2

n

I plus the Hessian of log P (J).

3.2.3 Comparison of Hessians in Eq. (10) and Eq. (13)

Comparing Eq. (10) and Eq. (13), we make two observations

about their Hessian matrices.

6
C3 = log P ({Ik}|σ

2
n
) +

N|J|
2

log(2πσ2
n
) + KL(q{uk} ‖ P{uk})

7
C4 = C3 + 1

2σ2
n

P

k

‖Ik‖
2 − N

2σ2
n

‖Īq‖2

First, from an information-theoretical perspective, if we set

aside log P (J), N
2σ2

n

I is the precision matrix for J in Eq. (13).

When the camera overhead ǫ is negligible, σ2
b

= 1
N σ2

n
, then the

determinant of this precision matrix, ( 1
2σ2

n
/N )|J|, is an upper

bound for the determinant of the matrix 1
2σ2

b

Hb—the precision

matrix for J in Eq. (10), because Hb is a doubly-stochastic

matrix of which the maximum possible determinant is 1 [26].

Since the determinant of the precision matrices is related to

the entropy of the local Gaussian distributions we use to ap-

proximate the posteriors of J , without a strong prior P (J),
Eq. (13) provides an estimation for J with less uncertainty

than Eq. (10). Their difference only becomes less when the

prior log P (J) dominates the estimation.

Second, from a numerical optimization point of view, N
2σ2

n

I

in Eq. (13) has the best possible condition number 1. Even

if P (J) is non-informative (flat), the Hessian of Ln(J ; q) is

well-conditioned. 1
2σ2

b

Hb in Eq. (10) typically has a condition

number less than 1; its condition number is 1 only if it is an

identity matrix, which requires q(uk,ul) = 0 for all uk 6= ul

(meaning that there is no motion during exposure). Therefore,

the Hessian of log P (J) must be needed as a pre-conditioner

to reliably estimate J from Eq. (10).

Conclusion Based on these two observations, we make two

conclusions. First, estimating clean image J by denoising

multiple images is always more reliable than deblurring a sin-

gle blurry image. This conclusion is independent of the type of

motion P ({uk}) and image prior P (J). Second, conventional

HDR approach using shots with varying exposures is less reli-

able than multi-frame denoising for a moving camera, because

shots with long exposure need to be deblurred.

One special case is when there is no motion. In this case,

read noise determines which imaging choice is better. From

Eq. (6) and Eq. (7), the read noise in denoising and deblurring

is 1
N (ρ2

0 + ρ2
1) and 1

N2 ρ2
0 + ρ2

1, respectively. It is easy to show

that the former is less than the latter if
ρ2

1

ρ2

0

> 1
N . For example,

this condition requires N > 4 and N > 11 for Canon 5D and

1D Mark III, respectively, using the data in Section 3.1.

Our conclusion in this special case seems contradictory to

the observation in [16], which suggests too many noisy shots

are bad because each will incur read noise. We point out that

Hasnoff et al. [16] capture and compare multiple shots and a

single shot at the same ISO setting while we capture noisy im-

ages at a higher ISO. As a result, our denoising is an averaging

operation and theirs is a summation operation. If the post-

amplifier read noise is not trivially small compared to the pre-

amplifier one, our averaging operation will result in a cleaner

image than the blurry image, when N is large.

Our analytical conclusion is based on two simplifying as-

sumptions: (1) approximating a log posterior by its varia-

tional lower bound and (2) neglecting the camera overhead.

While the lower bound nicely aggregates the uncertainties in

the motion estimation, the exact differences between the Hes-



sian of the original posteriors and their lower bounds are hard

to quantify analytically. It is therefore desirable to empiri-

cally verify our conclusion by running simulations that esti-

mate clean image J by optimizing log P (J |{Ik}N
k=1, σ

2
n
) and

log P (J |B, σ2
b
), respectively, and comparing the result. Fur-

thermore, through the simulations, we can also examine the

effect of camera overhead ǫ on the estimation of J .

3.3. Simulation Algorithms

In this subsection, we present algorithms that estimate J
from the two posteriors in Eq. (8) and Eq. (11). In principle, al-

ternating between evaluating Eq. (9) and maximizing Eq. (10)

is a deblurring algorithm; similarly, alternating Eq. (12) and

Eq. (13) is a denoising algorithm. However, both algorithms

are impractical, as their q({uk}) are defined over an exponen-

tial number of states, (2U + 1)2N . We next make approxima-

tions to make the estimation algorithms efficient.

3.3.1 Estimating J by Denoising

We assume that the motion prior P ({uk}) is independent

among each uk; that is P ({uk}) =
∏
k

P (uk). Under this

assumption, q({uk}) in Eq. (12) must have a factorized form

as q({uk}) =
∏
k

qk(uk) and

qk(uk) ∝ P (uk) exp(− 1

2σ2
n

‖Ik − δuk
J‖2) (14)

With this factorized form, the computation of Īq in Eq. (13)

is simplified as

Īq =
1

N

∑

k

∑

uk

qk(uk)δ−uk
Ik (15)

Iterating between Eq. (14) and Eq. (13) is an exact EM algo-

rithm for estimating J from the noisy sequence {Ik}.

3.3.2 Estimating J by Deblurring

Similarly, we assume independence among {uk} for P ({uk})
and restrict q({uk}) to have a factorized form q({uk}) =∏
k

qk(uk).8 Under these two assumptions,

qk(uk) ∝ P (uk) exp(
1

Nσ2
b

(δuk
J)

T
(B − QkJ)) (16)

where Qk = 1
N

∑
l 6=k

∑
ul

ql(ul)δul
. In practice, for each k, the

probability mass of qk is often concentrated on a particular uk.

In this case, the variational lower bound Lb(J ; q) in Eq. (10)

can be approximated as

Lb(J ; q) ≈ − 1

2σ2
b

‖B − QJ‖2 + log P (J) − C1 (17)

where Q = 1
N

∑
k

∑
uk

qk(uk)δuk

Iterating between evaluating Eq. (16) and maximizing

Eq. (17) is a variational EM algorithm for estimating J from

the blurry image B.

8In the case of deblurring, the factorized form of q does not simply follow

the independence assumption of P ({uk}). We need to explicitly make an

assumption that restricts the form of q.

Figure 2. Four motion trajectories used in our synthetic experiments.

3.4. Simulation Results
We have compared the estimation of J using the denois-

ing algorithm and the deblurring algorithm on synthetic data.

Since both are EM algorithms, which are sensitive to initial

values, we start with a ground truth image and motion, to fac-

tor out the local minimum issue when evaluating the quality of

the results. We used four ground truth images; the last column

of Figure 1 shows a patch from two of the four. We also gener-

ated four motion trajectories, each has a duration of N = 100
frames. The blur kernels corresponding to these trajectories

are shown in Figure 2. Please refer to our supplemental ma-

terial for the complete set of experiment results.

Deblurring vs Denoising For each ground truth image, for

each motion trajectory, we generate N = 100 images mov-

ing along the trajectory; each image is corrupted by Gaussian

noise with a standard deviation σn = 20. We also use the the

corresponding motion kernel to generate a single blurry image,

corrupted by Gaussian noise with σb = σn√
N

= 2.

When applying the deblurring algorithm, we need a prior

model for log P (J). Since our goal is to compare which of the

two types of image inputs gives better estimation for J , any

image prior can be used, so long as we use the same prior for

both denoising and deblurring. To simplify the maximization

step, we assume a weak quadratic prior as follows

log P (J) = − 1

2σ2
0

‖J − J0‖2 (18)

where J0 is the ground truth corrupted by a large Gaussian

noise with σ0 = 40. Strictly speaking, Eq. (18) is equivalent

to having an additional noisy observation rather than being a

prior; but we can treat it as a prior to regularize deconvolution.

Figure 1 shows the estimation results. The first column

shows the blurry image. The second column shows one of

the N = 100 noisy images. The third column shows the de-

blurring result, which contains certain amount of noisy. This

phenomena is because Q in Eq. (17) is a low-pass filter and

therefore a noisier J decreases its distance to J0, increases

log P (J), but does not change the value of the product QJ
much; In the end, a noisier image is more preferred than the

ground truth image. This phenomena verifies that the infor-

mation in a single blurry image is low and the estimation is

heavily influenced by the prior model. For a better prior, we

replace J0 with its denoised version J̃0 using a state-of-the-art

single-image denoising algorithm [13], and define log P (J) as

log P (J) = − 1

2σ̃2
0

‖J − J̃0‖2 (19)

where σ̃2
0

is set to be smaller than σ2
0

as J̃0 is closer to the

ground truth than J0 is. The fourth column of Figure 1 shows

the improved deblurring results using this prior.



A Blurry Image A Noisy image 24.56 dB 30.62 dB 41.78 dB Ground Truth

A Blurry Image A Noisy Image 26.26 dB 31.69 dB 41.79 dB Ground Truth

Figure 1. A comparison between single-image deblurring and multi-image denoising. From left to right: A blurry image B, σb = 2; One of the

100 noisy images, σn = 20; Deblurring using Eq. (18) as a weak prior; Deblurring using Eq. (19) as a stronger prior; Denoising using Eq. (18)

as a weak prior. Even with a weak prior, multi-image denoising performs much better than single-image deblurring with a stronger prior. Please

refer to our supplemental material for full resolution results. Best viewed electronically.

We can employ a more sophisticated prior to further en-

hance the deblurring results. Excellent results are shown

in [27] using a pair of noisy and blurry images, where the

prior is difficult to be described by a single analytical expres-

sion, rather implemented as a sequence of heuristic steps. This

again supports our claim that a single blurry image contains

very limited information: the quality of the result is heavily in-

fluenced by the image prior. As the the prior becomes increas-

ingly complicated, generalizing it to handle spatially-varing

blur is difficult.

On the other hard, as the fifth column shows, denoising with

multiple noisy images produces very good results. The method

is not sensitive to initial value. Using the noisy image J0 as

initial value also works well. Furthermore, it is easy to extend

to spatially-varying motion, as Section 5 shows.

Effect of Camera Overhead We now evaluate the effect of

camera overhead on denoising performance. The camera over-

head ǫ reduces the exposure time for each noisy image by a

factor of 1 − ǫ and increases its noise standard deviation by

a factor of 1/
√

1 − ǫ. We tested multi-image denoising with

increased noise for a series of ǫ = 0, 0.1, 0.2, · · · , 0.9 and plot

the PSNR of the results in Figure 3. As expected, the perfor-

mance degrades as the camera overhead increases. However,

even at ǫ = 0.9, multi-image denoising still has noticeably bet-

ter PSNR than single image deblurring using the same weak

prior, and on par with it if a stronger prior is used.

4. Handling Spatially Varying Motion
It is straightforward to extend the multi-image denoising

algorithm in Section 3.3.1 to handle spatially varying motion

by computing optical flow. In doing so, we approximate the

distribution of optical flow by its most likely sample. The

idea of filtering noisy video along flow has been known for

three decades [18]. Issues with this idea include occlusion and

flow accumulation error. For the purpose of estimating flow

induced by hand motion, which is typically not too violent, we
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Figure 3. The performance of multi-image denoising as the camera

overhead varies (top curve). The horizontal lines at the bottom and

in the middle indicate the PSNR of single image deblurring using a

weak prior, Eq. (18), and a strong prior, Eq. (19), respectively. Multi-

image denoising performs better than single-image deblurring, even

when the camera overhead is 90%; Beyond 90%, the performance

drops dramatically.

found that state-of-the-art flow algorithms, e.g. [7], often work

quite well, even if the input sequence is noisy. Specifically,

we use [7] to compute flow between neighboring frames and

then use the result as an initial solution to solve for flow from

reference frame to the rest of the sequence. We combine three

known techniques to handle the gross or sub-pixel flow errors.

Robust Temporal Averaging After registering all the

frames to the reference frame, we only average pixels that are

within ±3σ of the reference pixel I . We pre-calibrate the sen-

sor noise using an affine model σ2 = τ2 +κJ [17], where J is

the ground truth intensity and we use its noisy observation to

approximate it. We found this technique is effective to handle

mis-registration due to occlusions or gross flow errors.

Temporal Denoising using PCA Optical flow may drift

over a large number of frames. Such a drift blurs subtle im-

age details in averaging. We notice that a pair of slightly

mis-registered image patches I and J can be modeled as

I(x, y) ≈ J(x, y) + Jx∆x + Jy∆y, where [Jx, Jy] is im-

age gradient and [∆x,∆y] is the drift. Therefore, a collec-

tion of slightly mis-registered patches approximately stay in a

subspace spanned by J , Jx, Jy and PCA can be used to re-



move the noise in the patch collection [28]. Specifically, using

the robust averaging result as the reference image, for every 4

pixel, we define a patch (8x8) centered around the pixel and

collect patches along optical flow that are similar to the ref-

erence patch. We apply PCA to denoise this collection, and

combine denoised patches for all reference patches as in [28].

Spatial Denoising using BM3D After temporal denoising,

the resulting image may still be a little grainy, because there

may not be enough pixels or patches available for denoising

due to outlier rejection. Such graininess is more visible in uni-

form regions but less so in textured areas. We use a state-

of-the-art single-image denoising method [13] to remove the

graininess while keeping the sharp details; this works well be-

cause the graininess is much smaller than the original noise.

5. HDR results
We have experimented the method in Section 4 on sev-

eral scenes. We use Point Grey Grasshopper 14S3C color

video camera (1384 × 1032@21FPS, 14-bit) in our experi-

ments. Please refer to our supplemental material for the

complete set of experiments.

For all experiments, we use small aperture (F8), short ex-

posure time (0.56 millisecond) and the highest gain setting to

acquire 100 noisy images with minimal defocus and motion

blur. For static scenes, we first put the camera on a tripod and

capture 1000 images, from which we compute the ground truth

by averaging. After that, we release the camera from the tri-

pod and hand shake it around the viewpoint from which we

take the ground truth. Our testing images include one image

from the ground truth sequence as the reference image and all

the 99 shaky images taken afterwards. Doing so allows us to

compute the PSNR of our results for quantitative evaluation.

HDR Imaging by Denoising Our first scene consists of a set

of books, ranging from 1 meter to 2 meters from the camera,

with a few surrounding objects in a dark room (Figure 4, the

first row). Such a scene introduces spatially-varying motion in

the image plane, which can not be handled by the latest HDR

imaging method [22]. The input images are sharp but noisy

(first column); The noise is especially high in dark regions as

shown in the tone mapped image (second column). The third

column is our result, in which object details in dark regions

are revealed. We use the tonemap function in Matlab with

default parameters to compute the tonemapped images.

The second scene has many objects occluding each other

with very detailed objects like hair (Figure 4, the second row).

Our approach produces a HDR image that well preserves these

details. The third scene (the third row) simulates a birthday

party environment. Because of the fluttering flame on the cake,

we did not record the ground truth. In our result, we see clearly

the texture on the table surface and the birthday card.

Comparison with State-of-the-Art Video Denoising We

have also compared our approach with the state-of-the-art

video denoising [12], VBM3D, for HDR estimation. Since

VBM3D only applies to grayscale images; we convert our

Raw Noisy Images

Tone-Mapped Noisy Images

Our Results

Tone-Mapped Ground Truth

Figure 4. Computing HDR images from a sequence of 100 noisy im-

ages captured by a 14-bit handheld moving camera for three different

scenes. The noise in the input images is higher in dark regions, as

shown in the tone-mapped images. Our approach produces sharp and

clean HDR images, and works for complex scenes with large depth

variation. The cake scene has dynamic flames, and therefore does not

have a ground truth. Best viewed electronically.

input images to gray scale and apply both our method and

VBM3D on them. Figure 5 shows the comparison. Our ap-

proach works noticeably better because we use a global flow

algorithm which registers images more accurately than the

block matching technique used by VBM3D. Without accurate

matching, temporal data may not be exploited as effectively as

possible—the same observation was also made in [28].

Other Comparisons We have compared denoising results

using 8-bit vs. 14-bit quantization for HDR imaging [15], as

well as temporal denoising using robust averaging vs. PCA.

Please visit our project website for the results due to the lack

of space.



VBM3D (43.23 dB) Our Result (45.01 dB) Ground Truth

VBM3D (47.53 dB) Our Result (51.23 dB) Ground Truth
Figure 5. A comparison between our approach and using

VBM3D [12] for HDR imaging. Our approach more effectively re-

moves noise in uniform regions (top row) while preserving details

(bottom row), such as hair and backdrop texture. Best viewed elec-

tronically.

6. Discussion
In this paper, we argue that denoising is a more reliable way

than deblurring to exploit new cameras with high resolution

ADC for flexible HDR photography from a moving camera.

Our approach enables capturing sharp HDR images for com-

plex scenes of large depth variation using a handheld camera.

There are several interesting future research directions.

The Optimal Number Needed We used 100 images in all of

our experiments because many SLR cameras today can take

dozens of images in burst mode. It is desirable to more care-

fully model the performance curve of HDR imaging and derive

the optimal N as in [16].

High Speed Cameras for Consumer Photography Image

resolution has increased tremendously for consumer cameras;

however, the frame rate has not been changed as much. This

paper demonstrates that high frame rate benefits flexible

HDR capture. We are interested in exploring other aspects of

photography that can benefit from fast cameras.
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