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Abstract

Recent work has shown that disciplined shared-memory program-
ming models that provide deterministic-by-default semantics can
simplify both parallel software and hardware. Specifically, the De-
Novo hardware system has shown that the software guarantees
of such models (e.g., data-race-freedom and explicit side-effects)
can enable simpler, higher performance, and more energy-efficient
hardware than the current state-of-the-art for deterministic pro-
grams. Many applications, however, contain non-deterministic
parts; e.g., using lock synchronization. For commercial hardware to
exploit the benefits of DeNovo, it is therefore necessary to extend
DeNovo to support non-deterministic applications.

This paper proposes DeNovoND, a system that supports lock-
based, disciplined non-determinism, with the simplicity, perfor-
mance, and energy benefits of DeNovo. We use a combination of
distributed queue-based locks and access signatures to implement
simple memory consistency semantics for safe non-determinism,
with a coherence protocol that does not require transient states,
invalidation traffic, or directories, and does not incur false shar-
ing. The resulting system is simpler, shows comparable or bet-
ter execution time, and has 33% less network traffic on average
(translating directly into energy savings) relative to a state-of-the-
art invalidation-based protocol for 8 applications designed for lock
synchronization.

Categories and Subject Descriptors B.3.2 [Hardware]: Memory
Structures – Cache memories; Shared memory; C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Multiproces-
sors) – Parallel processors

Keywords shared memory, cache coherence, disciplined paral-
lelism, memory consistency, non-determinism

1. Introduction

Shared-memory remains a popular programming model among
multicore programmers and is the de facto model provided by
multicore hardware. It is, however, increasingly evident that un-
bridled “wild” shared-memory programming environments that al-
low data races, ubiquitous non-determinism, unstructured paral-
lelism, and complex memory consistency models make program-
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ming, debugging, testing, and maintaining software difficult [1, 32].
Recent software research has therefore proposed more disciplined
shared-memory programming models that retain the advantage of
a global address space, but make it easier to write safe parallel
programs that are easier to debug, test, and maintain [4–6, 10–
12, 14, 18, 19, 30, 39].

At the same time, providing hardware cache coherence and con-
sistency that can scale in a power-efficient manner to hundreds of
cores is also a significant challenge. There has recently been a surge
in research by academics (see Section 7) and hardware compa-
nies [23, 26] to address this challenge in unconventional ways. In
particular, the DeNovo hardware project observes that disciplined
shared-memory programming models such as mentioned above can
drive a holistic rethinking of the multicore memory hierarchy, pro-
viding more complexity-, performance-, and power-efficient hard-
ware than the state-of-the-art for deterministic programs [17]. This
paper shows that the benefits of disciplined programming and De-
Novo can be extended to non-deterministic programs as well.

DeNovo has used Deterministic Parallel Java (DPJ) as an ex-
ample disciplined programming model [11] to drive its design.
DPJ provides the programmer with a novel region-based type
and effects system to convey the read and write side-effects on
shared-memory for every method. A type-checked DPJ program
is guaranteed deterministic-by-default semantics. That is, unless
non-determinism is explicitly requested, DPJ programs appear de-
terministic and with sequential semantics (the programmer can
debug and test such a program as if it were sequential). Even when
non-determinism is explicitly requested, DPJ provides strong safety
guarantees; e.g., data-race-freedom, strong isolation, and sequential
composition of deterministic code sections [12]. The DPJ compiler
enforces these guarantees by checking that conflicting accesses
from two concurrent tasks – the root cause of non-determinism –
are always identified (as atomic) and always occur within explicitly
marked atomic sections.

DeNovo has so far focused on deterministic programs, and shown
that DPJ’s information and guarantees can be exploited to provide a
simpler and more efficient cache coherence protocol than the state-
of-the-art MESI for such programs [17]. Specifically, DeNovo’s
protocol has the following advantages: (1) The implementation has
no transient states and so is much easier to verify (verification is an
order of magnitude faster) and much easier to extend (incorporat-
ing optimizations did not introduce any protocol state changes). (2)
DeNovo does not rely on writer-induced invalidations; it therefore
eliminates invalidation message traffic and does not require stor-
age overhead for sharer lists in directories, removing a key source
of unscalability. (3) DeNovo keeps coherence state at the granular-
ity at which data is shared and so does not suffer from false shar-
ing (the added state overhead is much less than the reduced direc-
tory state). Overall, compared to MESI, DeNovo is much simpler,



performs comparably or better than MESI, and is more energy-
efficient (since it reduces cache misses and network traffic) for a
range of deterministic codes.

Although determinism is considered desirable for many ap-
plication classes, there are many common codes that are non-
deterministic or contain parts that are non-deterministic, most com-
monly through lock synchronization. For example, 21 out of 25 of
the PARSEC and SPLASH-2 benchmarks contain locks in some
parts. DeNovo currently cannot run such codes.1 For commercial
hardware to be able to exploit the benefits of DeNovo, it is im-
perative that we develop techniques to support non-deterministic
codes with at least as much performance as conventional systems,
without losing the benefits of DeNovo.

This paper explores exploiting disciplined programming models
to develop simpler and more efficient hardware even for programs
that contain non-determinism. We use DPJ’s safe non-determinism
model (with atomic sections replaced with locks), and show that
simple additions to the DeNovo coherence protocol can support
such non-determinism without giving up on DeNovo’s previous
advantages. We call the resulting system DeNovoND.

For deterministic programs, DeNovo achieves its benefits pri-
marily by recognizing that DPJ explicitly provides the regions that
could be potentially written in a parallel phase (e.g., DPJ’s fore-
ach or cobegin constructs) through its explicit effects. At the start
of a new phase, DeNovo’s cores execute compiler-inserted self-
invalidations to all regions that could have write effects in the previ-
ous phase. Their caches therefore now have only valid data. If any
of this data is updated in the next phase, DPJ’s data-race-freedom
guarantee ensures that only the writing core will read that data,
ensuring up-to-date values for all reads. These observations elimi-
nate the need for writer-induced invalidations, directories, and false
sharing due to cache line driven protocols.

Unlike DeNovo, DeNovoND cannot assume that a parallel phase
will have no conflicting accesses among concurrent tasks any more,
but it knows that such accesses will be protected by the same
lock (this lock may change in a different parallel phase). Further,
such accesses are explicitly identified as atomic accesses in DPJ
programs. Within a critical section, DeNovoND therefore tracks
atomic writes through a signature which is conveyed to the next
acquirer of the lock. The acquirer uses the signature to determine
which data to invalidate in its cache. The strong guarantees given by
DPJ enable an efficient implementation, while still providing free-
dom to express a variety of non-deterministic algorithms. Underly-
ing the above is an implementation for a lock that does not require
directories and a full-fledged MESI protocol – we use a distributed
queue based implementation modeled after the Queue-on-Sync-Bit
(QOSB) lock [20].

Overall, our system retains the advantages of DeNovo while sig-
nificantly expanding the class of programs it supports without com-
promising performance. Specifically, for lock accesses, although
DeNovo’s coherence protocol state machine is extended to handle
the distributed queue, it reuses the state bits from DeNovo’s data ac-
cesses. For data accesses, again, no new externally visible states are
added; the only support needed is a signature per core, the ability
to transfer it to the next acquirer, and to use it for self-invalidation
at subsequent reads. A bit per word at the L1 cache is used as an
optimization. We continue to not have any directories, not have in-
validations, and not incur false sharing.

We compared DeNovoND with a state-of-the-art MESI protocol
for 11 benchmarks with lock synchronization. 3 of these spent more
than 70% of their time in lock acquires, clearly requiring alternate

1 The DeNovo work reports results for some of these benchmarks, but the
parts with locks were either run sequentially or rewritten or not simu-
lated [17].

synchronization techniques for reasonable parallel efficiency that
are out of the scope of this work. We therefore focus on the remain-
ing 8 benchmarks here, although we report results for the above 3 as
well for completeness. We found that DeNovoND performs com-
parably or slightly better than MESI in terms of execution time.
DeNovoND also shows 33% lower network traffic than MESI on
average, which directly translates into energy savings. Performance
optimizations previously proposed for DeNovo (for cache to cache
and flexible granularity data transfer) [17] are applicable to DeN-
ovoND as well without any additional changes, but are orthogonal
to this work and not reported here. Thus, DeNovoND allows us to
extend the benefits of DeNovo to include lock-based (safe) non-
deterministic applications.

Our system shares commonalities with previous software dis-
tributed shared memory consistency models such as lazy release
consistency [27], entry consistency [7], and scope consistency [22]
as well as recent hardware shared-memory work that exploits data-
race-freedom such as SARC [25]. However, none of those systems
distinguish between deterministic and non-deterministic accesses
in a way that is possible with our hardware/software co-designed
approach, and so those systems cannot exploit the corresponding
optimizations. Section 7 discusses the relationship of our work to
prior work in more detail.

While DeNovoND takes a major step in exploiting software dis-
cipline in hardware for a larger class of programs, there is still
much left to future work and outside the scope of one paper. Sec-
tion 8 discusses future work to explore how to incorporate other
key constructs (e.g., pipelined parallelism), and support more com-
plex codes such as legacy codes and operating systems within this
vision.

2. Background

2.1 Deterministic Parallel Java (DPJ)

DPJ is an extension to Java that enforces deterministic-by-default
semantics via compile-time type checking [11, 12]. We first dis-
cuss DPJ without non-deterministic constructs [11]. DPJ provides
parallel constructs of foreach and cobegin to express parallelism
in a structured way as in many current languages (we refer to an
iteration of a foreach loop or a parallel statement of a cobegin as
a task). DPJ provides a new type and effect system for expressing
common patterns of imperative, object-oriented programs. The DPJ
programmer assigns every object field or array element to a named
“region” and annotates every method with read and write “effects”
summarizing the regions read and written by that method (a re-
gion can be non-contiguous in memory). The compiler uses this
information to (i) type-check program operations in the region type
system and (ii) ensure that no two parallel tasks interfere (conflict).

DPJ also provides parallel constructs that are potentially non-
deterministic; i.e., foreach nd and cobegin nd [12]. These con-
structs allow conflicting accesses between their tasks, but require
that such accesses be enclosed within atomic sections, their read
and write effect declarations also include the atomic keyword, and
their region types be declared as atomic. Note that there continue to
be no conflicts allowed between a task from a deterministic parallel
construct and any other concurrent (non-deterministic or determin-
istic) task. The compiler checks that all of the above constraints
are satisfied by any type-checked program, again using a simple,
modular type checking algorithm.

With the above constraints, DPJ is able to provide the follow-
ing guarantees: (1) Data-race freedom. (2) Strong isolation of ac-
cesses in atomic section constructs and all deterministic parallel
constructs; i.e., these constructs appear to execute atomically. (3)
Sequential composition for deterministic constructs; i.e., tasks of
a deterministic construct appear to occur in the sequential order



implied by the program (even if they contain or are contained
within non-deterministic constructs). (4) Determinism-by-default;
i.e., any parallel construct that does not contain an explicit non-
deterministic construct provides deterministic heap output for a
given heap input. The above guarantees are strong – they not only
ensure sequential consistency but also allow programmers to reason
with very high-level strongly isolated and composable components
such as complete foreach constructs and all atomic sections.

Although DPJ supports atomic sections, this paper assumes we
can convert them to locks. This is possible because by default we
can associate each atomic region with its own lock. For each atomic
section, we can acquire locks for each atomic region that it accesses
in a predefined order. This can be optimized in several ways; e.g.,
by coarsening the locks. An implementation of this algorithm is
outside the scope of this paper. We therefore use hand inserted locks
– for the applications we used, these locks were as provided in the
original application.

2.2 DeNovo for Deterministic Codes

DeNovo divides the coherence problem into two parts:

(1) No stale data: A read should never see stale data in its private
cache(s).

(2) Locatable up-to-date data: When a read misses in its private
cache(s), it should know where to get an up-to-date copy of the
data.

Above, stale and up-to-date are defined by the memory consis-
tency model (sequential semantics, in our case). For (1), DeNovo
recognizes that DPJ explicitly provides the regions that could be
potentially written in a parallel phase (each DPJ parallel construct
such as cobegin and foreach forms a phase, with an implicit barrier
at the join). Before starting a new phase, a core issues compiler-
inserted self-invalidations for all regions that could have write ef-
fects in the previous phase, eliminating all stale data from its private
cache(s).2 For data updated in the current phase, DPJ’s data-race-
freedom guarantee ensures that only the writing core will read that
data, ensuring up-to-date values for all (private) cache hits. For (2),
DeNovo uses a structure called the registry to keep track of one
up-to-date copy of each cache line. This is analogous to a conven-
tional directory, but unlike the latter, it does not track all sharers of
a cache line (eliminating a source of unscalability). With systems
with a shared last level cache, the data bank of the cache doubles
as the registry storing the data or a pointer to it.

The DeNovo protocol has three states, Registered, Valid, and In-
valid. These states are analogous to those in a conventional MSI
directory protocol; Registered is similar to M with the line modified
in a private cache and Valid is similar to S. The DeNovo protocol
state transition diagram also resembles typical textbook pictures
for MSI. A key difference, however, is that real implementations
of MSI have tens of transient states to handle protocol races, in-
troducing significant complexity and making verification difficult.
In contrast, DeNovo has no transient states since it assumes race-
free software, which eliminates virtually all races from the protocol
hardware.

Next we describe the key aspects of the protocol’s operation and
refer to [17] for more details. For easier exposition, we assume a
two level cache hierarchy with a shared L2 without loss of general-
ity, and a line size of one word (this is relaxed below). A read hits
in the L1 if the line is Valid or Registered. A read miss request goes
to the registry (the shared L2) and either finds the data there or a
pointer to the L1 that contains the data in Registered state. In the
latter case, the request is routed to the registered data for service.

2 This requires the cache to store region information as described in [17].

A write to data in Registered state at the L1 updates the data. A
write to data in Valid or Invalid state at the L1 immediately transi-
tions the data to Registered and updates it (no transients) and gener-
ates a registration request (and a writeback if needed). If the data is
not registered elsewhere, the L2 immediately registers it and sends
an acknowledgment. Otherwise, the L2 records the new registra-
tion and forwards the request to the previously registered core to
relinquish its registration. Due to the data-race-free guarantee, reg-
istration transfer occurs only once in a phase (assuming no task mi-
gration, which can also be easily handled [17]), without any danger
of protocol races.

Additionally, as an optimization, L1 contains touched bits that
are set when the corresponding data is read. Due to data-race-
freedom, it is guaranteed that no other core will write such data
in that phase. Thus, “touched” data is up-to-date and does not need
to be invalidated for the next phase. All self-invalidations occur at
the end of the phase – regions with write effects in that phase are
invalidated unless the data is registered or touched. Touched bits
are reset after the invalidation, in preparation for the next phase.

The baseline word-based DeNovo protocol assumes equal ad-
dress/tag allocation, communication, and coherence granularity,
which is the granularity at which data-race-freedom is ensured.
This granularity is a word for the applications evaluated. (Details
about supporting sub-word (byte) granularity can be found in [17].)
DeNovo further observes that any data that is marked touched
or Registered is always up-to-date and can be freely copied from
one cache to another without informing anyone (there is no di-
rectory tracking sharer lists). Thus, the word-based DeNovo pro-
tocol is easily enhanced to operate on larger communication and
address/tag allocation granularities, while still maintaining coher-
ence state at the word granularity.

A natural granularity for communication and allocation is a con-
ventional cache line (e.g., 64 bytes), and the corresponding DeNovo
protocol is referred to as the line based protocol. Here, a responding
cache for a demand request sends a cache line worth of data (poten-
tially with some words marked as invalid) and the valid words in the
response message are merged with the local copy of the cache line
of the requestor. These words are marked as Valid, but not touched
(the touched bit is set when those words are actually read). DeN-
ovoND is designed on top of this line-based protocol.

DeNovo has also explored more flexible communication granu-
larities (more or less than one cache line) and direct L1 to L1 data
transfers. These optimizations are simple with DeNovo and do not
require any new states, but are difficult to incorporate in conven-
tional protocols because they introduce even more transient states.
The same optimizations can be directly applied to DeNovoND as
well, again with no new states for DeNovoND. We do not study
them here since they are orthogonal to the goal of this paper.

The DeNovo protocol we study additionally implements the opti-
mization of write combining where multiple registration requests to
words in a given cache line are combined into one request. This op-
timization was mentioned, but not implemented, in [17] to reduce
write traffic. This optimization is not meaningful for conventional
protocols since conventional store requests always operate on a full
line while DeNovo registrations are for a word.

3. DeNovoND Design Overview

3.1 Basic Assumptions and Definitions

We assume all synchronization occurs through DPJ’s parallel con-
structs (foreach, cobegin, and their nd versions) and through locks.
We assume a barrier at the implicit join associated with the parallel
constructs. We say all concurrent tasks of a given parallel construct
– loop iterations in a foreach and parallel statements in a cobegin –
form a phase.



For locks, we assume that an atomic section does not call a
parallel construct, as is the case with all our applications. Thus,
all operations of an atomic section occur within a single task and
are enclosed within a lock acquire and release to the same lock
variable (there may be nested locks to different lock variables). We
refer to memory operations within such a lock acquire/release pair
as occurring in a critical section protected by that lock variable.

For data accesses, we assume the ISA provides a mechanism by
which loads and stores can be tagged as accessing atomic regions
with atomic effects (e.g., with a bit in the op-code). The DPJ com-
piler has this information and can generate code with the bit set for
such accesses. We refer to such accesses below as atomic accesses
and to others as non-atomic accesses. Note that the former are reg-
ular data accesses from atomic sections and are not to be confused
with atomic read-modify-writes or the C++ atomic keyword used
for synchronization races.

Without loss of generality, we assume a two level cache hier-
archy. We also assume a shared L2 cache. DeNovoND can be
extended to deeper hierarchies and private last level caches in a
straightforward way (similar to DeNovo [17]).

3.2 Memory Consistency Model

For a correct design, we must first understand the constraints im-
posed by the memory consistency model which specifies what
value a read must return.
Informal model: DPJ provides a very strong consistency model.
It guarantees sequential consistency and hence a total order over
all memory operations (that is consistent with program order). A
read must return the value of the last write to its location as defined
by this total order. DPJ also enforces additional rules that further
constrain this last write for data operations, simplifying reasoning
for software and implementation for hardware as follows.

Non-atomic accesses: DPJ ensures that for a non-atomic access,
there cannot be a conflicting access by another concurrent task in
the same phase. Thus, for a non-atomic read, the last conflicting
write is either from its own task or from a task in a previous
phase. This is identical to DeNovo and we can use the identical
implementation.

Atomic accesses: For atomic accesses as defined above, DPJ
allows conflicting accesses among concurrent tasks, but ensures
that all such accesses to a given location are in critical sections
protected with the same lock. These critical sections must execute
atomically, imposing a total order on all conflicting atomic accesses
within a phase. A read therefore must return the value from the
(unique) last conflicting write from a critical section in the current
phase; if such a write does not exist, then the read must return the
(unique) last conflicting write from the previous phase.
Formal model: We now state the model more formally. Note that
this model is motivated as a specification for hardware and is
therefore at a low level, in terms of individual reads and writes. DPJ
programmers work at a higher level in terms of composition and
serialization of higher level constructs (cobegin, atomic section,
etc.) as described in Section 2.1. Our model can be stated in two
parts for synchronization and data accesses respectively:

(1) Synchronization accesses are sequentially consistent. This
implies a total order between phases and between critical sections
to a given lock variable within a phase; this total order is consistent
with program order.

(2) For conflicting data accesses, X and Y , we define a happens-
before relation, denoted →hb such that X →hb Y iff

Type 1 edge: X’s phase precedes Y ’s phase (by the total order
in (1)), or

Type 2 edge: X and Y are in the same task, and X is before Y

by program order, or

Type 3 edge: X and Y are atomic accesses in critical sections
protected by the same lock variable, and X’s critical section
precedes Y ’s critical section (by the total order in (1)).

Then DPJ’s guarantees ensure that →hb orders all conflicting
accesses, and hardware should ensure that a data read returns the
value of the last conflicting write in →hb order. For a non-atomic
read, the last write is always ordered before it by a type 1 or type 2
→hb edge. For an atomic read, the last write may be ordered before
it by a type 2 or type 3 edge if such a write exists; otherwise, it is
ordered by a type 1 edge.

3.3 Data Coherence Mechanism

The coherence mechanism must simply ensure that a read returns
the value from the write as defined by the consistency model.
As with DeNovo, we divide the coherence mechanism into two
components:

(1) No stale data: A read should never see non-last (stale) data in
its L1 cache(s).

(2) Locatable up-to-date data: When a read misses in its L1
cache(s), it should know where to get the last (up-to-date) copy
of the data.

Above, last is precisely defined by the happens-before order. For
non-atomic accesses, both components above remain identical to
DeNovo since the consistency model requirements are identical.
For atomic accesses, the requirements are met as follows.
No stale data: For the first requirement of no stale data, we use
self-invalidations as with DeNovo, thereby precluding the need
for adding invalidation messages and directories with sharer lists.
Additional self-invalidations are needed with DeNovoND only if
there are conflicting atomic accesses among concurrent tasks in
a phase (otherwise, DeNovo’s self-invalidations at the start of a
phase suffice). In the case of conflicting atomic accesses among
concurrent tasks, we use the happens-before relation to determine
when and what to self-invalidate as follows.

To determine when to self-invalidate, we note that a concurrent
conflicting read must be in a critical section itself and must return
the value of the last write also in a critical section protected by the
same lock in the same phase (type 2 or 3 edge). Thus, it is sufficient
to self-invalidate any time between the start of a critical section and
an atomic read in that section.

To determine what to self-invalidate, we have several choices. We
could invalidate the entire cache (which seems excessive) or only
the atomic regions (for which we would need to keep extra state
to identify in the cache). An alternative is for each core to update
a signature that records all writes to atomic regions, and then to
transfer this signature when the lock is acquired by another core.
On a first atomic read to a location, the acquiring core needs to
check the signature and self-invalidate the location if it is present
in the signature. The acquiring core must forward the union of its
signature and the signatures it has received to the next acquirer.
Locatable up-to-date data: For the second requirement of finding
the value of the last write on a miss, we use ideas similar to
DeNovo. On a write to valid or invalid data, the L1 cache sends
a registration request to the L2. The registrations are required to
complete before the lock release so that conflicting writes from
critical sections are serialized in the right order (it is possible to
postpone the registration completion until the next lock acquire). A
read that misses in the cache simply goes to the registry (L2) to find
the up-to-date value.

Thus we continue with only three states in the protocol as before:
Valid, Invalid, and Registered. The extra work over DeNovo is to
update the signature on atomic writes, send the signature on a lock
transfer, and invalidate appropriately on atomic reads. Section 4.1
discusses each of these steps in more detail.



3.4 Distributed Queue-based Locks

Our distributed queue-based lock design is modeled after QOSB [20,
24], where the identities of the cores waiting for a lock are main-
tained in a queue of pointers distributed across the waiting cores’
L1 caches and the L2 cache. All requests to a given lock are serial-
ized at the corresponding shared L2 cache bank. The data portion
of the L2 cache entry for a contended lock tracks the last requestor
(i.e., the tail of the queue of waiters), referred to as tailPtr. When
the L2 receives the next request for the lock, it forwards it to the
current tail’s L1. On receiving such a forwarded request, the L1
checks a bit in its copy of the lock word, called the Locked bit, to
determine if the lock is still held or was unlocked. In the former
case, the L1 stores the requestor’s ID in another field of the lock
word, referred to as nextPtr. In the latter case, the L1 responds to
the requestor with its signature and transfers the lock, marking its
own lock word Invalid. When a core releases a lock, its L1 checks
its nextPtr – if not null, it transfers the lock (with the signature)
to the nextPtr core; otherwise, it unsets its Locked bit. We allow
eviction of lock words from the L1 and L2 caches by reusing the
data portion of the lock words in the next level of the memory hi-
erarchy to store lock queue information. This approach relies on
using L2 data banks to store (non-data) metadata, which is similar
to DeNovo’s tracking of registration information for the Registered
state. Section 4.2 discusses our implementation in more detail.

4. Implementation

This section discusses in detail how DeNovoND implements the
memory consistency model and the coherence mechanism de-
scribed in Section 3 using access signatures and the distributed
queue-based lock mechanism. We also qualitatively discuss the
hardware and performance overheads of the implementation.

4.1 Access Signatures for Coherence of Atomic Accesses

DeNovoND’s memory consistency model requires that a read re-
turn the value of the last write preceding it, as ordered by the three
types of happens-before edges described in Section 3. DeNovo al-
ready guarantees that a write ordered by a type 1 or type 2 edge
is seen at a read (the former through self-invalidations at the start
of a new phase and the latter through single core semantics). For a
non-atomic read, a write is ordered only through the above two
edge types; therefore, DeNovo already provides consistency for
such reads. For atomic reads where a previous (atomic) write is or-
dered by a type 3 edge, however, DeNovoND must provide a new
mechanism – it needs to track which data in atomic regions has
been modified in a critical section in the current phase, as well as a
mechanism to efficiently represent and transfer this information on
a successful lock acquire.

We use an “access signature” for the purpose of tracking atomic
writes. A signature is a compact representation of a set at the
expense of precision. Its main functionality includes element in-
sertion, membership query, and flash clear functions. DeNovoND
implements the access signature as a small Bloom filter in hard-
ware [9]. Due to its storage efficiency, simplicity, and low access la-
tency, a hardware Bloom filter has been a popular solution for many
areas including networking and transactional memory [13, 16].

For our Bloom filters, the keys are addresses accessed (i.e.,
atomic regions that have atomic effects in this phase), since we
are interested only in modifications made to those addresses. The
key domain dynamically changes between cores and phases, as a
new set of atomic accesses occurs. To keep the false positive rate
of Bloom filter reasonably low, the size of each Bloom filter should
be determined based on the average size of the key domain. This
turns out to be quite small in our case (256 bits suffice) since we
only track atomic accesses in a given phase (later sections discuss

Figure 1: An example of propagating atomic writes using access signatures.
Assume a and b are in the same cache line.

the size in more detail). We conservatively keep one filter per core
to track all modifications across different critical sections (with dif-
ferent locks) on the same core. Thus, for a system with n cores, we
have a total of n Bloom filters in the system.

The following uses Figure 1 as a running example to show how
DeNovoND uses the Bloom filters. On the left, the figure shows
DPJ style code depicting three variables, a, b, and c in atomic
region xR. It then shows a critical section protected by lock x with
atomic read and write effects on region xR. The right side of the
figure shows an execution with two cores, C1 and C2. C2 acquires
the lock for the critical section first, followed by C1 and then C2
again. The figure also shows the signatures at each core, assuming
a perfect hash function.
On atomic writes: An atomic write (as determined by the op-code
of the store instruction as discussed in Section 3) invokes the same
cache protocol operations as in DeNovo. That is, if the word is not
in Registered state at the L1, a registration request is sent to the
L2. Additionally, the word is updated right away and any required
writeback is sent to the L2 as well.

For DeNovoND, an atomic write additionally inserts the accessed
address into its core’s Bloom filter. To avoid repeating insertion of
the same address to the Bloom filter, we can add an additional bit,
called the “dirty bit,” to mark a memory location already updated in
a given phase. The “dirty bit” is set on the first atomic store request
to a word in a phase, and all dirty bits get unset at the end of a phase.
If a store finds the dirty bit already set, it means the word is already
inserted into the core’s Bloom filter and does not need to be inserted
again. Since this is purely an optimization, we can piggyback the
functionality of a dirty bit on other state bits described below (e.g.,
the touched-atomic bit) – this may result in some extraneous resets,
but does not affect correctness and reduces extra state.

Thus, at the end of a critical section, all addresses modified in the
section are recorded in the core’s filter; i.e., their entries are non-
zero. From Figure 1, every store request to a, b, and c in the lightly
shaded critical sections updates the Bloom filter on C1 and C2. The
second critical section phase on C2 does not update the Bloom filter
since it does not have atomic writes.
On acquire/release: On an acquire, all modifications preceding
the release associated with the acquire are made visible to the
acquirer by transferring the access signature at the releaser. The
releaser compresses and sends the Bloom filter at its core to the
acquirer, when transferring the lock. The acquirer, on receiving
the Bloom filter, updates its own Bloom filter by making a union
of its local Bloom filter and the releaser’s Bloom filter. Figure 1
shows the resulting Bloom filters at the beginning of each critical



section, of which the lightly shaded entries come from the union
operation. Note that we only send the signature, not the actual data.
On acquire and release points, we also reset the “touched-atomic”
and “prefetch” bits (as will be explained in detail below).
On atomic reads: Atomic reads need to conceptually consult the
signatures obtained from remote releasers to determine if cached
data is valid or stale. If the read is to a word in Registered state in
the L1, then regardless of the signature state, the word is up-to-date
in the cache and the read is a cache hit. If the word is Invalid in L1,
then a normal read request is sent to L2. If the word is in Valid state,
then it is also up-to-date if its address does not appear in the access
signature. If the word is in Valid state and its address hits in the
access signature, then it may or may not be up-to-date depending
on whether it has been previously read in this critical section.

Specifically, if the word has already been read in this critical
section, the previous read brought up-to-date data that is still valid
(since no other core can write to the word during the same critical
section). We identify this situation by using a touched-atomic bit
that is set on the first read of the word in a critical section and reset
at the release – more precisely, it needs to be reset only when the
lock is handed off for another core’s acquire (lock hand-off). Thus,
a read to a word in Valid state with touched-atomic bit set is a cache
hit.

Another case where a valid word may be up-to-date is when it
is obtained as part of a cache line transfer for a demand access to
another word in that line. We would like to take advantage of such
a prefetch as with conventional cache lines and with DeNovo. If
the word comes directly from the L2 or from memory, then it is
definitely valid. If it comes from a remote cache, then it is valid
if that word was marked as touched-atomic or Registered in the
remote cache. In this case, we can conceptually add another bit
called the “prefetch bit” which can be set for prefetched words
with the above properties. These bits must be reset on the next lock
hand-off or the next acquire, whichever happens first. A read that
accesses a valid word with prefetch bit set is considered a cache
hit. Although the touched-atomic and prefetch bits are separately
motivated, both functions can be achieved by a single bit that we
collectively refer to as the touched-atomic bit.

In summary, the touched-atomic bit of a word is set on the first
read of the word in a critical section or for a word prefetched from
L2/memory or from a remote L1 in touched-atomic or Registered
state. The bit is reset on an acquire or a lock hand-off, including the
end of the phase. A read to Valid data with touched-atomic bit set
or with an address that misses in the access signature is considered
a hit. Otherwise, the Valid data is no longer up-to-date and must be
marked invalid and a read miss request is issued.

In Figure 1, assume that variables a and b are in the same cache
line. Then C1’s load b will be a hit since C1’s load a will bring
in b as well and set its touched-atomic bit. On the other hand,
load b in C2’s second critical section is a miss. This is because
the preceding load a will read a in its own cache in Registered
state and so will not prefetch b which is registered at C1.

Finally, we note that using a single, plain Bloom filter at each
core to determine what to invalidate is inherently conservative. For
example, it is possible that an address may have been updated be-
fore it had been last seen by a core but not updated again since then;
our system will still invalidate the address on a read (in the same
phase) from that core. In addition, false positives in a finite Bloom
filter cause valid addresses to be invalidated if the filter entry is up-
dated by another address mapped to the same entry. Another source
of imprecision occurs when the signature is transferred well after
the lock release occurs. Such a signature may include addresses
to accesses after the release and before the subsequent acquire –
these do not precede the acquire by happens-before and may lead to
false positives and unnecessary invalidations. Our evaluation, how-

ever, showed that such cases did not occur often for applications
with reasonable lock synchronization; nevertheless, we later dis-
cuss some approaches to mitigate such effects (Section 6).
End of phase actions: At the end of a phase, as with DeNovo,
we insert self-invalidation instructions for all regions with writable
effects in that phase. This includes atomic and non-atomic regions.
Analogous to DeNovo, all data in such regions is invalidated unless
it is registered or its touched bit (for non-atomic regions) is set or
its touched-atomic bit (for atomic regions) is set. All touched and
touched-atomic bits are reset at the end of the phase and all Bloom
filters are cleared.

4.2 Lock Implementation

Tables 1a and 1b describe the state transitions for the L1 and L2
caches respectively for lock words, building on top of the DeNovo
line protocol (as with DeNovo, the coherence states are at word
granularity). We next discuss these in detail.
L1 transitions: There are two states at L1 for a lock word: LockQ
and Invalid. The lock word transitions to LockQ on receiving a
lock request from its core, and stays there until it transfers the
lock (along with the access signature) to nextPtr or until the line
is evicted. While in LockQ state, a bit in the data portion of the lock
entry, called Locked, indicates whether the lock is held or released.
Figure 2 shows the lock word layout at the L1 with a lock queue.

On a lock request by a core, its L1 sets the Locked bit for the
corresponding word. If the word was already in LockQ state, the
L1 informs the core of a successful lock acquire. If the previous
state was Invalid, a lock request is sent to the L2 and the core is
stalled (the cache does not service any further requests from the
core) until the response is received.

On an unlock request to LockQ state, if nextPtr is not null, the
L1 transfers the lock to the nextPtr core and transitions to Invalid.
Otherwise, it unsets Locked. An unlock request to Invalid state
generates a request to the L2. This request is simply a notification
and does not bring back the cache line (the state stays Invalid).

An L1 in LockQ state may receive a remote lock request for-
warded by the L2. If the Locked bit is set, the request is queued
in nextPtr; otherwise, it is serviced immediately by transferring the
lock and changing the state to Invalid. The L1 may also receive a
remote lock request in Invalid state due to a previous writeback.
If this request is only for the signature, it transfers the signature
(along with an implicit lock transfer) to the remote requestor. If the
request is for the lock as well, then it signifies a race between the
L1’s writeback and the remote request at the L2. In this case, L1
returns a Nack to the L2 – we discuss how the L2 responds to the
Nack in detail below.

Eviction of lines with lock words at the L1 is similar to DeNovo’s
L1 evictions (not shown in Table 1a). The main difference is that
the writeback message needs to indicate which words are in LockQ
state so that the L2 can perform appropriate action as discussed
below. Table 1a does not show any action for writeback requests
generated by L2 for L1. This is because the L2 does not need to
maintain inclusion with the L1 for lock words (similar to Valid data
in DeNovo). The distributed lock queue constructed in the L1s stays
valid and does not need to be rebuilt on an L2 writeback.
L2 transitions without L1 writebacks: The L2 has two states –
Invalid and Valid. The main source of complexity at the L2 comes
from L1 writebacks of LockQ words; we therefore first discuss L2
transitions without L1 writebacks, indicated by WB=0 in Table 1.

On a lock request in Valid state, the L2 forwards the request to its
tailPtr core and updates the tailPtr with the requesting core’s ID.
A lock request in Invalid state allocates the line for the lock word,
triggers a fetch from memory, and keeps the L2 in Invalid state.
When the response returns, the L2 transitions to Valid and applies
the actions for the Valid state to the lock request (i.e., forwards the



Lock request from core i Unlock request from core i
Response for lock request

from core i
Remote lock request

from core k

LockQ set Locked

if nextPtr != null
send response to nextPtr;
go to Invalid

else
unset Locked

unstall core i;
merge received signature

if Locked is set
nextPtr := k

else
send response to core k;
go to Invalid

Invalid

stall core i;
update tag;
go to LockQ;
set Locked;
send lock request to L2
(writeback if needed)

send unlock request to L2 X

if sig-only request
send response to core k

else
send Nack to L2

(a) L1 cache for core i

Lock request from core i
Unlock request

from core i

Lock/Unlock/WB/Nack
response from memory

for core i

Lock writeback
from core i

Nack from core i
for core k

Valid

if WB == 0
fwd req to tailPtr;

else // WB == 1
if Locked is not set

send sig-only req to
lastAcquirer for i;

WB := 0
else // Locked is set

if firstWaiter != null
fwd req to tailPtr

else
firstWaiter := i;

tailPtr := i

if firstWaiter != null
send sig-only req to

i for firstWaiter;
WB := 0

else
unset Locked

X

if firstWaiter == null
copy Locked from

WB message;
lastAcquirer := i;
firstWaiter := nextPtr;
WB := 1;

else // race
if Locked is not set

send sig-only req to
i for firstWaiter

if WB == 0
firstWaiter := k

else
if Locked is not set

send sig-only req to
lastAcquirer for k;

lastAcquirer := null
else

firstWaiter := k

Invalid
update tag;
send data req to memory;
(writeback if needed)

update tag;
send data req to memory;
(writeback if needed)

if not tag match
allocate line;
update tag;
(writeback if needed)

go to Valid;
apply actions for

Lock/Unlock/WB/Nack
as specified in Valid

update tag;
send data req to memory;
(writeback if needed)

update tag;
send data req to memory;
(writeback if needed)

(b) L2 cache

Table 1: State transitions for a lock word. X indicates unreachable states.

request to tailPtr). If the line was deallocated between the request
and the response due to eviction, another line is allocated and the
above action taken.

An unlock request in Valid state can only occur if the unlocking
L1 previously performed a writeback on the lock (i.e., WB=1), and
so is discussed below.

Writebacks generated by the L2 to memory are similar to DeN-
ovo. As we see below, all the lock queue related information needed
at the L2 is maintained as part of the lock word in the L2 – on an
L2 writeback, this information is simply preserved at memory and
made available to the L2 for later use.
Handling L1 lock writeback at the L2: When the L2 receives a
writeback from an L1, it must ensure that it stores all information
needed to construct the lock queue that was stored at the L1. This
information is stored in the data portion of the L2 along with the
tailPtr. An L1 writeback containing a lock word can originate
only from the head of the lock queue in LockQ state because
other cores are either stalled on their lock request or invalidated
after transferring the lock. The L2, therefore, stores the following
information in its data portion on an L1 writeback from core i

(Figure 2 illustrates the L2 data layout with example values before
and after the writeback):3

WB: The WB bit is set to 1 to indicate that the lock has been
evicted from the L1 of the head of the lock queue.

3 Storing these fields in the data bank of the L2 does not limit the number
of cores that can be supported as we can increase the data size of a lock
variable as needed.

Locked: The Locked bit from the writeback message is copied
into the L2 to indicate whether the lock was released (Locked=0)
at the time of the writeback.

lastAcquirer: L2 sets lastAcquirer as i. This is used to forward
the next lock requestor to core i to obtain the access signature.

firstWaiter: L2 copies nextPtr from the writeback message into
its firstWaiter field to indicate the first element in the queue after
the head. On a subsequent unlock, the lock must be transferred
to the firstWaiter core if it is not null.

Next we revisit the transitions for various messages at the L2
when the Valid state has WB=1. On a lock request, if Locked is
not set (writeback occurred after lock release), L2 forwards the re-
quest to the lastAcquirer core. This request is for the access signa-
ture only since we already know that the lock has been released.
If Locked is set (writeback before release), then L2 checks if first-
Waiter is null. If it is not null, then L2 queues the request by for-
warding it to tailPtr. Otherwise, it sets firstWaiter to i since there is
no other waiter in the queue.

Similarly for unlock requests, if firstWaiter is not null, L2 for-
wards the request of firstWaiter to lastAcquirer for the signature
(and implicit lock transfer). Otherwise, the queue is empty. L2 re-
sets Locked, indicating that the evicted head is unlocked now and
is ready to transfer the lock.
Handling races: There can be a race between an L1 lock writeback
from core i and a request for the same lock from another core k.
Thus, before getting the writeback, the L2 can forward core k’s
request to L1. In this case, L1 nacks the request back to L2, which
takes the following actions depending on whether it has already
received the writeback (last column of Table 1b):



(a)

(b)

Figure 2: Example showing L1 and L2 data layout for the distributed queue-
based lock (a) before writeback and (b) after writeback.

The Nack arrives before the writeback (WB=0): L2 simply sets
firstWaiter to core k. When the writeback arrives, L2 finds its
firstWaiter is not null and its request must be handled. If the Locked
bit in the writeback is unset, L2 knows the lock was released and
so can forward firstWaiter’s request to core i for signature transfer.
If the Locked bit is set, then nothing needs to be done; the lock
transfer to core k will occur when the Unlock arrives.
The Nack arrives after the writeback (WB=1): L2 services core k’s
request using the information stored in the writeback; if Locked is
not set, the request is forwarded to lastAcquirer. Otherwise, k is
stored as the firstWaiter.

The above race is the only one that occurs in the lock protocol.
It involves at most two cores and results in exactly one possible
Nack message that the L2 immediately handles, with no deadlock
or livelock causing actions.

4.3 Overheads

DeNovoND incurs the following overheads over DeNovo.
Hardware Bloom filter: There is one Bloom filter per core. A con-
servative upper bound for its size is the virtual memory size. In
practice, an effective size can be empirically determined by mea-
suring the number of atomic writes to distinct addresses in various
applications. The size must also be large enough to have tolerable
false positive rates. In our system, a relatively small size Bloom fil-
ter of only 256 bits worked well and provided performance similar
to an infinite size Bloom filter for most cases. This is because the
size of the key domain is restricted only to the addresses in atomic
regions, and the filter is flash cleared at the end of a phase.

The quality of the hash function also impacts the efficiency
of Bloom filters [42]. We experimented with two hash functions,
multi-bit selection (similar to the one used in [16]) and H3 (univer-
sal hash function that provides uniformly distributed hash values
[15]), which showed consistent performance across applications.
For our evaluation, we used H3 which worked better with appli-
cations with high false positive rates. Finally, [16] has shown that
Bloom filter operations of element insertion, membership query,
and flash clear can be implemented very efficiently in hardware.
Storage overhead: Our distributed queue-based lock protocol
reuses the L1 and L2 cache data banks to store the waiter queue
information, incurring zero storage overhead for that purpose. It re-
quires one additional state LockQ at L1 to distinguish between lock
and data words. This does not result in any added storage overhead
for L1 state as DeNovo already requires two bits per word for stor-
ing three states (Invalid, Valid, and Registered). With an additional
LockQ state, we now have four states stored in two bits. The two

L2 states for lock words can reuse the L2 per-word state bit of the
baseline DeNovo protocol – lock words simply add new transitions
to the existing L2 states, triggered by lock related messages. Thus,
the lock protocol does not incur any additional storage overhead.
The externally visible protocol states for data accesses also stay
the same as for DeNovo. For efficient tracking of atomic writes,
however, we added a touched-atomic bit per word in the L1 as an
additional state bit (used only by the local core).
Communication and computation overhead: On acquire/release,
the Bloom filter of the releaser is piggybacked on the lock transfer
message. In order to minimize impact on network traffic, we can
compress the Bloom filter using run-length encoding as in [16] or
a Bloom-filter specific compression technique [38]. In our evalua-
tions, we conservatively do not model such compression and charge
the full 256 bits (32 bytes) of network traffic for the Bloom filter at
a lock transfer. When a core receives a lock transfer message along
with the signature, it needs to merge the received Bloom filter with
its own before executing memory instructions in the critical section.
The time for merging can be partially hidden by not blocking the
execution until the first write/read instruction to an atomic region
is issued.

For the distributed queue-based lock, there is an additional over-
head for writeback messages which need to include an additional
bit per word to indicate if the word is in LockQ state so that the
L2 can perform appropriate lock related actions for this word.
This overhead, however, can be compensated by observing that the
writeback message does not have to contain full lock words, but
only the Locked and nextPtr parts. The queue-based lock protocol
also requires new state transitions in response to lock related mes-
sages; however, these do not introduce any new transient states or
interact with the data protocol and can be separately verified.

5. Evaluation Methodology

5.1 Simulation Environment

For our evaluations, we use the Wind River Simics [34] full-system
functional simulator to drive the Wisconsin GEMS detailed mem-
ory timing simulator [35] that we modified to implement our pro-
tocols. We also use the Princeton Garnet [3] interconnection net-
work simulator to model network communication. To keep simula-
tion times reasonable, as is common practice, we employ a simple,
single-issue, in-order core model with blocking loads and 1 CPI
for all non-memory instructions. (Note that DeNovoND does not
require simple cores, but detailed timing simulation of a complex
core would take an inordinate amount of time and we believe would
not qualitatively affect our results.) We also assume 1 CPI for in-
structions executed inside the OS.

Table 2 shows the key parameters of our simulated systems. We
simulate a multicore with 16 cores, a 64KB private L1 data cache
per core (we do not model an Icache), a 16MB shared, NUCA
L2 cache, and 4 memory controllers, all connected by a 2D mesh
network. We configured the miss latencies to approximate those
of the Nehalem processors [21]; e.g., a last-level shared cache
miss (memory hit) costs 190 to 309 cycles on Nehalem (several
of the latencies specify a range, depending on which L2 bank,
remote L1 cache, or memory controller is accessed). We use the
Bloom filter implementation shipped with GEMS [35] with the
H3 hashing function and 256 single-bit entries. We also simulated
configurations with infinite Bloom filter entries for reference.

5.2 Simulated Systems

Our distributed queue-based lock is specifically designed for De-
NovoND, reusing the coherence states of DeNovo, with no added
transient states and limited race interactions. Implementing it on
a conventional MESI-like protocol is possible, but will involve far



more complexity to deal with interactions with the already exist-
ing numerous transient states and race conditions. On the other
hand, comparing DeNovoND with distributed queue-based locks
and MESI with conventional locking may not be fair to MESI.
We therefore implemented simplified (idealized) queue-based locks
that work for both MESI and DeNovo to isolate the effectiveness of
access signatures. This idealized implementation maintains a “lock
table” which is keyed by a lock variable address and maintains the
waiter queue for each lock. Accesses to this table – creating an en-
try and grabbing the lock, adding a core to the waiter queue, waking
up the first waiter in the queue, etc. – do not incur extra cycles. We
also do not charge traffic overhead for lock and signature transfer
for the idealized lock. Once a core is ready to release the ideal-
ized lock, lock transfer is instant and the next requestor wakes up
immediately. Hence we evaluated the following systems:
MESI: We simulated MESI using idealized queue-based locks
(MIL) and the POSIX pthreads mutex library (MPL). We modi-
fied the original implementation of MESI in GEMS [35] to support
non-blocking writes for a fair comparison with DeNovoND where
writes are non-blocking by default. Atomic instructions used in
pthreads mutex codes are simulated using blocking store fences
for correct execution.
DeNovoND: We simulated DeNovoND with idealized queue-based
locks (DIL) and with distributed queue-based locks (DQL), both
with a 256 bit Bloom filter (DIL-256 and DQL-256)) and, for
reference, an infinite size Bloom filter (DIL-inf and DQL-inf). For
DQL, operations on the lock incur latency consistent with table 2.
For the signature transfer, we add a 256 bit (32 byte) payload to
the lock transfer message and simulate network traffic and latency
accordingly. This is conservative for DQL-256 since the signature
could be compressed. It is aggressive but reasonable for DQL-inf
since DQL-inf is intended to be a best case reference model.

5.3 Workloads

We evaluated 11 benchmarks with lock synchronization, taken
from various suites to represent a range of behavior such as lock
frequency, lock granularity, contention, critical section length, and
shared working-set size. We evaluated barnes (16K particles),
ocean (258×258), and water (512 molecules) from SPLASH-2
[45]; fluidanimate (35K particles) and streamcluster (8,192 points)
from PARSEC 2.1 [8]; tsp (17 cities) as used in [12]; and kmeans

(8,192 points, 24 dimensions, 16 centers), ssca2 (213 nodes),
genome (256 nucleotides), intruder (1,024 traffic flows), and va-
cation (16,384 records) from STAMP [37].

The benchmarks from SPLASH-2 and PARSEC represent tradi-
tional applications designed and optimized to scale well with lock
synchronization. The benchmarks from STAMP and tsp, however,
were originally designed for hardware and software transactional
memory. We ported them to use locks for our simulated systems.
For short transactions, we directly replaced them with critical sec-
tions (tsp, kmeans, ssca2, and intruder). For longer transactions, we
used finer-grained locks (genome, vacation).

We found that 3 out of the 6 transactional applications (genome,
intruder, and vacation) spent > 70% of their execution time on lock
acquire for all studied configurations. Clearly, parallelization us-
ing lock synchronization is inappropriate for these applications, for
both MESI and DeNovoND. We therefore focus our results on the
other 8 applications, referring to them as “lock-efficient” applica-
tions (Section 6.1). For completeness, we separately report results
for the above three lock-inefficient applications (Section 6.2). We
discuss optimizations to improve the performance of DeNovoND
for the lock-inefficient applications, but fundamentally, these must
be parallelized using different techniques for reasonable parallel
speedups. Such techniques (including possibly transactional mem-
ory) are outside the scope of this work.

Core frequency 2GHz
# of cores 16
L1 data cache 64KB, 64 bytes (16 words) line size
L2 (16 banks, NUCA) 16MB, 64 bytes line
Memory 4GB, 4 on-chip controllers
L1 hit latency 1 cycle
L2 hit latency 29 to 61 cycles (bank-dependent)
Remote L1 hit latency 35 to 83 cycles
Memory hit latency 197 to 261 cycles
Network parameters 2D mesh, 16 bit flits
Bloom filter size 256 bits (infinite for reference)
hash function 4 H3

Table 2: Simulated system parameters.

Finally, the lock-inefficient applications showed significant non-
determinism in execution time. Although our timing simulations
are deterministic, they depend on the state of the system when
the application is started (the Simics checkpoint at the start of the
application). For different state, the lock-inefficient applications
showed varying results. We therefore ran each such application
with five different checkpoints for each system and averaged the
results (the same five checkpoints are used for all systems). We
also report the results for the lock-efficient applications averaged
across three different checkpoints, but these applications did not
show much variability across their checkpoints.

6. Performance Results

6.1 Lock-Efficient Applications

Figure 3a shows the execution time for our 8 lock-efficient appli-
cations for the 6 configurations described in Section 5.2. All bars
are normalized to MIL. Each bar is divided into compute time, stall
time due to data memory accesses (henceforth referred to as mem-
ory time), barrier time, and lock acquire time. Since we model non-
blocking lock releases, lock release time is negligible. Since our fo-
cus is on the memory system, Figure 3b blows up the memory time
in each bar of Figure 3a, divided into stalls for L1 misses resolved
at L2, a remote L1, or main memory. Since all modeled systems
implement non-blocking stores, virtually all memory stalls are due
to loads. Figure 4a presents network traffic for the same applica-
tions on MPL and DQL-256 (normalized to MPL), classified by
the message type: load, store, queue lock/unlock, writeback, and
invalidation. The queue lock/unlock traffic exists only in DQL-256
for transferring distributed queue-based locks with signatures. For
MPL, the lock traffic is aggregated with the data load and store traf-
fic. Note that only MPL incurs invalidation traffic. We do not show
network numbers with other configurations because they are ideal-
ized, but we confirmed that the network results for DQL-256 stay
qualitatively similar even when compared to MIL.
MIL vs. DIL-inf: For all 8 applications, DeNovoND shows the
same or slightly better (up to 5%) execution time compared to
MESI with idealized locks and infinite length Bloom filter. Focus-
ing on memory time, again DIL-inf is either the same or better than
MIL. For some applications, DIL is much better than MIL; e.g.,
47% and 84% better for kmeans and tsp respectively. This is be-
cause MIL suffers from false sharing while DIL does not due to its
per-word coherence state.
MPL vs. DQL-inf: Comparing the realistic lock implementations
(but still with infinite Bloom filter size), we find that for all 8 ap-
plications, DQL-inf shows comparable or slightly better execution
time than MPL. In fact, even compared to the idealized lock im-
plementation in MIL, the execution time for DQL-inf is about the
same or better in 7 of 8 cases and only 4% worse in the remain-
ing case (ssca2). In terms of memory time, again DQL-inf is either
comparable or sees large benefits due to the lack of false sharing
relative to both MPL and MIL.
Impact of finite signatures: We next evaluate the impact of re-
stricting the Bloom filter size: DIL-inf vs. DIL-256 and DQL-inf



(a) Execution time.

(b) Memory stall time.

Figure 3: Total execution time (a) and memory stall time (b) of lock-efficient applications on 6 configurations, normalized to MIL.

(a) Network traffic (lock-efficient). (b) Network traffic (lock-inefficient).

Figure 4: Network traffic of all applications on MPL and DQL-256, normalized to MPL.

vs. DQL-256. The 256 bit Bloom filters show virtually the same
execution times as the infinite length filters. In terms of memory
time, the two Bloom filter sizes are similar for 6 of the 8 appli-
cations. For fluidanimate and kmeans, however, the 256 bit filter
shows a degradation. For kmeans, memory time for DQL-256 con-
tinues to remain significantly better than for both MESI configura-
tions (20% or more better), but for fluidanimate, it is worse by 13%
(the only application where this is the case).

Fluidanimate and kmeans show the above behavior due to a
confluence of a few subtle effects. First, both use critical sections
where an atomic region address that is read is also written. Often
an atomic region address read by a core was also last written by
the same core (either in the previous phase or in a previous critical
section). If this address is still in the core’s cache in modified (for
MESI) or registered (for DeNovoND) state, then the read will be
a hit for both MESI and DeNovoND. Otherwise, if the address
was written back, the read will be a miss for both MESI and
DeNovoND. The difference between the protocols arises for any
other atomic region addresses that come along with such a read
miss as part of the same cache line. If the same core reads such
an address in a subsequent critical section without an intervening
write by another core, then MESI will still hit in the cache but
DeNovoND will have to check against the Bloom filter. This could
require a self-invalidation since the corresponding Bloom filter bit
may be set, resulting in an extra miss over MESI. A smaller Bloom
filter exacerbates this problem since it also results in false positives
on the key domain. Further, the effect is more noticeable in DQL
than in DIL because fluidanimate and kmeans have fine-grained

locks – these locks pollute the cache and cause more replacements,
exacerbating the above effect.
Network traffic: Figure 4a shows that for all the applications,
DQL-256 has much lower traffic than MPL (33% on average, 67%
maximum). This directly translates into energy reduction.

The primary sources of these savings in DeNovoND are as fol-
lows: (1) DeNovoND does not incur any traffic for invalidations,
a significant effect in all applications. (2) Store traffic is reduced
in some applications because store requests in DeNovoND do not
bring in the cache line – they directly write into the L1 word and
only send out a registration request for that word (multiple regis-
trations for a given line are combined and sent on the network as
mentioned in Section 2.2). (3) The net reduction in load misses
(memory time) due to the lack of false sharing (Figure 3b) directly
leads to lower load traffic in several applications. (4) Load traffic
is further reduced because a load response only contains valid or
registered words of a cache line. Since coherence state is preserved
per word, some words may be invalid at the servicing cache.

A source for increased network traffic in DeNovoND is the 32
byte signature with all lock transfers. Figure 4a shows that this
is small in all our applications. It can be further reduced through
compression techniques mentioned in Section 4.3.
Summary: Overall, our results show that for these applications,
the access signature mechanism allows DeNovoND to enjoy all the
benefits of DeNovo even in the presence of lock-based synchro-
nization. Further, the signature size needed is small (32 bytes).



(a) Baseline. (b) “Write-Once” Atomic Region and Signature Clearing.

Figure 5: Total execution time of lock-inefficient applications on six configurations: (a) baseline, (b) with “write-once” atomic region optimization and signature
clearing (threshold=99%) applied, normalized to the MESI with idealized locks (MIL) configuration.

6.2 Lock-Inefficient Applications

The lock-inefficient applications spend more than 70% of their time
on lock acquires, but are presented here for completeness. Figure 5a
shows their execution times analogous to Figure 3a. There are sev-
eral ways in which these applications differ from the lock-efficient
ones. First, as mentioned earlier, they are dominated by lock ac-
quire time and so need a significantly different algorithm for par-
allelization and/or synchronization. These applications were origi-
nally designed to study transactional memory. Some of them use
patterns for which lock-free synchronization is commonly used.
Supporting such forms of parallelism and synchronization is out-
side the scope of this paper, but forms a key part of our future work.

Second, as discussed in Section 5.3, these applications show
significant non-determinism. Although we report results averaged
over five runs starting from five different Simics checkpoints (the
same five checkpoints for each system), the variability makes com-
paring different systems difficult.

Third, we find that compute time varies across different systems
for each of these applications. Although not shown here, a signif-
icant fraction of compute time comes from the OS (e.g., due to
frequent memory allocations), forming the main source of the com-
pute time variation. (The lock-efficient applications have negligible
OS compute time.) Our results must therefore be understood in the
context of the above caveats.
MIL vs. DIL-inf: For all three applications, DIL-inf shows ob-
servably worse performance than MIL (16% for genome, 36% for
intruder, and 5% for vacation). A large part of the performance
difference appears to come from acquire time; e.g., DIL-inf spends
40% more cycles waiting for lock acquisition than MIL with in-
truder. Though memory time is a very small portion, it affects ac-
quire time by increasing the time spent within critical sections. Our
detailed results show that DIL-inf suffers from higher memory time
than MIL, especially for genome and intruder.

The higher memory time above occurs due to an access pattern
where an address is written only once in a phase and then read
several times. Specifically, genome and intruder use list and hash
table data structures that store “data” or “key-data” pairs of each
entry as a field of the entry object – in these programs, the data is
initialized when a new element is inserted (within a critical section)
but never modified afterwards. A core may read this data later in
different critical sections – DeNovoND will self-invalidate on such
reads since it does not know if there was an intervening write since
the last read. MESI, on the other hand, will hit on such reads if they
happen close enough to exploit temporal locality.

Section 6.2.1 discusses how we can use software information
to remedy the above situation. We believe, however, that a better
solution to this problem is a better synchronization construct –
using locks for such reads is overkill. Such constructs in the context
of DeNovo and DeNovoND are a key part of our future work.
MPL vs. DQL-inf: DQL-inf performs slightly worse than MPL
with genome for the same reason as the comparison between MIL

and DIL-inf. DQL-inf outperforms MPL with intruder and vaca-
tion – for these applications, MPL has significantly higher acquire
time than MIL. MPL’s pthread locks, however, are inherently ineffi-
cient with high lock contention; therefore, this is not a fair compar-
ison for MESI. Thus, little can be deduced here except perhaps that
DeNovoND performance seems to be in the same range as MESI
(this inability to draw a conclusion is an inherent artifact of the
problem studied).
Impact of finite signatures: With smaller Bloom filter sizes, false
positives exacerbate the impact of the conservative invalidations
described above; for genome and intruder – DIL-256 and DQL-
256 perform worse than DIL-inf and DQL-inf by 4% to 10%.

Vacation does not suffer from the conservative invalidations of
genome and intruder, but reveals a different source of inefficiency
with smaller signatures. Figure 5a shows DIL-256 is 8% worse
than DIL-inf, while DQL-256 is 17% worse than DQL-inf for this
application. This is mainly due to its large working set of atomic
data, which can increase the false positive rate if a Bloom filter
is too small. In addition, vacation has only one phase without
any barriers in between; thus the Bloom filters get filled up for
a long period without clearing. This further exacerbates the false
positive rate, resulting in unnecessary self-invalidations and higher
memory times. Section 6.2.1 describes an optimization technique
called signature clearing to deal with this issue.
Network traffic: Figure 4b shows network traffic of the lock-
inefficient applications on MPL and DQL-256. DQL-256 generates
less network traffic (up to 48%) than MPL for all three applications
for reasons similar to that for the lock-efficient applications. In
addition, with relatively high lock contention, repeated accesses
to lock variables can generate increasingly higher network traffic
in MPL. In contrast, distributed queue-based lock request/response
traffic scales in proportion to the number of lock transfers.

6.2.1 Optimizations

Handling “write-once” atomic data: As with the case with in-
truder and genome, once a new entry is created and then inserted
into a data structure (list, hash table, etc.), the “data” portion of
the entry may remain read-only for the entire execution while other
fields of the entry are modified as the structure grows or shrinks.
In this case, classifying the “data” as atomic makes every self-
invalidation after the very first one (the memory location may have
been used and freed before) unnecessary.

DeNovoND can safely get rid of these invalidations by identify-
ing such atomic accesses as made to a “write-once” atomic region.
In addition to general information about atomic regions and effects,
software can allow such “write-once” atomic data to be marked dif-
ferently by using a special region ID or a special op-code for the
write. Then DeNovoND can exploit it to prevent such data from
being self-invalidated as follows. If the data is known to be in a
“write-once” atomic region, DeNovoND does not reset its touched-
atomic bit on lock transfer; therefore, when the data is accessed



(read) again later, it is treated as if it has been already accessed in
the same critical section (with touched-atomic bit set) and will not
be self-invalidated, thereby eliminating several subsequent misses.

The write-once annotation can be considered to be a generaliza-
tion of final variables in Java; a final variable can only be initialized
once, either at the time of declaration or by the constructor of the
class in which it is declared [40]. Our write-once variables must be
written (at most) once per parallel phase.
Signature clearing: Depending on the atomic write-set size in a
phase, the fixed-size hardware Bloom filter may get saturated (all
bits set) before the phase is over. This drives the false positive
rate very high, resulting in many unnecessary self-invalidations.
Saturated Bloom filters can be flash-cleared by a simple hardware
operation, but it also requires flushing out atomic words in the
cache. Also, the fact that a signature has been cleared in the releaser
should be propagated to the acquirer so that the acquirer can update
its cache according to the new version of the Bloom filter. We
implemented a signature clearing algorithm that carries a vector of
clearing counters per core. When signature clearing is triggered on
a core, its counter is incremented. The vector of clearing counters is
transferred on a lock transfer along with the access signature. The
acquirer compares the received vector with its own, and performs
signature clearing if there exists an element in the received vector
that has a larger counter than the corresponding element in its own
vector. Before the lock is transferred again, the vector is updated to
have up-to-date values.
Performance impact: Figure 5b presents execution times analo-
gous to figure 5a, but with the above optimizations applied.

For genome, all DeNovoND protocols now perform comparable
to the MESI counterpart. Our detailed results show large reductions
in memory time from the write-once optimization (118% to 151%).
Since this reduction mainly comes from atomic accesses within
critical sections, lock contention also improved. Intruder shows
similarly dramatic results in memory time improvement with con-
sequently large improvements in execution time for the DeNovoND
configurations; acquire time is reduced by 36 to 42%, memory time
by 56 to 76%, and overall execution time by 43% on average.

For vacation, DIL-256 and DQL-256 (protocols with finite
Bloom filters) show performance benefits from signature clear-
ing; DIL-256 and DQL-256 were 17% and 8% worse than DIL-inf
and DQL-inf respectively without signature clearing. With signa-
ture clearing, with 99% filter saturation percentage as the trigger
for clearing, the difference is reduced to 5% and 2%.

Overall, the optimizations are quite effective, making the De-
NovoND protocols comparable or better than the corresponding
MESI protocols even for the lock-inefficient applications.

7. Related Work

There has been much research on improving the performance of
memory consistency models by guaranteeing consistency only at
synchronization points. Our work is closest to that of lazy release
consistency (LRC) [27], entry consistency (EC) [7], and scope con-
sistency (ScC) [22]. A key focus of these models is saving invali-
dation network traffic by postponing propagation of modified data
until an acquire. LRC maintains consistency of all shared data at
every lock transfer. EC attempts to reduce traffic by requiring pro-
grammers to bind every shared object with a lock, and transferring
only the bound data objects on a lock transfer. ScC attempts to re-
lax the strict and explicit bindings between data and lock in EC;
instead, it uses “consistency scope” to implicitly associate data and
the acquire/release pair protecting the data. DeNovoND is similar
in that it also assumes a software guarantee for data-race freedom
and association of atomic regions and sections. However, a key dif-
ference between DeNovoND and the above models is that the latter
are designed for software distributed shared memory, keeping co-

herence information at a coarse-grained page granularity and stor-
ing information about modified data in data structures in user space.
DeNovoND focuses on tightly coupled multicores with different
trade-offs. In particular, DeNovoND implements a much simplified
yet effective scheme for tracking modified atomic locked data in
hardware, while leveraging the feature of the baseline system (no
invalidation traffic) for non-atomic data.

REFLEX [33] employs software distributed shared memory with
release consistency to make it easier to program low-power smart-
phones. It uses either eager or lazy update propagation depending
on the initiating core’s power profile. While REFLEX concentrates
on adapting release consistency for low power on heterogeneous
systems, DeNovoND is a more general solution that addresses com-
plexity, performance, and power.

The recent SARC coherence protocol [25] also exploits the data-
race-free programming model, but their goal is to improve the
conventional directory-based protocol [2]. SARC self-invalidates
“tear-off, read-only” (TRO) copies of data to save power. However,
SARC does not eliminate directory storage overhead or reduce pro-
tocol complexity like DeNovoND and its baseline system. Also, the
concept of touched bit, which plays an important role in DeNovo
and DeNovoND is not present in SARC.

Other efforts to improve coherence achieve one or more of our
goals at the expense of other goals. [31] introduces more complex-
ity for self-invalidations and [36] requires writes to go to a shared
cache if there are potential conflicts. SWEL [41] and Atomic Co-
herence [44] rely on specific interconnect substrates to simplify
their protocols. Rigel [28] and Cohesion [29] propose systems with
accelerators using a hybrid memory model based on shared mem-
ory, and employ software-driven invalidation for coherence. How-
ever, Rigel eagerly writes back all dirty lines to the global shared
cache at phase boundaries, causing potentially unnecessary and
bursty network traffic. DeNovoND self-invalidates potentially stale
blocks only, avoiding this unnecessary traffic. Cohesion does not
address existing limitations of software and directory-based hard-
ware coherence mechanisms. Its software coherence issues extra
coherence instructions wasting cycles and network bandwidth since
its coherence tracking is conservative and coarse-grained, while the
hardware directory-based protocol has the same current complexity
and scalability issues. In contrast, DeNovoND starts from a simple
protocol and makes it easy to add various optimizations to improve
performance and energy further without complicating the protocol.

We leverage much prior work on Bloom filters, which have
recently been widely used for access tracking [16, 43, 46]. Typical
prior such usage, however, uses filters in the range of 1K to 2K bits.
DeNovoND is able to achieve competitive performance with 256
bits, with commensurately lower space and computation overheads,
since its key domain is limited to atomic addresses.

8. Conclusion

This paper takes a significant step towards a vision for complexity-
, performance-, and energy-efficient multicores enabled by disci-
plined shared-memory programming practices. Prior work on De-
Novo showed how this vision could be achieved for deterministic
programs. This paper develops DeNovoND, a system that addition-
ally supports disciplined non-determinism with minimal additional
overheads and complexity relative to DeNovo.

DeNovoND exploits a previously developed software-level guar-
antee that non-deterministic (atomic) data accesses are distinguish-
able and protected by a lock. The key insight is to use small and
simple hardware Bloom filters to track and communicate such ac-
cesses across lock transfers, preserving DeNovo’s previous advan-
tages of no transient states, directory overhead, invalidation mes-
sages, or false sharing. Underlying the data transfer mechanism is
a distributed queue-based lock mechanism that uses the cache data



banks to construct a lock-waiter queue, without additional state bits
or directory storage.

DeNovoND provides comparable or better performance than
MESI with the lock-efficient programs studied here. Further, net-
work traffic is significantly reduced, impacting energy. We also
identified some patterns in lock-inefficient code that did not work
as well with DeNovoND – we showed optimizations to mitigate
those effects, but believe the correct solution lies in alternate forms
of synchronization for such codes.

As future work, we plan to explore broadening the scope of
our vision of hardware-software co-design rooted in disciplined
programming to embrace further programming patterns such as
pipelined parallelism and “lock-free” data structures, as well as
support complex codes such as legacy codes and operating systems.
Our ability to easily extend DeNovo to embrace lock based codes
gives us further confidence in generalizing this vision.
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