
DeNovoGear: de novo indel and point mutation discovery and
phasing

Avinash Ramu1,6, Michiel J. Noordam1,6, Rachel S. Schwartz2, Arthur Wuster3, Matthew E.
Hurles3, Reed A. Cartwright2,4, and Donald F. Conrad1,5

1Department of Genetics, Washington University School of Medicine, St. Louis, MO USA

2Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State
University, Tempe, AZ USA

3Genome Mutation and Genetic Disease Group, Wellcome Trust Sanger Institute, Cambridge, UK

4School of Life Sciences, Arizona State University, Tempe, AZ USA

5Department of Pathology & Immunology, Washington University School of Medicine, St. Louis,
MO USA

Abstract

We present the DeNovoGear software for analyzing de novo mutations from familial and somatic

tissue sequencing data. DeNovoGear uses likelihood-based error modeling to reduce the false

positive rate of mutation discovery in exome analysis, and fragment information to identify the

parental origin of germline mutations. We used our program to create a whole-genome de novo

indel callset with a 95% validation rate, producing a direct estimate of the human germline indel

mutation rate.

De novo mutations (DNMs) are an important source of human morbidity and mortality, and

their detection is fundamental to the study of genetics. Mapping the location of germline and

somatic mutations is revolutionizing our ability to diagnose and understand numerous severe

diseases. Today, entire genomes can be screened for DNM using short-read sequencing, but
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per-base error rates in variant discovery are still orders of magnitude larger than the

frequency of DNMs, making careful calling, filtering and validation of calls essential.

While we and others have shown that it is feasible to accurately detect de novo point

mutations from whole genome sequencing (WGS) data, our ability to reliably detect de novo

indels is much less certain 1–4. In the recently published Phase I analyses of the 1000

genomes project, experimental validation of an initial indel call set yielded an estimated

false discovery rate of 35% 5. Even after more extensive filtering, the authors noted that

18% of indel sites yielded inconsistent or ambiguous results. These numbers signal the need

for extensive experimental validation and do not engender enthusiasm for the prospects of

de novo indel calling.

In what we call the “basic” approach to DNM detection, genotypes are called on one sample

at a time, and DNMs are identified as incompatible genotype calls between samples (e.g.

parent-offspring trios or matched tissues). Here, we describe an approach that greatly

improves the accuracy and interpretation of de novo point mutations and indels compared to

this “basic” approach, by jointly analyzing a set of samples in a unified model-based

framework. The DeNovoGear model consists of individual genotype likelihoods,

transmission probabilities, and priors on the probability of observing a polymorphism or a

de novo mutation at any given site in the genome (Online Methods). The DeNovoGear

framework allows the user to specify the prior probability of observing a DNM, which in

principle can be used as a lever to increase or decrease calling sensitivity. We performed

simulations to show that increasing the mutation rate prior increases detection sensitivity

and that use of a prior helps control Type I error at low sequencing depth (Supplementary

Note, Supplementary Figures 1 and 2, Supplementary Tables 1 and 2).

It has recently been shown that there is a striking overdispersion in the distribution of

alternate read frequency in whole exome sequencing data, compared to expectations of the

binomial model typically used for genotype calling 6. Specifically, at a heterozygous SNP

position, the observed variance in the proportion of non-reference reads, var(p), may be

much larger than the theoretical binomial variance of p(1-p)/n, where p = 0.5 for a germline

heterozygote and n is the depth of coverage for the site.

We fit beta-binomial distributions to alternate read frequencies for SNPs and indels called

from trio exome sequencing data generated by the 1000 genomes project7 (Online

Methods). The beta-binomial distribution fits the variance of the read depth distribution

better than both the Poisson and the binomial distributions, and the improvement in fit is

more dramatic for indels compared to SNPs (Figure 1). Model parameters estimated from all

three CEU trio exomes were highly similar, but these estimates are significantly different

from those made from experiments performed at a different center on different DNA

(p<0.0001, Likelihood Ratio Test), meaning that beta-binomial models are not necessarily

portable between labs or protocols (Supplementary Table 3). We have implemented a beta-

binomial-based (‘BB’) caller within DeNovoGear that allows beta-binomials to be fit for

arbitrary input datasets (Methods). The BB caller reduces the number of false positive de

novo SNV calls by over 50% while maintaining the same power to detect true DNMs as
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when using binomial likelihoods (Supplementary Table 4). We discuss the application of the

BB caller to indels below.

We are aware of three tools for model-based discovery of germline DNMs from next-

generation sequencing 7–9. We compared the performance of SamTools, PolyMutt, GATK

and DeNovoGear relative to a naive strategy based on single-sample calling, using simulated

data and two datasets generated from a single parent-offspring trio by from the 1000

genomes project (WES and WGS datasets, Online Methods).

Sensitivity and specificity were determined using previously generated validation results for

these samples (Supplementary Figures 3 and 4, Supplementary Tables 4 and 5). In this era of

rapid technological development, it is a conservative assumption that our historical validated

callset from 2011 captures all true positives, and the optimal performance comparison would

attempt validation on all predictions from all programs.

All callers exhibit close to 50% sensitivity for detecting validated germline DNMs on the

WGS dataset. For validated somatic mutations, DeNovoGear (n=930 calls, 99% sensitivity)

and GATK (n=921 calls) outperform Samtools (n=890) and Polymutt (n=878). The WGS

false discovery rates vary widely across callers. The naive approach is clearly impractical,

producing 144,424 DNMs. Samtools produces 235,134 DNM calls with probability > 0.5,

and after converting to posterior probabilities, 111,142 DNMs with probability > 0.9 (but

note that Samtools is more similar to PolyMutt and DenovoGear when considering ROC

curves, Supplementary Figures 3 and 4). GATK calls an order of magnitude fewer events

with 15,141 DNMs at probability > 0.9. At this threshold, PolyMutt is even more

conservative, with 6,215 DNMs called, and DeNovoGear is the most conservative with

4,474 DNMs called.

On the WES dataset, using the beta-binomial model clearly separates DeNovoGear-BB from

the other callers, including the original DeNovoGear using binomial likelihoods

(Supplementary Table 4). While DeNovoGear makes 153 total calls with a posterior

probability > 0.9, DeNovoGear-BB makes only 70 calls at the same threshold with no loss

of power for germline DNMs and only one less somatic DNM call.

DeNovoGear called 369 candidate de novo indels with probability > 0.5 on the WGS data

using Samtools genotype likelihoods and indel-specific priors (Online Methods,

Supplementary Figures 5 and 6, Supplementary Table 6). After excluding 241 sites by

filtering and 71 sites by visual inspection, we attempted to validate 9 insertions and 48

deletions by Sanger sequencing (Supplementary Tables 7–9, Supplementary Figures 7–11,

Online Methods). Remarkably, we validated 53 of the 56 sites for which we could design

assays (95%, 6 insertions and 47 deletions). De novo indel calling with the beta-binomial

greatly reduces the number of false positive calls compared to the standard binomial; at a

probability threshold of 0.5, DeNovoGear calls 34 indels and DeNovoGear-BB only calls

one, a reduction of 97% (Supplementary Table 6). We also compared the performance of

Samtools genotype likelihoods for indel DNM detection to likelihoods from DINDEL,

another well known indel calling algorithm based on a profile HMM10 (Supplementary

Note). Our results suggest that DINDEL genotype likelihoods are conservative, in that they
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underestimate the evidence for an indel when one is present, but this is balanced by a major

increase in specificity. Forty-four (79%) of the 56 candidate DNMs from our Samtools

analysis were also called as DNMs with DINDEL likelihoods when considering the WGS

dataset; in contrast two-thirds of the false positives were no longer supported as DNMs.

In our analyses of validated point mutations in these cell lines we observed a ratio of 49

germline DNMs to 952 somatic DNMs1. Assuming that these proportions hold for indels,

this would provide a direct estimate of the sex-averaged de novo indel rate of 1.06 × 10−9

(95% CI: 2.35 × 10−10 2.75 × 10−9) per-base per generation or 9.06 indels per 100 point-

mutations (given that the point mutation rate in the CEU trio offspring has been estimated to

be 1.17 × 10−8) (Online Methods). This estimate of the indel mutation rate is consistent

with prior estimates from phylogenetic comparisons (1.42 × 10−9) and from the sequencing

of Mendelian disease genes (0.78 × 10−9)11,12. We explored the influence of our

assumptions on the rate that we obtained, and concluded that it is unlikely that the true indel

DNM rate for this trio differs by more than a factor of five from our estimate

(Supplementary Note).

Homopolymers and short tandem repeats are highly unstable in eukaryotic genomes and are

known to mutate at rates orders of magnitude higher than point mutations in repeat-free

sequence13,14. We applied filters that removed homopolymers and tandem repeat regions

using standard annotations15 and as a result we are underestimating the true small indel de

novo rate (Online Methods). Curiously, 31 (58%) of our validated mutations fell within

tandem repeats (8) or homopolymers (23) that were unannotated by Tandem Repeats Finder.

We term these repeats “microrepeats” to reflect their extremely small size, 2–6 bp in the

case of homopolymers and 2–5 copies of 3–4 bp repeats in the case of tandem repeats. No 2

bp repeat mutations were observed. This result suggests that replication slippage, well-

known to cause repeat polymorphism at larger tandem repeat loci, is operating at even the

smallest possible tandem repeats, blurring the boundary between simple diallelic indels and

tandem repeat polymorphism.

DeNovoGear implements a fragment-based phasing algorithm that can determine the parent

of origin for some DNMs (Online Methods). In the WGS dataset we were able to phase

24% (12/49) of validated germline de novo point mutations, 21% (205/952) of validated

somatic DNMs and 28.5% (16/56) of validated indel calls. We are actively developing

DeNovoGear to improve calling performance by implementing new genotype likelihood

models and extending the inheritance model to cover arbitrary pedigree structures. New

genotype likelihood models will be useful for different mutation types (e.g. VNTRs and

CNVs), frequencies (e.g. in mosaic situations), and sample preparations (e.g. single cells).

Online Methods

Datasets

BAM files were generated from whole-exome and whole genome sequencing data of the

CEU trio (NA12878, NA12891, NA12892), freely available from the 1000 genomes project

FTP server and described previously7. Reads were aligned to an augmented reference

sequence based on GRCh37, which is being used for the Phase Two of the 1000 genomes
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project and available from the 1000 genomes website. BAMs were processed with best

practices including PCR duplicate removal, local indel realignment and base quality

recalibration. The package BCFtools was used to create BCF-format genotype likelihoods

from each BAM file8.

The basic DeNovoGear model

DeNovoGear uses a genealogical modeling framework that can be used to evaluate the joint

likelihood of all genotypes in a pedigree. Currently the pedigree structure is limited to

parent-offspring trio or matched sample pairs (e.g. tumor-normal or monozygotic twins).

In the case of a trio we use subscripts to indicate genotype from mother, father and child:

GM, GF, and GC. Then we write the joint likelihood for the trio as

where P(GM, GF, R) is the prior of drawing two genotypes GM and GR from the population

and observing the base present in the public reference genome sequence, R. This prior is

loosely derived from the standard neutral coalescent, and is modulated by a user-defined

value for the population mutation rate θ. P(GC | GM, GF) is the ‘transmission’ likelihood; the

likelihood that the child’s genotype is GC given the parents genotypes are GM and GF.

Within this function also lies another ‘pseudo prior’, the assumed probability of observing a

de novo mutation, which is used for evaluating P(GC | GM, GF) for Mendelian incompatible

trio configurations. For Mendelian incompatible configurations we assume the minimum

number of mutations required. The terms P(GC | GM, GF) and P(GM, GF, R) are pre-

calculated for all possible trio configurations and contained in a lookup table that is used by

DeNovoGear to greatly reduce run time. The individual genotype likelihoods, or P(D|G)’s,

are provided as input to DeNovoGear, a feature that allows users to benefit from extremely

specialized sequencing error models implemented by other packages. We note that the

DeNovoGear beta-binomial caller described below also models sequencing error and could

be used as a stand-alone DNM caller without input from other packages.

Prior sensitivity analysis

In order to assess the performance of DeNovoGear for different prior values we ran

DeNovoGear by setting the mutation rate prior from 10−4 to 10−12 mutations/bp in

geometric increments of 10−2. Our results show that varying the mutation rate prior does

have a dramatic effect on the sensitivity and specificity of DNM calling when using a

standard whole-genome sequencing study design such as the one generating the WGS

dataset (Supplementary Tables 1 and 2, Supplementary Figs. 1 and 2). The total number of

false positive calls increases over 5-fold when moving from 10−12 to 10−4, while 879/939

(94%) of validated DNMs are detected at the smallest rate prior, and 100% sensitivity for

germline DNMs is achieved at 10−8.
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Controlling type I errors at low sequencing depth

Depth of coverage analysis—We generated low coverage datasets (1–20×) from the

validated dataset of Conrad et al., which consists of 3038 candidate de novo sites 1. The

requisite number of reads was randomly subsampled from the BAM files for each of the

individuals in the CEU trio. We determined the number of the 48 validated autosomal

germline and the 888 autosomal somatic de novo mutations that were found using each

coverage level. We calculated sensitivity and specificity for each coverage level.

Simulated data for performance comparison—We simulated three datasets of 100

million sites each. One dataset consisted of parents and a child that were entirely

monomorphic. In the second, one parent and the child were heterozygous for an inherited

mutation, and in the third, the parents were monomorphic and the child was heterozygous

for a de novo mutation. Ten-fold (10X) coverage reads were randomly generated for each

dataset with an error rate of 0.005 and equal probability of each allele for heterozygotes.

Data were analyzed using SamTools trio caller and DeNovoGear.

Alternative genotype likelihoods: Beta-binomial caller

The beta-binomial distribution is parameterized by two variables, α and β, so the likelihood

function for the homozygous reference class of sites could be written as

where n is the total number of reads observed at a site, and k the number of those reads with

the alternate allele. In our model we make the simplifying assumption that LRR and LAA are

symmetric, that is αAA = βRR and αRR = βAA. We consider these fitted BB distributions to

be informative about sequencing error, but we only consider the possibility of two alleles at

any given site for all genotype classes (RR, RA, AA). Therefore the data used for model

fitting and likelihood calculation simply consists of the total read depth and count of the

most common alternate allele. Training a beta-binomial (‘BB’) model is an iterative process

performed one exome at a time. We conduct a first round of SNP genotype calling using a

standard approach such as implemented by Samtools. We then fit beta-binomial

distributions to a set of high confidence sites representing heterozygous or homozygous non-

reference genotypes using maximum likelihood 16. During our preliminary analyses we

observed that the our fitted models for LAA and LRR provided a poor fit to sites where only

one base was observed (e.g. all reads contained “A”), so for this class of sites we have

hardcoded the likelihoods for these sites. For example, at a site with only reference reads the

phred scaled likelihood function is: RR-0, RA-255, AA-255. It is this version of the BB

model that we describe in the main text. Because the beta-binomial framework only

considers two alleles, we implemented a simple filtering strategy to remove DNM calls at

triallelic sites.
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Performance comparisons

We used the following packages for calling mutations: DeNovoGear 0.5, samtools version:

0.1.17, polymutt 0.0.4, DINDEL 1.01, and the trio-aware Bayesian caller of GATK 2.1–8.

All packages were run with default settings. Samtools and Polymutt output likelihood ratio

statistics of the form L(de novo mutation)/L(no de novo mutation) which we convert to

posterior probabilities for comparison to DeNovoGear.

Estimating Indel priors

It is well known that indel mutation rates are size dependent smaller indels are far more

likely to form than large ones and that conditional on size, deletions occur more frequently

than insertions 14. We used the Watterson estimator to generate size-specific mutation rate

estimates for insertions and deletions separately, using the indel callset from Phase I of the

1000 genomes project 17. We next fit these mutation rate estimates to a log-linear model, to

allow priors to be assigned to indels of arbitrary size (Supplementary Fig. 6). The prior

function implemented by default for insertions is log(μ) = c * (−22.8689− (0.2994*insertion

length)) and for deletions, log(μ) = c * (−21.9313− (0.2856*deletion length)), where in both

cases c represents a scaling constant that can be altered by the user.

Filtering and mutation rate calculation

With standard experimental design, it is thought that a large portion of false positive DNM

calls is due to alignment error. Repeat-rich regions in particular are prone to both alignment

and sequencing artifacts. We implement here a small number of filters to remove potentially

artifactual indel DNM calls. We removed DNM calls that intersected the “Simple Repeats”

and “Segmental Duplications” tracks downloaded from the UCSC genome browser (n=13

and n=109, respectively). We remove DNM calls that fall at sites of reported indel

polymorphism found in dbSNP (n = 98), as such variants may be the result of undercalling

indels in the parents, and we removed calls around CNVs known to exist in these cell lines

(n=21)18. By visual inspection of sequencing read alignments, we identified three types of

obvious artifacts that we removed manually (Supplementary Figures 7–9).

In order to produce an estimate of the per generation indel mutation rate for this trio, we

used an equation that accounts for DNM discovery power (p; estimated at 95% from

previous work), the proportion of validation assays we were able to attempt (a; 56/57), the

proportion of validated DNM sites that segregate in the germline (s; estimated at 49/1001 in

this cell line from previous work), the total number of validated DNMs (d; 53), and the

number of bases we were able to effectively screen for DNM in this trio (b; 2,631,436,052).

Then our rate estimate is
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PCR validation of de novo indel calls

As described in the main text, we selected 57 potential de novo indel sites for validation

using PCR amplification followed by Sanger sequencing. We performed 57 PCR assays on

DNA samples from Coriell cell lines GM12878, GM12891, and GM12892 using a Biorad

T100 Thermocycler 2.0. The primers and specific PCR conditions used for each assay are as

described in Supplementary Table 8. In brief, the PCR conditions were 3 minutes at 95 °C,

followed by 35 cycles of 1 minute at 95 °C, 1 minute at 58 or 61 °C and 20 or 60 seconds at

72 °C, ending with 1 cycle of 1 minute at 72 °C. The PCR mix consisted of 12.5 μl 2× PCR

Master Mix (Cat No. M750B; Promega), 1.0 μl primer set (10 μM), 1.0 μl genomic DNA (50

ng per μl) and 10.5 μl dH20. The final reaction volume was 25 μl. All PCR products were

run on a 3%, 1× TBE agarose gel to be analysed for size and subsequently sent off for

Sanger sequencing (Genewiz).

Haplotype phasing

DeNovoGear implements a fragment-based phasing algorithm that can determine the parent

of origin for some DNMs. The phaser looks at reads or read pairs that cover both the de

novo site and a phase-informative site that is close to the de novo site. The phasing routine

produces counts of maternal and paternal variants observed on the same fragment as the de

novo mutation. These counts should be directly interpretable in a qualitative manner (e.g. an

observation of one paternal variant and no maternal variants indicates a paternal origin of

the DNM). However, counts could also be included in a testing framework for count data to

control for possible index switching, although such experimental artifacts should be rare.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Using beta-binomial (‘BB’) likelihoods to model exome data. A) We fit three functions to the read count data from the exomes

of NA12878, NA12891, and NA12892, considering only high-confidence SNP sites. For each function, we plot the expected

variance in the number of alternate alleles sampled as a function of read depth. One the same scale we show the observed

variance for all three exome datasets. B) We performed the same analysis using indel sites and observed an even larger

difference in fit between beta-binomial and binomial models than with SNPs. When we examine mutant allele frequencies in the

CEU WES dataset at the sites called by using binomial (n=153), beta-binomial (n=66), or both models (n=40), we see that the

BB model primarily reduces false positives by eliminating undercalling of heterozygotes in the parents. (C) Distribution of

mutant allele frequencies for previously validated sites. On the x-axis, sites are positioned by the cumulative mutant read

frequency in the parents. On the y-axis sites are positioned by the mutant read frequency in the trio offspring. Points are colored

by validation status. (D) Distribution of mutant allele frequencies for sites called in this study and not validated previously. Sites

are colored green if called only by binomial model, red if called only by BB, blue if called both models.
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