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ABSTRACT 20 

 21 

The dense circuit structure of the mammalian cerebral cortex is still unknown. With 22 

developments in 3-dimensional (3D) electron microscopy, the imaging of sizeable 23 

volumes of neuropil has become possible, but dense reconstruction of connectomes 24 

from such image data is the limiting step. Here, we report the dense reconstruction 25 

of a volume of about 500,000 µm3 from layer 4 of mouse barrel cortex, about 300 26 

times larger than previous dense reconstructions from the mammalian cerebral 27 

cortex. Using a novel reconstruction technique, FocusEM, we were able to 28 

reconstruct a total of 0.9 meters of dendrites and about 1.8 meters of axons investing 29 

only about 4,000 human work hours, about 10-25 times more efficient than previous 30 

dense circuit reconstructions. We find that connectomic data alone allows the 31 

definition of inhibitory axon types that show established principles of synaptic 32 

specificity for subcellular postsynaptic compartments. We find that also a fraction of 33 

excitatory axons exhibit such subcellular target specificity. Only about 34 

35% of inhibitory and 55% of excitatory synaptic subcellular innervation can be 35 

predicted from the geometrical availability of membrane surface, revoking coarser 36 

models of random wiring for synaptic connections in cortical layer 4. We furthermore 37 

find evidence for enhanced variability of synaptic input composition between neurons 38 

at the level of primary dendrites in cortical layer 4. Finally, we obtain evidence for 39 

Hebbian synaptic weight adaptation in at least 24% of connections; at least 35% of 40 

connections show no sign of such previous plasticity. Together, these results 41 

establish an approach to connectomic phenotyping of local dense neuronal circuitry 42 

in the mammalian cortex. 43 

  44 
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INTRODUCTION 45 

The cerebral cortex of mammals houses an enormously complex intercellular 46 

interaction network implemented via neuronal processes that are long and thin, 47 

branching, and extremely densely packed. Early estimates reported an expected 4 48 

kilometers of axons and 400 meters of dendrites compressed into a cubic millimeter 49 

of cortical tissue (Braitenberg and Schüz, 1998). This high packing density of cellular 50 

processes has made the locally dense mapping of neuronal networks in the cerebral 51 

cortex challenging.  52 

So far, reconstructions of cortical tissue have been either sparse (e.g., (da Costa and 53 

Martin, 2009; Han et al., 2018; Lee et al., 2016; Lubke et al., 2003; Oberlaender et 54 

al., 2011; Schmidt et al., 2017) or restricted to small volumes of about 1500 µm3 55 

(Kasthuri et al., 2015). Consequently the detailed network architecture of the 56 

cerebral cortex is unknown; in particular the question to what degree local neuronal 57 

circuits are explainable by geometric rules alone, or whether neurons exhibit 58 

innervation specificities beyond such geometric preferences is still debated (Kasthuri 59 

et al., 2015; Ko et al., 2011; Lee et al., 2016; Markram et al., 2015; Mishchenko et 60 

al., 2010). Here we report a dense reconstruction of local cortical tissue sized about 61 

500,000 µm3, i.e. about 300 times larger than previous dense cortical reconstructions 62 

(Kasthuri et al., 2015).  63 

We developed a dense reconstruction method, FocusEM, to obtain the 64 

reconstruction of about 2.7 meters of neurite (1.8 meters of axons and about 0.9 65 

meters of dendrites) with an investment of about 4,000 human work hours. When 66 

compared to previous dense connectomic reconstructions, this constitutes an 67 

advance of about 10-fold (compared to dense reconstructions in the fly larva, 68 

(Eichler et al., 2017)), about 20-fold (cf. mouse retina (Helmstaedter et al., 2013)) 69 

and about 25-fold (cf. mouse cortex (Kasthuri et al., 2015)). 70 

When analyzing the connectivity between 6,979 axons and 3,719 postsynaptic 71 

neurites in this tissue, we find that at least about 58% of inhibitory and about 24% of 72 

excitatory axons show specificity for synaptic targets such as cell bodies, apical 73 

dendrites and axon initial segments. We determine that only about 35-55% of this 74 

synaptic specificity can be deduced from the geometrical arrangement of axons and 75 

dendrites alone at scales typically employed for statistical connectivity prediction 76 
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(Lubke et al., 2003; Meyer et al., 2010; Oberlaender et al., 2012a), establishing an 77 

upper bound on the geometrical explainability of synaptic innervation in cortical 78 

tissue. Furthermore, we find that the thalamocortical synaptic input distributions of 79 

dendrites are configured to yield enhanced variability.  Finally, a fraction of excitatory 80 

axons show synaptic size similarity that is consistent with Hebbian plasticity, which at 81 

the same time can be ruled out for about 35% of the circuit. With this we uncover 82 

rules of wiring and synaptic specialization in the cerebral cortex and provide a 83 

methodology for connectomic screening of cortical tissue. 84 

  85 
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RESULTS 86 

We acquired a 3-dimensional EM dataset from a 28 day old mouse from layer 4 of 87 

primary somatosensory cortex (Fig. 1a-d) using serial block-face electron 88 

microscopy (SBEM, (Denk and Horstmann, 2004)). The dataset had a size of 61.8 x 89 

94.8 x 92.6 µm3 and a voxel size of 11.24 x 11.24 x 28 nm3. We 3D-aligned the 90 

acquired images for manual annotation (webKnossos (Boergens et al., 2017)) and 91 

automated analysis. We first detected blood vessels and cell bodies using 92 

automated heuristics (Fig. 1e), followed by reconstruction of the remaining image 93 

volume using machine-learning-based image segmentation (SegEM, (Berning et al., 94 

2015)). The result of this processing were 15 million volume segments 95 

corresponding to pieces of axons, dendrites and somata (volume: 0.0295 ± 0.3846 96 

µm3; mean ± std.). We then constructed the neighborhood graph between all these 97 

volume segments and computed the properties of interfaces between directly 98 

adjacent volume segments. Based on these features (see Methods), we trained a 99 

connectivity classifier to determine whether two segments should be connected 100 

(along an axon or a dendrite or a glial cell) or whether they should be disconnected 101 

(Fig. 1f). Using the SynEM classifier (Staffler et al., 2017), we determined whether an 102 

interface between two disconnected processes corresponded to a chemical synapse, 103 

and if so, which was the pre- and which the postsynaptic neurite segment. We 104 

furthermore trained a set of classifiers to compute for each volume segment the 105 

probability to be part of an axon, a dendrite, a spine head or a glia cell (Fig. 1f-g, 106 

precision and recall were 91.8%, 92.9% for axons, 95.3%, 90.7% for dendrites, 107 

97.2%, 85.9% for astrocytes, and 92.6%, 94.4% for spine heads, respectively). 108 

Cell body-based neuron reconstruction 109 

First, we reconstructed those neurons, which had their cell bodies in the tissue 110 

volume (Fig. 1h,i, Supplementary Material 1, n=125 cell bodies, of these 97 111 

neuronal, of these 89 reconstructed with dendrites in the dataset) using a set of 112 

simple growth rules for automatically connecting neurite pieces based on the 113 

segment-to-segment neighborhood graph and the connectivity and neurite type 114 

classifiers (Fig. 1f, see Methods). As a result, we obtained fully automated 115 

reconstructions of the neuron’s soma and dendritic processes. Notably with a 116 

minimal additional manual correction investment of 9.7 hours for 89 cells (54.5 mm 117 
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dendritic and 2.1 mm axonal path length), the dendritic shafts of these neurons could 118 

be reconstructed without merge errors, but 37 remaining split errors, at 87.3% 119 

dendritic length recall (Fig. 1h,i, Supplementary Material 1, see Methods). This 120 

reconstruction efficiency compares favorably to recent reports of automated 121 

segmentation of neurons in 3D EM data from the bird brain obtained at about 2-fold 122 

higher imaging resolution (Januszewski et al., 2018), which reports soma-based 123 

neuron reconstruction at an error rate of beyond 100 errors per 66 mm dendritic 124 

shafts at lower (68%) dendritic length recall, with a similar resource investment (see 125 

Methods).  126 

In addition to the dendritic shafts, the dendritic spines constitute a major fraction of 127 

the dendritic path length in cortical neuropil (Fig. 1j). Using our spine head classifier, 128 

we found 415,797 spine heads in the tissue volume i. e. density of 0.784 per µm3 129 

(0.98 per µm3 of neuropil, when excluding somata and blood vessels). In order to 130 

connect these to the corresponding dendritic shafts we trained a spine neck 131 

continuity algorithm that was able to automatically attach 58.9% of these spines 132 

(evaluated in the center of the dataset, at least 10 µm from the dataset border) 133 

yielding a dendritic spine density of 0.672 per µm dendritic shaft length (comparable 134 

to spine densities in the bird brain, (Kornfeld et al., 2017)). However in mammals, the 135 

density of spines along dendrites is even higher (about 1 µm-1). The remaining spine 136 

heads were then attached to their dendritic shafts by seeding manual reconstructions 137 

at the spine heads and asking annotators to continue along the spine necks to the 138 

dendritic shafts. This consumed an additional 900 hours of human work for the 139 

attachment of 98,221 spines, resulting in a final spine density of 0.959 per µm 140 

dendritic shaft length. 141 

Dense tissue reconstruction 142 

The reconstruction of neurons starting from their cell bodies was however not the 143 

main challenge. Rather, the remaining processes, that is axons and dendrites not 144 

connected to a cell body within the dataset and densely packed in the tissue, 145 

constitute about 97% of the total neuronal path length in this volume of cortex (Fig. 146 

1j). To reconstruct this vast majority of neurites (Fig. 1k,l), we first used our 147 

connectivity and neurite type classifiers to combine neurite pieces into larger 148 

dendritic and axonal agglomerates (see Methods). Then, we took those 149 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2018. ; https://doi.org/10.1101/460618doi: bioRxiv preprint 

https://doi.org/10.1101/460618
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

agglomerates that had a length of at least 5 µm (n=74,074 axon agglomerates), 150 

detected their endings that were not at the dataset border and directed focused 151 

human annotation to these endings (“queries”, Fig. 1m,n). For human annotation, we 152 

used an egocentric directed 3D image data view (“flight mode” in webKnossos), 153 

which we had previously found to provide maximized human reconstruction speed 154 

along axons and dendrites in cortex (Boergens et al., 2017). Here, however, instead 155 

of asking human annotators to reconstruct entire dendrites or axons, we only queried 156 

their judgement at the endings of automatically reconstructed neurite parts. To make 157 

these queries efficient, we made three additions to webKnossos: We oriented the 158 

user along the estimated direction of the neurite at its ending, reducing the time the 159 

user needs to orient within the 3D brain tissue; we dynamically stopped the user’s 160 

flight along the axon or dendrite whenever another of the already reconstructed 161 

neurite agglomerates had been reached; and we pre-loaded the next query while the 162 

user was annotating (Fig. 1m,n). With this, the average user interaction time was 163 

21.3 ± 36.1 s per query, corresponding to an average of 5.5 ± 8.8 µm traveled per 164 

query. In total, 242,271 axon ending queries consumed 1,978 paid out work hours 165 

(i.e. including all overheads, 29.4 s per query). 166 

However, we had to account for a second kind of reconstruction error, so-called 167 

mergers, which can originate from the original segmentation, the agglomeration 168 

procedure, or erroneous flight paths from human queries (Fig. 1o). In order to detect 169 

such mergers, we started with the notion that most of these merger locations will 170 

yield a peculiar geometrical arrangement of a 4-fold neurite intersection once all 171 

neurite breaks have been corrected (“chiasma”, Fig. 1o). Since such chiasmatic 172 

configurations occur rarely in branching neurites, we directed human focused 173 

annotation to these locations. First, we automatically detected these chiasmatic 174 

locations using a simple heuristic to detect locations at which axon-centered spheres 175 

intersected more than three times with the axon (Fig. 1o, n=55,161 chiasmata; for 176 

approaches to detect such locations by machine learning, see (Rolnick and Shavit, 177 

2017; Zung et al., 2017)). Then, we positioned the user queries at a certain distance 178 

from the chiasma location, pointing inward (Fig. 1o) and then used a set of case 179 

distinctions to query a given chiasma until its configuration had been resolved (see 180 

Methods for details). Chiasma annotation consumed an additional 1,132 work hours 181 

(note that the detection of endings and chiasmata was iterated 8 times for axons, 182 
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see Methods, and that in a final step we also detected and queried 3-fold neurite 183 

configurations to remove remaining mergers). With this we obtained in summary a 184 

reconstruction of 2.72 meters of neuronal processes (Fig. 1p, 0.89 meters of 185 

dendrites (including 0.55 meters of spine necks) and 1.76 meters of axons) with a 186 

total investment of 3,981 human work hours – about 10 times faster than a recent 187 

dense reconstruction in the fly larval brain ((Eichler et al., 2017), Fig. 1q), about 20 188 

times faster than the previous dense reconstruction from the mammalian retina 189 

((Helmstaedter et al., 2013)), and about 25 times faster than the previous dense 190 

reconstruction from mammalian cortex (Kasthuri et al., 2015).  191 

We then measured the remaining reconstruction error rates in this dense neuropil 192 

reconstruction. Since the following of neurites in dense neuropil is much more 193 

difficult than the reconstruction of dendrites and proximal axons from the cell body 194 

(Fig. 1h,i) we expected this error rate to be substantially higher. In fact, when we 195 

quantified the remaining errors in a set of 10 randomly chosen axons we found 12.8 196 

errors per millimeter of path length (of these 8.7 per millimeter continuity errors, see 197 

Methods). This is indistinguishable from the error rates previously found in fast 198 

human annotations (Boergens et al., 2017; Helmstaedter et al., 2011; Helmstaedter 199 

et al., 2013).  200 

Connectome Reconstruction 201 

Given the reconstructed pre- and postsynaptic neurites in the tissue volume, we then 202 

went on to extract their connectome. For this we used SynEM (Staffler et al., 2017) 203 

to detect synapses between the axonal presynaptic processes and the postsynaptic 204 

neurites (for non-spine synapses, improvements to SynEM were made to enhance 205 

precision and recall, see Methods). Since we were interested in analyzing the 206 

subcellular specificity of neuronal innervation, we had to also classify which of the 207 

post-synaptic membranes belong to cell bodies; to classify spiny dendrites as 208 

belonging to excitatory cells, smooth dendrites belonging to interneurons; and to 209 

detect axon initial segments and those dendrites that were likely apical dendrites of 210 

neurons located in deeper cortical layers. We developed semi-automated heuristics 211 

to detect these subcellular compartments (Fig. 2a-d, see Methods for details). 212 

With this we obtained a connectome between 34,221 pre-synaptic axonal processes 213 

and a total of 11,400 post-synaptic processes (i. e. somata, axon initial segments 214 
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and dendrites). Restricting the connectome to those pre- and postsynaptic neurites 215 

that established at least 10 synapses each yielded a 6,979 by 3,719 connectivity 216 

matrix, reporting the number of synapses established between each pair of pre- and 217 

postsynaptic neurites (Fig. 2e). The postsynaptic processes comprised 80 somata, 218 

246 smooth dendrites, 169 apical dendrites, and 116 axon initial segments (Fig. 2e, 219 

for AIS also those with less than 10 input synapses are shown). The dendrites of 220 

soma-based neuron reconstructions were labeled as proximal dendrites. In addition, 221 

we automatically determined for each synapse whether it was established onto a 222 

spine head, dendritic shaft or soma.  223 

Synaptic specificity 224 

Then we investigated whether based solely on connectomic information (Fig. 2) we 225 

could extract the rules of subcellular innervation specificity described for inhibitory 226 

axons in the mammalian cortex (for a review see (Kubota et al., 2016)), and whether 227 

such synaptic specificity could also be found for excitatory axons. We first measured 228 

the preference of each axon for innervating dendritic spine heads versus dendritic 229 

shafts and other targets (Fig. 3a,b). In the mammalian brain, most axons of inhibitory 230 

interneurons preferentially innervate the dendrites’ shafts or neuronal somata (see 231 

e.g. (Kubota et al., 2016)), and most excitatory glutamatergic axons preferentially 232 

innervate the spine heads of dendrites (Feldmeyer et al., 2002; Shepherd and Harris, 233 

1998). Accordingly, in our dense data, we found that the fraction of primary spine 234 

synapses per axon (out of all synapses of that axon) has a clear peak at about 80% 235 

(Fig. 3a,b), allowing the identification of spine-preferring, likely excitatory axons with 236 

at least 50% primary spine innervations. Similarly, we identified shaft-preferring, 237 

likely inhibitory axons with less than 20% primary spine innervations. Together this 238 

yielded 6,449 axons with clear shaft or spine preferences. For the remaining n=528 239 

axons with primary spine innervations above 20% and below 50%, we first wanted to 240 

exclude remaining mergers between excitatory and inhibitory axons (that would yield 241 

intermediate spine innervation rates) and split these axons at possible merger 242 

locations (at least 3-fold intersections). Of these, 338 now had at least 10 synapses 243 

and spine innervation rates below 20% or above 50%. The remaining n=192 axons 244 

(2.75% of all axons with at least 10 synapses) were not included in the following 245 

analyses. This together yielded n=5,894 excitatory and n=893 inhibitory axons in our 246 

data. 247 
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Previous reports have described that a subset of excitatory axons in cortical L4 248 

preferentially target the shafts of dendrites in some species (Lubke et al., 2000; 249 

McGuire et al., 1984): a study of L4 spiny neurons’ axons in juvenile rat found 250 

preferential innervation of small-caliber dendritic shafts (and only 27% of synapses 251 

onto spines, (Lubke et al., 2000)), and in cat visual cortex, a subset of corticortical 252 

excitatory axons from layer 6 has been described to establish preferentially shaft 253 

synapses onto spiny dendrites in L4 at the end of short axonal branches, yielding 254 

boutons terminaux (Ahmed et al., 1994; McGuire et al., 1984)). To check whether 255 

these axons would confound our assignment of shaft-preferring axons as inhibitory, 256 

we randomly selected 20 shaft synapses onto spiny dendrites and manually 257 

reconstructed the presynaptic axons with their output synapses. We first asked 258 

whether any of these axons would preferentially establish boutons terminaux onto 259 

shafts, as described in cat, but found no such axon, indicating that this innervation 260 

phenotype comprises less than 5% or is absent in our data from mouse L4 (compare 261 

to the estimate of more than 40% of such inputs in cat L4 (Ahmed et al., 1994)). We 262 

then checked whether any of the 20 axons showed both a preference for shaft 263 

innervation and in a minority of cases any clear primary spine head innervation, as 264 

described for the L4 axons in juvenile rat. We found no such example, indicating that 265 

none of the shaft-preferring axons was excitatory. This is consistent with data from 266 

cat which suggested that L4 spiny axons preferentially target spines (Ahmed et al., 267 

1994). Together, we conclude that in our data from mouse L4, excitatory axons 268 

preferentially establish primary spine head innervations (Fig. 3b) and inhibitory axons 269 

preferentially innervate the shafts of dendrites. 270 

Within cortical layer 4, the two main types of excitatory synaptic input are afferents 271 

from the thalamus (thalamocortical inputs, TC) and intracortical inputs 272 

(corticocortical, CC). In order to distinguish between corticocortical and 273 

thalamocortical excitatory axons (Fig. 3c-f), we used previously established criteria 274 

about the frequency of multi-target boutons, bouton size and the number of targets 275 

per bouton that had been shown to identify TC inputs in layer 4 of mouse S1 cortex 276 

((Bopp et al., 2017); Fig. 3c-f, see Methods). Using these, we extracted the likely 277 

thalamocortical (TC) axons (Fig. 3e,f; n = 569, 9.7% of excitatory axons).  278 

We then determined for each of the subcellular synaptic target classes (somata 279 

(SOM), axon initial segments (AIS), apical dendrites (AD), smooth dendrites (SD), 280 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2018. ; https://doi.org/10.1101/460618doi: bioRxiv preprint 

https://doi.org/10.1101/460618
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

proximal dendrites (PD), see Fig. 2 and Fig. 3g) the per-synapse innervation 281 

probability that would best explain whether an inhibitory axon establishes at least 282 

one synapse onto each of these targets (these inhibitory “first-hit” binomial 283 

innervation probabilities were 4.2% (SOM), 17.8% (PD), 4.9% (SD), 3.3% (AD), and 284 

0.5% (AIS), see Methods, Fig. 3h). We then computed the expected distribution of 285 

synapses per axon made onto each target class assuming the second-hit, third-hit, 286 

etc. innervation probabilities are the same as the probability to establish at least one 287 

synapse onto that target. When comparing these target distributions to the actually 288 

measured distributions of synapses per axon onto each target class (Fig. 3i), we 289 

found that inhibitory axons established enhanced specificity for cell bodies 290 

(p=2.4x10-34, n=893, one-sided Kolmogorov-Smirnov test), proximal dendrites 291 

(p=6.0x10-77), apical dendrites (p=2.5x10-4) and smooth dendrites (p=1.7x10-3), but 292 

no enhanced specificity for axon initial segments in L4 (p=0.648, note that AIS are 293 

synaptically innervated by 0.172 input synapses per µm AIS length; but these 294 

innervations are not made by certain axons specifically, unlike in supragranular 295 

layers (Taniguchi et al., 2013)).  296 

When performing the same analysis for excitatory axons (Fig. 3j), we found clear 297 

target specificity for apical dendrites (p=2.5x10-34, Fig. 3j), for smooth dendrites 298 

(p=7.6x10-25) and for proximal dendrites (p=1.3x10-169). Thalamocortical axons, to 299 

the contrary, show indication of target specificity for proximal dendrites (p=2.5x10-31), 300 

but not for apical (p=0.019) or smooth dendrites (p=0.723).  301 

These results provide statistical connectomic evidence for the existence of target-302 

specific wiring of inhibitory and excitatory axons in cortical layer 4. Next, we wanted 303 

to determine the fraction of inhibitory and excitatory axons that had an unexpectedly 304 

high synaptic preference for one (or multiple) of the subcellular target classes. For 305 

this, we determined for each axon the probability that its particular synaptic target 306 

choices had originated from a simple chance drawing given the first-hit probabilities 307 

(Fig. 3h), or whether it showed additional specificity. Here, we used the false 308 

detection rate criterion used for the determination of significantly expressed genes (q 309 

value, (Storey and Tibshirani, 2003), see Methods). As a result, we obtained lower 310 

bounds on the fractions of axons in the tissue that are specifically innervating the 311 

various subcellular target classes (Fig. 3k; 58.0% of inhibitory and 24.4% of 312 

excitatory axons). Of those inhibitory axons found to be target-specific, about 83% of 313 
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axons are specific for somata or proximal dendrites, about 14% for apical dendrites, 314 

and about 3% for the smooth dendrites of other interneurons. Interestingly, we also 315 

found subsets of excitatory axons with subcellular target specificity: of those 316 

excitatory axons with significant synaptic target specificity, about 28% are specific for 317 

apical dendrites and about 14% for smooth dendrites. Furthermore, at least 24.7% of 318 

thalamocortical axons specifically innervated proximal dendrites (Fig. 3k). 319 

Finally, we asked whether the specificity of axons towards one particular synaptic 320 

target yields an enhanced (or suppressed) innervation of other synaptic targets (i.e., 321 

whether axons exhibit conditional, higher-order synaptic specificity, Fig. 3l,m). For 322 

example, given axons that show enhanced innervation of somata, would the target 323 

distribution of the non-somatic synapses of these axons be random, or would these 324 

remaining synapses show additional target preferences or target suppression (Fig. 325 

3l,m)? For this, we analyzed all axons of certain target specificity as identified before 326 

(Fig. 3k), excluded synapses of these axons onto their specifically innervated target, 327 

measured the fractions of remaining synapses onto the other target classes and 328 

compared them to the average innervation rate over all axons (Fig. 3l,m). We found 329 

that inhibitory axon subpopulations with soma- and proximal dendrite-specificity are 330 

overlapping, and axons with specificity towards apical and smooth dendrites exhibit 331 

suppressed innervation of the proximal dendritic/somatic targets and vice versa (Fig. 332 

3l). Excitatory axons show only very weak conditional innervation preference (Fig. 333 

3m).  334 

Together these results represent the patterns of subcellular synaptic innervation 335 

rules exhibited in a local cortical circuit in layer 4. It should be noted that the 336 

definition of presynaptic axonal types was performed relying only on connectomic 337 

data; not on expression markers or cell morphology. Such a cell type classification 338 

based on local connectomic data alone has been successful in the mammalian retina 339 

before (connectomic definition of a third subtype of type 5 bipolar cells (Helmstaedter 340 

et al., 2013)) – but whether it would be possible in dense mammalian cortical data 341 

was not clear a-priori. The fact that the connectomically defined axonal classes 342 

exhibit additional higher-order innervation preference (Fig. 3l) further indicates that 343 

these are in fact valid axonal type definitions. 344 

 345 
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Geometric explainability of synaptic innervations 346 

We were now able to ask whether these local connectivity rules (Fig. 3) could have 347 

been derived solely from the geometry of axons and dendrites. The question to what 348 

degree the trajectories of axons and dendrites are already predictive of synaptic 349 

innervation in the cerebral cortex has been controversially debated (Binzegger et al., 350 

2004; Braitenberg and Schüz, 1998; Kasthuri et al., 2015; Lee et al., 2016; Markram 351 

et al., 2015), and an assumption of random innervation has been put forward 352 

(Peters’ rule, (Braitenberg and Schüz, 1998)) and used for massive simulation 353 

initiatives (Markram et al., 2015). While connectomic examples of non-random 354 

innervation in the cortex are documented (da Costa and Martin, 2009; Kasthuri et al., 355 

2015; Mishchenko et al., 2010; Schmidt et al., 2017), a rigorous analysis within 356 

dense cortical neuropil of sufficient scale is missing.  357 

We first compared the fraction of synapses made onto the subcellular target classes 358 

with the fraction of membrane surface attributed to these subcellular domains, 359 

sampled in cubes of ~5 µm edge length within the dataset volume (Fig. 4a). The 360 

membrane surface fraction deviated up to a factor of 2 from the actual synapse 361 

fraction, both underestimating (apical dendrites, Fig. 4a) and overestimating 362 

(somata) the synaptic innervation.  363 

We then investigated whether the postsynaptic membrane surface available within a 364 

certain radius rpred around a given axon (Fig. 4b,c) would be a better predictor of 365 

synaptic innervation for that given axon. For this we measured the available 366 

membrane surface belonging to the 5 subcellular target classes around all axons 367 

(Fig. 4d). 368 

We then used a logistic multinomial regression model to predict synaptic innervation 369 

from the availability of membrane surface attributed to the target classes around the 370 

6,979 axons (Fig. 4e). In this we assumed that the precise axonal trajectories were 371 

known (corresponding to perfect alignment of axonal and dendritic reconstructions), 372 

and that the number of synapses per axon was given. Based on this, we computed 373 

the coefficient of determination (R2) reporting the fraction of axonal synaptic 374 

innervation variance that could be explained purely based on the geometrical 375 

information (Fig. 4f). For this we subtracted the variance originating from the 376 

multinomial sampling of a concrete innervation target per synapse and axon (see 377 
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Methods), thus reducing the variance that has to be explained by the geometric 378 

model. Yet, even using these favorable conditions, at a prediction radius of 10 µm, 379 

only up to 41% of inhibitory innervation and about 54% of excitatory innervation 380 

variance was accounted for by the geometric model (Fig. 4f). This lack of 381 

geometrical predictability was present for all types of axons (Fig. 4f). Notably, 382 

commonly used integration scales for geometrical connectomic prediction (25 µm, 383 

(Binzegger et al., 2004; Lubke et al., 2003; Meyer et al., 2010; Oberlaender et al., 384 

2012a)) provided only about 34% explained variance of actual synaptic innervation 385 

for inhibitory and only about 50% for excitatory axons under the rather optimal 386 

predictive conditions as described above.  387 

Dendritic and axonal synapse positioning 388 

We next investigated the distribution of input and output synapses along the soma, 389 

dendrites and axons of the excitatory L4 neurons (Fig. 5). Up to about 20 µm from 390 

the soma, almost no spines are established (Fig. 5a). While the total number of 391 

excitatory synapses increases substantially until about 50 µm from the soma, the 392 

fraction of excitatory input contributed by TC axons stays remarkably constant at 393 

about 12% from 20 µm onwards (Fig. 5b). The inhibitory-excitatory synaptic input 394 

ratio (i/(i+e)) drops from almost 100% to about 15% within 50 µm, and further 395 

decreases to about 7% at 100 µm from the soma (Fig. 5b).  396 

To study the positioning of synapses along excitatory axons, we used those axons 397 

leaving the cell bodies to ask whether synapses were sorted along the axonal path 398 

according to their target (Fig. 5c,d). While target-sorted placement of output 399 

synapses along axons had been theoretically predicted and found in non-mammalian 400 

species (Carr and Konishi, 1988, 1990; Jeffress, 1948; Kornfeld et al., 2017), the 401 

discovery of sorted synaptic arrangements along axons in layer 2 of the mammalian 402 

medial entorhinal cortex was a surprise (Schmidt et al., 2017). Here, we found no 403 

evidence for path-length dependent axonal synapse sorting (PLASS) in layer 4 of 404 

mouse somatosensory cortex (Fig. 5d), excluding PLASS as a ubiquitous cortical 405 

wiring principle, but leaving open the possibility that it could be a feature of non-406 

granular cortex. 407 

 408 
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Synaptic input variability 409 

Functional recordings of cortical neurons in-vivo show a remarkable variability of 410 

responses between neurons but also between stimulus exposures for a given neuron 411 

(Brecht and Sakmann, 2002; Kerr et al., 2007; Kerr et al., 2005; Ohki et al., 2005; 412 

Stosiek et al., 2003). A heterogeneous sampling of available synaptic inputs at the 413 

level of neurons and dendrites equipped with non-linear functional properties (Lavzin 414 

et al., 2012) could be one mechanism generating such variable functional responses. 415 

Using our dense synaptic input data, we wanted to next analyze the variability of 416 

synaptic input composition in L4 neurons (Fig. 5e-n). 417 

We first noticed that the density of thalamocortical synapses had a substantial 418 

dependence on cortex depth (Fig. 5e-h): the absolute density of TC synapses in the 419 

volume increased by about 93% over 50 µm cortex depth (Fig. 5e,f; the TC 420 

excitatory synapse fraction TC/(TC+CC) increased by 82.6%, corresponding to an 421 

absolute increase in the TC synapse fraction of 5.8% per 50 µm cortex depth, Fig. 422 

5h). This gradient is consistent with light-microscopic analyses of TC synapses 423 

showing a decrease of TC synapse density from lower to upper L4 (Garcia-Marin et 424 

al., 2013; Oberlaender et al., 2012b; Wimmer et al., 2010) which is most substantial 425 

when analyzed at the level of single VPM axons (Oberlaender et al., 2012b). Neither 426 

the inhibitory nor the corticocortical synapse densities showed a comparable spatial 427 

profile (Fig. 5g). 428 

We wanted to understand how the synaptic TC gradient is mapped onto the input of 429 

L4 neurons along the cortex axis (Fig. 5i-k). One possibility was that the TC synapse 430 

gradient (Fig 5e,f,h) is used to enhance the variability of synaptic input composition 431 

between different primary dendrites of the L4 neurons such that a neuron’s dendrites 432 

pointing upwards towards the pia would sample relatively less TC input than 433 

dendrites pointing towards the white matter. Alternatively, synaptic specificity 434 

mechanisms (as in Fig. 3) could be used to counterbalance this synaptic gradient 435 

and equilibrate the synaptic input fractions on the differently oriented dendrites. Our 436 

analysis (Fig. 5j,k) shows that in fact, even for single primary dendrites, TC input 437 

fractions vary 1.28-fold between dendrites pointing upwards towards the cortical 438 

surface vs downwards towards the white matter (TC input fractions of each dendrite 439 

were corrected for the entire neuron’s TC input fraction for this analysis, see 440 
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Methods).  This finding of per-dendrite input variation points to a circuit configuration 441 

in which TC input variability is enhanced between and within neurons of the same 442 

excitatory type in cortical layer 4. 443 

The finding of a substantial TC synapse gradient along the cortical axis within L4 is 444 

interesting, since the fractional thalamocortical innervation of spiny neurons in L4 445 

has been a matter of extensive scientific investigation (Ahmed et al., 1994; 446 

Benshalom and White, 1986; Bopp et al., 2017; da Costa and Martin, 2009; Garcia-447 

Marin et al., 2017; Latawiec et al., 2000; White, 1989; White and Hersch, 1981), with 448 

results of TC input fraction ranging from less than 10% (da Costa and Martin, 2009) 449 

to up to 20% (Benshalom and White, 1986; White, 1989) of synaptic excitatory input 450 

contributed from the thalamus in layer 4 of sensory cortex. While most differences 451 

have so far been attributed to species differences (Bopp et al., 2017), our data 452 

supports the view  that cortical depth within layer 4 may be a key determinant of TC 453 

input fraction (Garcia-Marin et al., 2017). Our data also emphasizes the 454 

heterogeneity of synaptic input for cortical neurons of similar type. 455 

Connectomic signature of synaptic plasticity 456 

Finally we used the unprecedented magnitude of synaptically coupled axons and 457 

dendrites in this dense cortical volume to look for a potential connectomic signature 458 

of previous episodes of synaptic plasticity. In one well-established concept of 459 

neuronal plasticity, the timing of action potentials in pre- and postsynaptic neurons is 460 

the key determinant of synaptic weight change (Hebb, 1949; Markram et al., 1997). 461 

Since synaptic strength has been shown to be correlated to the size of synaptic 462 

specializations (postsynaptic density, spine head volume, (Harris and Stevens, 1988, 463 

1989) and axon-spine interface (ASI) area (de Vivo et al., 2017)), the analysis of the 464 

similarity of synaptic size for pairs of pre- and postsynaptic neurites that establish 465 

more than one joint synapse can be used to obtain evidence for previous episodes of 466 

synaptic weight assimilation between these joint synapses. In the hippocampus, 467 

where activity-dependent synaptic weight increase is consistently found (LTP), this 468 

argument has been employed to investigate the storage capacity of synapses (Bartol 469 

et al., 2015; Bromer et al., 2018), and joint-synapse size homogeneity has been 470 

described for clustered synaptic input (Bloss et al., 2018). Here, we wanted to 471 

determine whether such synaptic size homogenization can be quantitatively 472 
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determined in cortical layer 4, in which only long-term synaptic depression has been 473 

found (Egger et al., 1999), and to determine upper and lower bounds on the fraction 474 

of the circuit that can have recently undergone such synaptic weight adaptation. 475 

For this, we first searched for all pairs of axons and dendrites that established more 476 

than one joint axon-to-spine synapse in the volume (Fig. 6a-c, n=6,602; of these 477 

n=6,045 with 2, n=474 with 3, and n=83 with 4 and more synapses; we call them 478 

joint synapses in the following; this analysis was carried out both in the original axon 479 

reconstruction and in a reconstruction with all axons split at potential branch points 480 

and merger points; the latter served as control for the influence of merge errors on 481 

the results; in both cases the reported effects were found; the reported numbers are 482 

from the control case). We then measured the size of the axon-spine interface (ASI, 483 

(de Vivo et al., 2017; Staffler et al., 2017)) for all synapses, those with 2 joint 484 

synapses, etc. (Fig. 6d). Surprisingly, mean synaptic size increased by 1.15-fold per 485 

additional joint synapse. Given the absence of electrophysiological evidence for LTP 486 

in L4 (Egger et al., 1999), this finding could correspond to the subset of extremely 487 

strong unitary synaptic connections in L4 reported by (Feldmeyer et al., 1999) which 488 

had a unitary synaptic efficacy of up to 10 mV, allowing to elicit postsynaptic APs 489 

based on one synaptically connected presynaptic neuron. Alternatively, this data 490 

could indicate that in a subset of the L4 circuit, LTP is established. In this case, our 491 

data would support a model in which additional synapses are added when previous 492 

coincident pre- and postsynaptic activity has already strengthened the existing joint 493 

synapses. This could also indicate that the more joint synapses are established 494 

between LTP-enabled connections, the more likely it is that the single presynaptic 495 

axon elicits APs in the postsynaptic neuron, enhancing possible synapse strength 496 

increase – and giving rise to the reported extremely large unitary connections 497 

(Feldmeyer et al., 1999). 498 

We then measured the coefficient of variation (CV) of the axon-spine interface (ASI) 499 

area for random pairs of spine synapses (CV = 0.50 ± 0.32, mean ± s.d., n = 70,202) 500 

(Fig. 6e), for pairs of spine synapses sampled from the same dendrite but different 501 

input axons (CV = 0.50 ± 0.32; n = 64,934; indistinguishable from the random case, 502 

p = 0.07, one-sided Kolmogorov-Smirnov test), pairs of spine synapses sampled 503 

from the same axon but different target dendrites (CV = 0.49 ± 0.32; n = 54,256; 504 

slightly different from the random case, p = 1.7x10-8), and finally joint synapses 505 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2018. ; https://doi.org/10.1101/460618doi: bioRxiv preprint 

https://doi.org/10.1101/460618
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

established by the same axon onto the same dendrite (CV = 0.44 ± 0.30; n = 6,045; 506 

substantially smaller than the random case, p = 1.4x10-40). This data indicates that 507 

while heteronomous combinations of synapse pairs follow the random synapse pair 508 

distribution (Fig. 6e), for joint synapse pairs, significantly more pairs have 509 

substantially less synaptic variance (CV < 0.54) and substantially less pairs are 510 

found with a CV > 0.54. This data implies an excess of n=538 low-CV synapse pairs 511 

(i.e. 8.9%) compared to the random case (Fig. 6e), suggesting synapse pairs with a 512 

CV<0.54 as those that have been exposed to processes that homogenize synapse 513 

size. At least 35.1% (n=2,122) of connections involved in joint synapses show 514 

however a CV>0.54 that precludes such previous synapse size homogenization.  515 

We next investigated the relationship between synapse size and its variability for 516 

joint synapse pairs, asking whether both the reduced size variability (Fig. 6e) and the 517 

average increase in joint synapse size (Fig. 6d) are caused by the same joint 518 

synapse pairs. For this we obtained the distribution of synapse size and its variability 519 

for all pairs of joint synapses (Fig. 6f) and subtracted a similar distribution randomly 520 

drawn from the size distribution of all (coupled and uncoupled) synapses (Fig. 6g). 521 

The resulting data clearly shows that reduced synapse size variability and increased 522 

synapse size are in fact correlated in the joint synapse pairs (Fig. 6i).  523 

We finally wanted to investigate the relation between low-variability synapse pairs 524 

and their average size when controlling for the effect that joint synapses have an 525 

overall increased average synapse size (Fig. 6d). For this we again took the 526 

distribution of synapse size and its variability for all pairs of joint synapses (Fig. 6f), 527 

but this time we subtracted a similar distribution randomly drawn from the size 528 

distribution of only the joint synapses (Fig. 6h). The resulting data (Fig. 6j) again 529 

shows an enrichment of low-CV synapse pairs (Fig. 6j); Surprisingly, however, the 530 

data also indicates two separate enriched populations of synapse pairs with low CV: 531 

those with low CV and large synapse size (Fig. 6j, upper area, this range of synapse 532 

size variability and average synapse size contains 7.9% of all joint synapse pairs), 533 

and those with low CV and small synapse size (lower dashed area in Fig. 6j; 15.5% 534 

of all synapse pairs in this area).  535 

Together, this data provides a connectomic fingerprint of the fraction of synapses in 536 

the circuit that have likely experienced previous homogenization of synapse size. 537 
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Both LTD (with saturation of synaptic weight decrease, (Egger et al., 1999)) and LTP 538 

are expected to yield such homogenization of synapse size. For at least about 24% 539 

of the joint synapse pairs (Fig. 6j), connectomic evidence for synapse size 540 

homogenization can be found. For at least about 35% of the joint synapses, however 541 

(Fig. 6e), synapse size homogenization cannot have occurred up to about one hour 542 

before the connectomic experiment (see (Bartol et al., 2015; Egger et al., 1999) for 543 

data on the time scales of synaptic weight change)). 544 

  545 
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DISCUSSION 546 

Using FocusEM, a set of tools for the semi-automated reconstruction of dense 547 

neuronal networks in the cerebral cortex, we have obtained the first dense circuit 548 

reconstruction from the mammalian cerebral cortex at a scale that allows the 549 

analysis of axonal rules of subcellular innervation - about 300 times larger than 550 

previous dense reconstructions from cortex (Kasthuri et al., 2015). We find that 551 

inhibitory axonal types specifically innervating certain postsynaptic subcellular 552 

compartments can be defined solely based on connectomic information (Figs 2,3);  553 

that in addition to inhibitory axons a fraction of excitatory axons exhibits such 554 

subcellular innervation preferences (Fig. 3); that the geometrical arrangement of 555 

axons and dendrites can explain only a moderate fraction of synaptic innervation, 556 

revoking random models of cortical wiring (Fig. 4); that a substantial thalamocortical 557 

synapse gradient in L4 gives rise to an enhanced heterogeneity of synaptic input 558 

composition at the level of single cortical dendrites (Fig. 5); and that the consistency 559 

of synapse size between pairs of axons and dendrites signifies fractions of the circuit 560 

with and without evidence for synaptic plasticity history, placing an upper bound on 561 

the “learned” fraction of the circuit (Fig. 6). Together, FocusEM allows the dense 562 

mapping of circuits in the cerebral cortex at a throughput that enables connectomic 563 

screening.  564 

Connectomic bounds on error rates 565 

In the development of high-throughput reconstruction techniques for large-scale 3D-566 

EM-based connectomics, the calibration of methodological progress using various 567 

definitions of error rates per cable length were initially important (Boergens et al., 568 

2017; Cardona et al., 2012; Helmstaedter et al., 2011; Januszewski et al., 2018). 569 

With the ability to obtain dense connectomic maps ((Eichler et al., 2017; 570 

Helmstaedter et al., 2013; Wanner et al., 2016a) and this study), methodological 571 

proof-of-principle calibration can be replaced by a comparison of actual dense 572 

reconstructions and the required resources (Fig. 1p,q).  573 

This becomes advantageous because error rates can be implicitly calibrated by the 574 

relevant connectomic analyses for a given dense reconstruction. In the presented 575 

data, we determined the required reconstruction accuracy by testing each finding for 576 
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its sensitivity to the remaining reconstruction errors, and by performing manual 577 

control reconstructions where necessary (see Methods for details).  578 

Once larger EM volumes are to be reconstructed, more investment in error rate 579 

reduction may be required (corresponding to higher manual annotation investments) 580 

– however, using the extensive labels from dense reconstructions as the present 581 

one, future reconstruction approaches may become already more efficient based on 582 

this previous knowledge alone. 583 

Connectomic evidence for synaptic plasticity 584 

The extraction of connectomic evidence for synaptic size consistency requires 585 

further discussion. While the similarity of synaptic size has been previously used for 586 

arguments about synaptic plasticity and learning (Bartol et al., 2015; Bromer et al., 587 

2018), an alternative source of decreased variance of synapse size for defined pairs 588 

of axons and dendrites is the establishment of consistently weaker or stronger 589 

synaptic connections between certain subtypes of pre- and postsynaptic neurons. 590 

While in the L4 circuit, the majority of excitatory connections is known to be 591 

established between local spiny neurons, and the observed synaptic size effects 592 

(Fig. 6) were also present when excluding TC inputs (data not shown), subtypes of 593 

excitatory neurons with different connectivity rules could contribute to the low-594 

variance synaptic size regime. Our result on the lower bound of the fraction of the 595 

circuit that has no history of synaptic size homogenization (35%, Fig. 6e), is however 596 

unaffected by this cautionary notion. 597 

Outlook 598 

The presented methods and results open the path to the consistent connectomic 599 

screening of mammalian tissue from various cortices, layers, species, developmental 600 

stages and disease conditions. The fact that even a small piece of mammalian 601 

cortical neuropil contains a high density of relevant information, so rich as to allow 602 

the extraction of possible connectomic signatures of the “learnedness” of the circuit, 603 

makes this approach a promising endeavor for the study of the structural setup of 604 

mammalian nervous systems.  605 
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METHODS 635 

Animal experiments 636 

A wild-type (C57BL/6) male mouse was transcardially perfused at postnatal day 28 637 

under isoflurane anesthesia using a solution of 2.5% paraformaldehyde and 1.25% 638 

glutaraldehyde (pH 7.4) following the protocol in (Briggman et al., 2011). All 639 

procedures followed the animal experiment regulations of the Max Planck Society 640 

and were approved by the local animal welfare authorities (Regierungspräsidien 641 

Oberbayern and Darmstadt). 642 

Tissue sampling and staining 643 

The fixated brain was removed from the skull after 48h of fixation and sliced 644 

coronally using a vibratome. Two samples were extracted using a 1 mm biopsy 645 

punch (Integra Miltex, Plainsboro, NJ) from a 1 mm thick slice at 5 mm distance from 646 

the front of the brain targeted to layer 4 in somatosensory cortex of the right 647 

hemisphere. The corresponding tissue from the left hemisphere was further sliced 648 

into 70 µm-thick slices followed by cytochrome oxidase staining indicating the 649 

location of the coronal slice to be in barrel cortex. 650 

Afterwards the extracted tissue was stained as in (Briggman et al., 2011). Briefly, the 651 

tissue was immersed in a reduced Osmium tetroxide solution (2% OsO4, 0.15 M CB, 652 

2.5 M KFeCN) followed by a 1% Thiocarbohydrazide step and a 2% OsO4 step for 653 

amplification. After an overnight wash, the sample was further incubated with 1.5% 654 

Uranyl Acetate solution and a 0.02 M Lead(II) Nitrate solution. The sample was 655 

dehydrated with Propylenoxide and EtOH, embedded in Epon Hard (Serva 656 

Electrophoresis GmbH, Germany) and hardened for 48 h at 60 °C. 657 

3D EM experiment 658 

The embedded sample was placed on an aluminium stub and trimmed such that on 659 

all four sides of the sample the tissue was directly exposed. The sides of the sample 660 

were covered with gold in a sputter coater (Leica Microsystems, Wetzlar, Germany). 661 

Then, the sample was placed into a SBEM setup ((Denk and Horstmann, 2004), 662 

Magellan scanning electron microscope, FEI Company, Hillsboro, OR, equipped with 663 

a custom-built microtome courtesy of W Denk). The sample was oriented so that the 664 
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radial cortex axis was in the cutting plane. The transition between L4 and L5A was 665 

identified in overview EM images by the sudden drop in soma density between the 666 

two layers (see Fig. 1b). A region of size 96 µm x 64 µm within L4 was selected for 667 

imaging using a 3 by 3 image mosaic, a pixel size of 11.24 x 11.24 nm2, image 668 

acquisition rate of 10 MHz, nominal beam current of 3.2 nA (thus a nominal electron 669 

dose of 15.8 e-/nm2), acceleration voltage of 2.5 kV and nominal cutting thickness of 670 

28 nm. The effective data rate including overhead time spent during motor 671 

movements for cutting and tiling was 0.9 MB/s. 3,420 image planes were acquired, 672 

yielding 194 GB of data. 673 

Image alignment 674 

After 3D EM dataset acquisition, all images were inspected manually and marked for 675 

imaging artifacts caused by debris present on the sample surface during imaging. 676 

Images with debris artifacts were replaced by the images at the same mosaic 677 

position from the previous or subsequent plane. First, rigid translation-only alignment 678 

was performed based on the procedures in (Briggman et al., 2011) which followed 679 

closely (Preibisch et al., 2009). The following modifications were applied: When shift 680 

vectors were obtained that yielded offsets of more than 100 pixels, these errors were 681 

iteratively corrected by manually reducing the weight of the corresponding entry in 682 

the least-square relaxation by a factor of 1000 until the highest remaining residual 683 

error was less than 10 pixels. Shift calculation of subsequent images in cutting 684 

direction was found to be the most reliable measurement and was therefore 685 

weighted 3-fold in the weighted least-square relaxation. The resulting shift vectors 686 

were applied (shift by integer voxel numbers) and the 3D image data was written in 687 

KNOSSOS format (Boergens et al., 2017; Helmstaedter et al., 2011).  688 

Previous usage of 3D image data 689 

The 3D EM image dataset using the initial image alignment described above was 690 

previously utilized for methods development in (Berning et al., 2015), (Boergens et 691 

al., 2017) and (Staffler et al., 2017). Furthermore, reconstructions from this data 692 

were used as staining quality comparison in (Hua et al., 2015). 693 

 694 

 695 
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Subimage alignment 696 

To further improve the precision of image alignment, which we found to critically 697 

impact the quality of the automated volume segmentation, we performed the 698 

following steps. Each image of the raw dataset was cut into smaller images sized 699 

256x256 pixels each. The offset calculation was run as described above (with the 700 

shift between neighboring subimages from the same original image set to zero). 701 

Additionally, we used a mask for blood vessels and nuclei (see below) to determine 702 

images which mostly contained blood vessels or somata. These images were 703 

assigned a decreased weight in the relaxation step. After the least-square relaxation, 704 

the shifts obtained for the subimages were used to create a smooth non-affine 705 

morphing of the original images, which were then exported to the 3D KNOSSOS 706 

format as above. All raw image data will be made available for inspection at 707 

demo.webknossos.org (see section on data availability). 708 

Methods description for software code 709 

The following descriptions are aimed at pointing to the key algorithmic steps rather 710 

than enumerating all detailed computations. 711 

Blood vessel detection and correction for brightness gradient 712 

Blood vessels were detected (Fig. 1e) by automated identification of regions of at 713 

least 0.125 µm2 with extreme brightness values (below 50 or above 162 at 8 bit 714 

depth) in each image plane, followed by manual inspection to exclude false 715 

positives. Image voxels within blood vessels were assigned the mean brightness of 716 

the entire dataset (mean=121). 717 

To correct brightness gradients across the image volume, the mean brightness was 718 

calculated for non-overlapping image blocks of 64 x 64 x 29 vx3, respectively, and 719 

the resulting marginal brightness distributions along the X, Y, and Z axes were 720 

smoothed and used to assign a multiplicative correction factor to each image block. 721 

The correction factor was linearly interpolated and multiplied to the brightness value 722 

of all non-blood vessel voxels within each of the image blocks.  723 

Nuclei and myelin detection 724 
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For the automated detection of nuclei and myelin, the following heuristics were 725 

applied. First, the voxel-wise brightness gradient was computed in the image data 726 

after smoothing by a 3-D kernel of size 21 x 21 x 9 vx and a standard deviation of 727 

~33.5 nm. Nuclei were identified as regions of at least about 1.8 µm3 size with small 728 

brightness gradient and image brightness close to the mean image brightness. 729 

Myelin was detected as regions of low brightness sized at least about 0.35 µm3. 730 

Both nuclei and myelin detection were applied on overlapping image volumes of 912 731 

x 912 x 416 vx3 size which were then truncated to non-overlapping volumes of 512 x 732 

512 x 256 vx3 size.  733 

Volume segmentation using SegEM  734 

To generate an initial automated volume segmentation, SegEM (Berning et al., 2015) 735 

was applied to image data cubes of size 1024 x 1024 x 512 vx3 with 256, 256, and 736 

128 vx overlap along X, Y, and Z, respectively, using CNN 20130516T2040408,3 737 

with parameters θms = 10 vx and θhm = 0.25 (see Table 1 in (Berning et al., 2015)). At 738 

the edge of myelinated regions (see previous section), the CNN output was replaced 739 

with the minimum output value of -1.7 to enforce splits during the subsequent 740 

watershed-based volume segmentation. 741 

Segmentation neighborhood graph 742 

For the determination of neurite continuity and synaptic interfaces (Fig. 1f), a 743 

segment neighborhood graph (region adjacency graph) was constructed in each of 744 

the non-overlapping segmentation cubes created by the SegEM step (see previous 745 

section). The neighborhood graph was constructed as in SynEM (Staffler et al., 746 

2017). Briefly, two volume segments were called adjacent if there was a boundary 747 

voxel that contained both segments in its 26-neighborhood. The borders between 748 

adjacent segments were calculated as the connected components of all boundary 749 

voxels that had both segments in their 26-neighborhood. For each border, an edge 750 

between the corresponding segments was added to the neighborhood graph. The 751 

segment neighborhood graph is thus an undirected multigraph. 752 

To extend the neighborhood graph beyond the non-overlapping segmentation cubes, 753 

pairs of segmentation cubes that shared a face in the x, y or z-direction were 754 

considered, and segments in the juxtaposed segmentation planes from the two 755 
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segmentation cubes were matched if the number of matched voxels for a given pair 756 

of segments in the two planes was at least 10, and if the matched voxels constituted 757 

more than 90% of the area of the smaller segment. In these cases, an edge between 758 

the corresponding segments from the neighboring segmentation cubes was added to 759 

the neighborhood graph. 760 

Synapse detection with SynEM 761 

For synapse detection, SynEM (Staffler et al., 2017) was applied to the segment 762 

neighborhood graph (see previous section) as in (Staffler et al., 2017). In brief, for 763 

each pair of adjacent volume segments, the subvolumes for SynEM feature 764 

aggregation (see (Staffler et al., 2017)) were determined by dilating the border 765 

between the two volume segments with spherical structuring elements of radius 40 766 

nm, 80 nm and 160 nm, respectively, and then intersecting the dilated border the two 767 

adjacent volume segments, each. Interfaces with a border size of less than 151 768 

voxels were discarded. Then, all interfaces in the segment neighborhood graph were 769 

classified using the SynEM classifier, yielding two SynEM scores for each interface, 770 

one for each of the two possible synapse directions. 771 

In contrast to (Staffler et al., 2017), separate classifiers for interfaces onto spine 772 

segments (retrieved by TypeEM) and for all other interfaces were used. For 773 

interfaces onto spine segments, the classifier from (Staffler et al., 2017) was used. 774 

All interfaces onto spine segments with at least one score larger than -1.2292 775 

according to the SynEM classifier (corresponding to 89% recall and 94% precision 776 

for spine synapses; see the test set of (Staffler et al., 2017)) were considered as 777 

synaptic interface candidates. For all other interfaces, a second classifier was trained 778 

using different training data and a different feature representation of interfaces. The 779 

training set of the second classifier consisted of all shaft and soma synapses of the 780 

SynEM training set and the shaft and soma synapses from two additional training 781 

volumes of size 5.75 x 5.75 x 7.17 μm3. The feature representation of interfaces for 782 

the second classifier consisted of all features of SynEM described in (Staffler et al., 783 

2017), extended by four additional texture filter responses. The additional filter 784 

responses were voxel-wise probability maps for synaptic junctions, mitochondria, 785 

vesicle clouds and a background class obtained using a multi-class CNN. The CNN 786 

was trained on seven volumes of dense annotations for synaptic junctions, vesicle 787 
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clouds and mitochondria (six volumes of size 3.37 x 3.37 x 3.36 μm3 that were also 788 

used for the methods comparison in (Staffler et al., 2017), and one additional volume 789 

of size 5.75 x 5.75 x 7.17 μm3) using the elektroNN framework (elektronn.org; see 790 

also (Dorkenwald et al., 2017)). Interfaces onto segments that were not classified as 791 

spines by TypeEM with at least one directional SynEM score larger than -1.28317 792 

according to the second classifier (corresponding to 69% recall and 91% precision 793 

evaluated on all shaft synapses of the test set for inhibitory synapse detection of 794 

SynEM; see (Staffler et al., 2017)) were considered as synaptic interface candidates 795 

in addition to the synaptic interface candidates onto spines. 796 

 797 

ConnectEM classifier 798 

To determine the continuity between adjacent volume segments (Fig. 1f), for each 799 

interface (see previous section) sized at least 10 vx, the SynEM filter bank and 800 

aggregation volumes (Staffler et al., 2017)  were applied to the image and CNN 801 

output data, resulting in 6,426 texture- and 22 shape-features per interface. The 802 

features were used as input to an ensemble of 1,500 decision tree stumps trained 803 

with LogitBoost (Friedman et al., 2000) on 76,379 labeled edges obtained from 804 

proofread dense skeleton annotations of three (5 μm)3 cubes of neuropil. To adapt 805 

the SynEM interface classification method to a task on undirected edges, the 806 

ensemble was trained on both the forward and reverse direction of the labeled 807 

edges. Each edge in the segment neighborhood graph was then assigned a 808 

continuity probability by applying the classifier to the corresponding interface in 809 

random direction. Interfaces with less than 10 vx were treated as having a continuity 810 

probability of zero, edges across segmentation cubes were assigned a continuity 811 

probability of one. 812 

 813 

TypeEM classifier 814 

To determine whether a volume segment belonged to a dendrite, an axon, or an 815 

astrocyte, and whether it was likely a dendritic spine head, we developed a set of 816 

four classifiers (“TypeEM”) as follows. Each volume segment was expanded into an 817 

agglomerate of up to 5 segments by iteratively adding the neighboring segment with 818 
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the highest edge continuity probability to the agglomerate. Agglomeration was 819 

restricted to the subgraph induced by the edges with at least 92% continuity 820 

probability to prevent merge errors. 821 

Then, the following set of features was computed for the agglomerates: 918 texture 822 

features from the SynEM filter bank (Staffler et al., 2017) applied to the image and 823 

CNN output data and pooled over the segment agglomerate volume; 6 shape 824 

features as in SynEM; the 0th- to 2nd-order statistical moments of the agglomerate 825 

volume; the eigendecomposition of the 2nd order statistical moment; the 0th-to-2nd 826 

order statistical moments of the surface of the agglomerate after rotation of the 827 

agglomerate to the principal component of all its voxels; same as before but for the 828 

convex hull of the agglomerate; volume-to-surface area ratio, compactness (i.e., 829 

(surface area)3 / volume2), clusters of normal unit vectors, hull crumpliness and 830 

packing (Corney et al., 2002); estimates of the distance (Osada et al., 2001)  and 831 

thickness (Yi et al., 2004) histograms from sampling random point pairs on the 832 

agglomerate’s surface.  833 

This yielded a total of 1,207 shape features and 924 SynEM features; these were 834 

then taken as input to an ensemble of 1,500 decision tree stubs trained using 835 

LogitBoost (Friedman et al., 2000). 14,657 training samples were obtained by one 836 

expert (AM) marking all spine head segments and assigning the neurite / glia type to 837 

each process in three densely reconstructed (5 μm)3 cubes of neuropil (same as in 838 

previous section “ConnectEM classifier”). 839 

Together, these data were used to train one-versus-all TypeEM classifiers for axons, 840 

dendrites, and astrocytes. The classifiers reached the following classification 841 

performance on a separate test cube sized (5 μm)3: Axon classifier: 91.8% precision 842 

(P) and 92.9% recall (R); dendrite classifier: 95.3% P, 90.7% R; astrocyte classifier: 843 

97.2% P, 85.9% R (at maximum area under precision-recall curve). The spine head 844 

classifier was trained on a feature set calculated as above, with the exception that 845 

the agglomeration step was omitted, and achieved 92.6% P and  846 

94.4% R. 847 

For subsequent processing, the TypeEM classifier scores were transformed to 848 

probabilities using Platt scaling (Platt, 1999. Probabilistic Outputs for Support Vector 849 

Machines and Comparisons to Regularized Likelihood Methods. In: Advances in 850 
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large margin classifiers.). Finally, the one-versus-all axon, dendrite, and astrocyte 851 

probabilities of each segment were combined to multi-class probabilities by rescaling 852 

them by the inverse of their sum. 853 

Automated reconstruction of dendrites 854 

For the reconstruction of dendrites, we first selected all SegEM segments with a 855 

TypeEM dendrite probability (Fig. 1h) of at least 0.3 and a volume of at least 500 vx. 856 

In the subgraph induced by these segments we deleted all edges that corresponded 857 

to an interface of less than 300 vx size or a neurite continuity probability below 98%. 858 

The graph was then used to cluster the dendritic segments into connected 859 

components, yielding dendrite agglomerates. 860 

To reduce the effect of TypeEM misclassifications, we used the fraction of 861 

myelinated surface area to remove agglomerates from the dendrite class (calibrated 862 

based on 50 random agglomerates with a myelinated surface fraction between 0.05 863 

and 0.5): Agglomerates had a total volume of at least 200,000 voxels, had a 864 

myelinated surface fraction above 0.25 (or above 0.08 if the agglomerate comprised 865 

more than 25 segments); agglomerates did not contain somatic segments.  866 

The myelinated surface fraction was calculated for each agglomerate with a total 867 

volume of above 5 µm3. All neighboring segments of the agglomerate were identified 868 

according to the neighborhood graph, and the area of interfaces onto neighboring 869 

myelin segments, defined as having at least 50% of their volume intersecting with 870 

the myelin heuristic, were added up. This area was then divided by the total area of 871 

all interfaces between the agglomerate and other segments.  872 

Reconstruction of cell bodies (somata) 873 

Cell bodies were reconstructed from the volume segmentation of each cell’s nucleus 874 

(see above). First, we identified all SegEM segments which were contained in a 875 

nucleus with at least 50% of their volume. Then we added all direct neighbors of 876 

these segments according to the neighborhood graph. Then we iteratively extended 877 

the soma volumes along the neighborhood graph with the following constraints: only 878 

consider segments with a size of at least 2,000 voxels and a center of mass at a 879 

maximal distance of 8 µm from the center of mass of the corresponding nucleus; 880 

only consider edges in the neighborhood graph with a continuity score above 0.98; 881 
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do not consider edges if the segments’ vessel score or its myelin score were above 882 

0.5. Then, all connected components of segments that were completely enclosed by 883 

soma segments according to the neighborhood graph were added to the respective 884 

soma. Finally, all segments with more than 80% of their surface adjacent to soma 885 

segments were added iteratively (10 iterations). 886 

Soma-seeded reconstruction of neurons 887 

For the reconstruction of those neurons that had their cell body in the dataset (n=89 888 

with dendrites reconstructed in the dataset, Fig. 1l,m, Suppl. Material 1), all dendrite 889 

agglomerates from the automated dendrite reconstruction that overlapped with a 890 

given soma volume (see previous section) were combined into one agglomerate for 891 

each of the neurons. 892 

Iterative semi-automated correction of whole cell agglomerates 893 

The remaining errors in the soma-seeded neuron reconstructions (see previous 894 

section) were corrected in a semi-automated procedure that consumed 9.7 hours for 895 

all neurons, i.e. 5.18 minutes per neuron. Soma-based neuron reconstructions were 896 

inspected for merger errors in the 3D view of webKnossos, and mergers were 897 

corrected by deletion of nodes in the neighborhood graph of the neuron 898 

reconstruction. Then, endings of the neuron were detected (see below), and 899 

reconstructions at the endings were performed in webKnossos until a dendrite 900 

agglomerate was reached that was obtained from the automated dendrite 901 

reconstruction (see previous section). The inspection for mergers and the detection 902 

of endings in the dataset was iterated until only real endings or endings at the 903 

dataset boundary were left. 904 

Automated axon reconstruction  905 

For the reconstruction of axons, we first selected all SegEM segments with a volume 906 

of at least 300 vx and a TypeEM axon probability (Fig. 1h) of at least 50%. The 907 

subgraph induced by these segments was partitioned into connected components 908 

(axon agglomerates) after removal of edges corresponding to interfaces with less 909 

than 60 vx size or with a neurite continuity probability below 97%. Next, for each 910 

segment that was part of an axon agglomerate, we computed the first principal 911 

component of its voxel locations and used its degree of variance explanation as an 912 
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indicator for the directedness of the segment. We then determined for each interface 913 

between the agglomerate’s segments and all neighboring segments the alignment of 914 

the interface’s normal vector with the segment direction. Based on this, we obtained 915 

an ending score for each interface of the segment, and at locations with high scores, 916 

the axon agglomerate was grown into neighboring segments under the following 917 

additional constraints: the neighboring segment had an axon probability of at least 918 

30%; the interface had a size of at least 40 vx; the neighborhood graph edge had a 919 

neurite continuity probability of at least 80%. This growth process was repeated ten 920 

times. 921 

Finally, we compensated for the heightened rate of merge errors in proximity to the 922 

dataset boundary that results from decreased alignment quality. Edges that were 923 

closer than 2 µm to dataset boundary and had a neurite continuity probability below 924 

98% were removed from the axon agglomerates. 925 

Then, all axon agglomerates of length 5 µm and above were used for the following 926 

focused annotation steps. Length of agglomerates was computed as the summed 927 

Euclidean length of all edges in the minimal spanning tree of the center of masses of 928 

the agglomerate’s segments.  929 

FocusEM ending detection and query generation 930 

To determine the endings of axons at which focused annotation could be seeded, we 931 

used the following procedure. For each segment in an axon agglomerate we took the 932 

segments that are direct graph neighbors or that come within 1 µm distance, and 933 

computed the first principal component of their volume. We then identified all 934 

segments where the principal component of the local surround explains at least 50% 935 

of the variance, and determined the borders on the axon agglomerate surface that 936 

were aligned to that axis (i.e., all interfaces for which the vectors from the center of 937 

mass of the local surround to the center of mass of the interface were at an angle of 938 

at most cos-1(0.8) ≈ 37 °). Finally, the identified interfaces were grouped using a 939 

cutoff distance of 600 nm and reduced to the interface best aligned to the surround’s 940 

principal component. We determined the point within 500 nm of each interface that is 941 

closest to the core of the axon agglomerate and used it together with the principal 942 

component of the local surround as the start position and orientation of a focused 943 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2018. ; https://doi.org/10.1101/460618doi: bioRxiv preprint 

https://doi.org/10.1101/460618
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

annotation query in webKnossos. Interfaces within 3 µm of the dataset boundary 944 

were excluded from query generation. 945 

FocusEM axon queries were performed in webKnossos flight mode. The volume 946 

map of all axon agglomerates larger than 5 µm was used to dynamically terminate 947 

flight paths when a user entered already reconstructed agglomerates (this was 948 

implemented in a custom script using the webKnossos frontend APITo reduce the 949 

delay between subsequent queries, we implemented a “hot switching mode” in 950 

webKnossos such that the next query was already loaded in the background while 951 

answering the current query. With this, an immediate switching (amounting to a 952 

jumping to query locations in the dataset) was possible that yielded negligible lag 953 

between tasks. 954 

Query analysis 955 

FocusEM queries yielded linear skeletons from webKnossos flight mode. For each 956 

node of a given skeleton we determined the overlap with axon agglomerates in the 957 

(3 vx)3 cube around each skeleton node (a skeleton was considered to overlap with 958 

an axon agglomerate if the agglomerate was contained in at least 54 vx around the 959 

skeleton nodes). For the overlapping agglomerates, we determined the 960 

corresponding agglomerate endings within 300 nm distance from the skeleton 961 

nodes. Based on the configuration of agglomerate overlaps, agglomerate endings 962 

reached by the queries and proximity of the query to the dataset boundary, the query 963 

results were either accepted as is, re-queried or discarded (see code files below for 964 

detailed decision tree). When locations were queried multiple times, the information 965 

on agglomerate and ending overlap was used to keep only minimal subsets of 966 

skeleton tracings for the final axon agglomerates (see “Iteration between ending and 967 

chiasma detection”). For connectome analysis and display, volume segments that 968 

had not yet been assigned to any axon agglomerate and that overlapped with the 969 

user skeleton from the flight mode queries were collected and added to the 970 

agglomerate volume. 971 

Chiasma detection and queries 972 

To identify mergers, we detected geometric configurations (Fig. 1k) with more than 973 

two-fold neurite crossings after agglomeration. Chiasmata were detected by counting 974 
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the number of intersections of the graph representation of a given agglomerate with 975 

a sphere centered on the nodes of the graph. For this, the agglomerate was reduced 976 

to the connected component contained within a sphere of 10 µm radius around the 977 

current node, and then all edges within a sphere of radius of 1 µm were removed. 978 

The remaining graph components were considered sphere exits. If four or more 979 

sphere exits were found, the node at the sphere center was labeled as a chiasmatic 980 

node. Within axon agglomerates, the chiasmatic nodes were clustered using a cutoff 981 

distance of 2 µm and subsequently reduced to the node closest to the center of 982 

mass of the cluster. At these locations, queries from the sphere exits pointing 983 

towards the sphere center were generated and annotated as described for the 984 

ending queries (Fig. 1n,o). The webKnossos flight mode annotations of chiasma 985 

queries were stopped when the annotator left the bounding box around all exit 986 

locations.  987 

Chiasma query interpretation 988 

To decide which of the exits contributing to a given chiasma should remain 989 

connected and which should be disconnected, we used the query results from all 990 

chiasma exits. The full set of results enabled the detection of chiasmata with 991 

contradictory query answers, partial automated error correction, and the re-querying 992 

of a minimal set of exits. Chiasmata with a full and contradiction-free set of answers 993 

were solved by removing the edges within the center 1µm sphere from the 994 

agglomerate mst and by subsequent reconnection of the exits based on a minimal 995 

set of flight queries. 996 

Iteration between ending and chiasma detection 997 

Following automated axon reconstruction, the FocusEM queries for ending and 998 

chiasma annotations were applied iteratively.  999 

Spine head agglomeration 1000 

Spine heads were agglomerated by connecting neighboring segments with a 1001 

TypeEM spine head probability above 50% that were connected by an edge with 1002 

neurite continuity probability of at least 98%. Spine head detections within blood 1003 

vessels were discarded. This yielded 415,797 spine head agglomerates. 1004 
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Spine attachment 1005 

Of the 415,797 spine head agglomerates, 5.6% got attached to a dendritic shaft 1006 

during automated dendrite agglomeration (see above). We then implemented a 1007 

greedy walk strategy from spine heads to the corresponding dendritic shafts. The 1008 

walk was terminated upon reaching a dendrite agglomerate of at least ~1.1 µm3 1009 

(105.5 vx) and was restricted to at most ten steps along continuity edges, each having 1010 

a neurite continuity probability of 25% or more and only involving segments with 1011 

axon probability below 80%. With this, an additional 206,546 (49.7%)  spine heads 1012 

could be attached to the corresponding dendrite. For the remaining spines, SegEM 1013 

mergers in the very thin spin necks typically prevented the spine attachment 1014 

heuristics to be successful. We instead seeded manual annotation in the 164’969 1015 

remaining spine heads with a distance of at least 3 µm from the dataset boundary, 1016 

asking annotators to connect these to the dendritic shafts. This consumed 900 work 1017 

hours total and resulted in a final spine head recall of 88.6% for spine heads further 1018 

than 10 µm from the dataset boundary. 1019 

Synapse agglomeration 1020 

Synaptic interface candidates (n = 864,405 out of which 605,569 were onto spine 1021 

segments and 258,836 onto other segments) detected by interface classification 1022 

were discarded if the score both synapse scores were larger than -2 or the continuity 1023 

probability of the corresponding edge was larger than 0.7, or the myelin score of the 1024 

pre- or postsynaptic segment was larger than 0.375 or the presynaptic segment was 1025 

contained in the soma volumes. The remaining synaptic interface candidates (n= 1026 

862,350) were restricted to those with a center of mass more than 3 µm from the 1027 

segmentation volume boundary (yielding n=696,149 synaptic interfaces with a pre- 1028 

and postsynaptic segmentation object, each, that are used in the following analyses). 1029 

To consolidate synaptic interfaces, the following steps were applied: First, all 1030 

presynaptic segmentation objects contributing to any of the synaptic interfaces were 1031 

combined, if they were connected to each other by at most two steps on the 1032 

segmentation neighborhood graph with each step along an edge above 0.98 1033 

ConnectEM score. The same was applied to all postsynaptic segmentation objects. 1034 

Then, all synaptic interfaces between the combined pre – and postsynaptic 1035 

segmentation objects were combined into one synapse, each. Synapse 1036 
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agglomerates for which at least one postsynaptic segment was part of the spine 1037 

head agglomerates were considered as spine synapse agglomerates. A spine 1038 

synapse agglomerate was called “primary spine innervation” if it contained the 1039 

interface with the highest SynEM score onto a given spine head agglomerate, and 1040 

“secondary spine innervation” otherwise. Multiple synapse agglomerates between an 1041 

axon agglomerate and a spine head agglomerate were merged into a single synapse 1042 

agglomerate. The center of mass for a synapse agglomerate was calculated as the 1043 

component-wise mean of the centers of mass of the individual interfaces. The area 1044 

of a synapse agglomerate was calculated as sum of the border areas of the 1045 

individual interfaces. 1046 

Soma synapse exclusion heuristic 1047 

Synapse agglomerates for which at least one postsynaptic segment was part of the 1048 

soma agglomerates were considered as soma synapses. Synapse agglomerates 1049 

were clustered based on their center of mass using hierarchical clustering with single 1050 

linkage and a distance cutoff of 1 µm. If a synapse agglomerate cluster contained a 1051 

spine synapse which was the only synapse onto the corresponding spine head 1052 

agglomerate, then all soma synapses of the synapse agglomerate cluster were 1053 

discarded. Synapses from excitatory axons onto somata of spiny cells were ignored 1054 

for the analysis of subcellular target specificity and geometric predictability. 1055 

Connectome aggregation 1056 

The connectome was constructed using the axon agglomerates, postsynaptic 1057 

agglomerates (dendrites, somata and axon initial segments), and synapse 1058 

agglomerates. For each pair of an axon and postsynaptic agglomerate, all synapse 1059 

agglomerates that had a presynaptic segment in the axon agglomerate and a 1060 

postsynaptic segment in the postsynaptic agglomerate were extracted and 1061 

associated with the corresponding axon-target connection. The total number of 1062 

synapses of a connection was defined as the number of synapse agglomerates 1063 

associated with that connection. The total border area of a connection was defined 1064 

as the sum of the border area of all synapse agglomerates. All of the following 1065 

analyses were restricted to axons with at least ten output synapses. 1066 

Target Class Detection Heuristics 1067 
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To determine the post-synaptic target classes apical dendrites (AD), smooth 1068 

dendrites (interneuron dendrites, SD), axon initial segments (AIS), proximal 1069 

dendrites (PD) and cell bodies (SOM), the following heuristics were used: 1070 

Cell bodies were identified based on the detection of nuclei as described in 1071 

“Reconstruction of cell bodies”. The non-somatic postsynaptic components of the 1072 

soma-based neuron reconstructions were marked as proximal dendrites. Smooth 1073 

dendrites were identified by having a spine rate (i.e., number of spines per dendritic 1074 

trunk path length) below 0.4 per µm (Kawaguchi, Karuba, Kubota, 2006), Fig. 2d, 1075 

unless identified as apical dendrites. For the analysis of target class specificities and 1076 

geometric predictability, the dendrites of soma-based interneuron reconstructions 1077 

were considered as smooth, but not proximal dendrites. 1078 

For the identification of apical dendrites, all dendrite agglomerates that intersected 1079 

with the pia- and white matter-oriented faces of the dataset were manually inspected 1080 

in webKnossos (total of 422 candidates, total inspection time 5 hours for an expert 1081 

annotator) with the inspection criteria: directed trajectory along the cortical axis; 1082 

maximally two oblique dendrites leaving the main dendrite; spine rate of non-stubby 1083 

spines of at least about one every two micrometers.  1084 

Contradictory class assignments between SD and AD occurred for 46 dendrites and 1085 

were resolved by manual inspection in webKnossos. 1086 

The axonal part of soma-based neuron reconstructions which was more proximal 1087 

than the first branch point was considered as axon initial segment. Vertically oriented 1088 

agglomerates that entered the dataset from the pia-end of the dataset and had no 1089 

spines or output synapses, and transitioned into a clearly axonal process closer to 1090 

the white matter boundary of the dataset were also identified as axon initial 1091 

segments.  1092 

 1093 

Definition of inhibitory and excitatory axons 1094 

Inhibitory and excitatory axons were separated based on the fraction of their 1095 

synapses marked as primary spine innervations (see “synapse agglomeration”) (Fig. 1096 

3a). To automatically resolve remaining merge errors between these two axon 1097 
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classes, we split axons between the two modes of the spine rate distribution (20 to 1098 

50% of synapses being primary spine innervations) at all their branch points (see 1099 

“Chiasma detection and queries”). Then, we defined excitatory axons as those with 1100 

more than 50% of synapses being primary spine innervations and termed axons with 1101 

less than 20% primary spine innervations inhibitory.  1102 

Definition of thalamocortical axons  1103 

To identify those excitatory axons that were likely originating from the thalamus we 1104 

used the fact that thalamic axons from VPM have been described to establish large 1105 

multi-synaptic boutons at high frequency in mouse S1 cortex ((Bopp et al., 2017); 1106 

see Fig. 3h,i). We quantitatively applied these criteria by measuring the density of 1107 

primary spine innervations (PSI) per axonal path length, the average number of PSI 1108 

per axonal bouton, the fraction of axonal boutons with multiple PSIs, and the median 1109 

bouton volume. Boutons were defined as clusters of PSI with an axonal path length 1110 

of less than 2.4 µm between the cluster centers. In a calibration set of ten manually 1111 

identified corticocortical and ten thalamocortical axons these features were 1112 

discriminatory. We combined them into a single thalamocortical axon probability 1113 

using logistic regression. Excitatory axons with a TC probability of at least 60% were 1114 

identified as thalamocortical. 1115 

Subcellular specificity analysis 1116 

First, we assumed that all synapses of a given axon class have the same probability 1117 

to innervate a particular postsynaptic target class (as above). We then inferred this 1118 

first-order innervation rate for each axon- and postsynaptic target-class by searching 1119 

for the probability which best explains whether or not an axon innervated the target 1120 

class under a binomial model. The optimized binomial model was then used together 1121 

with the measured number of synapses of each axon to calculate the expected 1122 

distribution of target innervation rates. A one-sided Kolmogorov-Smirnov was used to 1123 

test for the existence of a subpopulation with increased target innervation rate. To 1124 

identify those axons that innervated a given target class beyond chance (Fig. 3k), we 1125 

computed the probability p(t)
meas,i,k of finding at least the measured fraction of 1126 

synapses onto target t for each axon i from axon class k. The p-values were also 1127 

calculated for the expected distribution of target innervation rates and combined with 1128 
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p(t)
meas,i,k to estimate the p-value threshold p ̂(t)k at which the false discovery rate q 1129 

(Storey and Tibshirani, 2003) crosses 20%. 80% of the axons with p(t)
meas,i,k  < p̂(t)

k 1130 

are innervating target t with a rate above the first-order innervation probability and 1131 

are thus called to be t-specific.  1132 

For the analysis of 2nd order innervation specificity (Fig. 3l,m), we reported the 1133 

fraction of synapses onto target τ by t-specific axons of class k after removal of 1134 

synapses onto t. This innervation rate was compared against the fraction of 1135 

synapses onto target τ by all axons of class k. 1136 

Geometrical predictability analysis 1137 

To determine whether the found innervations can be predicted by geometrical 1138 

measurements we used the following model: For each axon we determined the total 1139 

surface area of the target classes that were contained within the cylinder of radius 1140 

rpred around the axon (Fig. 4a-c) and compared it to the actually innervated target 1141 

fraction of each axon (Fig. 4c,d). We then analyzed the correlation between the 1142 

availability of the target surfaces and the actually established synapses on these 1143 

target classes (Fig. 4e).  1144 

To obtain an overall predictability quantification, we then computed the coefficient of 1145 

determination (R2) using the following model: For all axons of given type, we used 1146 

the fraction of target innervations and fractional surface availabilities in a given 1147 

surround of radius rpred to find the optimal multivariate linear regression parameters. 1148 

To estimate best-case geometric predictability, we then calculated the R2 value as 1 1149 

minus the ratio of the residuals to synaptic variance on the same axons used for 1150 

parameter optimization, while correcting for the variance introduced by the finite 1151 

number of synapses per axon.  Accordingly, we used the axons’ fractional surface 1152 

availabilities within rpred and absolute synapse numbers to calculate the expected 1153 

binomial variance, and subtracted it from the squared residuals. If the remaining 1154 

squared residual of an axon was negative after correction, it was set to zero. 1155 

This analysis made several assumptions that were in favor of a geometrical 1156 

explanation of synaptic innervation (therefore the conclusions about a minimal 1157 
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predictability (Fig. 4f) are still upper bound estimates): it was assumed that the 1158 

number of synapses for a given axon was already known; in most settings, only 1159 

average synapse rates are known for a given circuit; it also assumed that a precise 1160 

knowledge of the axonal trajectory and the surrounding target surface fractions were 1161 

available; again, this is usually only available as an average on the scale of rpred of 1162 

several 10’s of micrometers. 1163 

To relax the assumption of complete knowledge about target availabilities, we 1164 

repeated the above R2 analysis for a model in which the predicted fractional 1165 

innervation of a target is the fractional surface availability of that target. 1166 

Synaptic input / output maps and spatial synapse distributions 1167 

To determine the spatial distribution of synaptic inputs along dendrites, we used the 1168 

soma-based neuron reconstructions and determined for each synapses onto their 1169 

dendrites the shortest pairwise path length between all somatic and postsynaptic 1170 

segments (Fig. 5a,b). Input synapses were assigned the class of the corresponding 1171 

axon (as described above) and then pooled over all neurons. Synapses originating 1172 

from axons of unknown type (e.g., axon had less than ten synapses and thus was 1173 

excluded from classification) were ignored. The spatial output map was derived from 1174 

axon tracings, which were seeded in all somata and then mapped onto the 1175 

segmentation (see “Query analysis”) to find output synapses based on segment 1176 

overlap (Fig. 5c,d). 1177 

The spatial synapse distribution of a given axon class was obtained by projecting the 1178 

center of mass of the corresponding synapses (see “Synapse agglomeration”) onto 1179 

the XY plane, where X is the pia-white matter axis, and then calculating a kernel 1180 

density estimate thereof (Fig. 5e). The synapse ratio along the cortical axis was 1181 

computed as the ratio of absolute synapse counts per histogram bin (Fig. 5f-h). 1182 

To quantify the effect of soma location on synaptic innervation, we calculated for 1183 

each soma-based neuron reconstruction the center of mass of all somatic segments, 1184 

and the fraction of excitatory input synapses that originate from thalamocortical 1185 

axons. We performed multivariate linear regression in the YZ plane orthogonal to the 1186 

cortical axis and corrected the measured synapse fraction before quantifying the 1187 

effect of cortical depth using univariate linear regression. 1188 
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Finally, the soma-based neuron reconstructions were manually split into their primary 1189 

dendrites to assess the effect of dendritic orientation on synaptic inputs. The 1190 

orientation of a dendrite was calculated as the volume-weighted mean of the unit 1191 

vectors from the soma (as above) to the center of mass of the corresponding SegEM 1192 

segments. Finally, the dot product dp of the resulting vector (after renormalization) 1193 

with the unit vector along the cortical axis was put in relation to the ratio of the 1194 

dendritic synapse fraction to the synapse fraction of the corresponding neuron. The 1195 

linear regression of these two quantities was evaluated based on the coefficient of 1196 

determination, whereas the pia- (dp < -0.5) and white matter-oriented dendrites (dp > 1197 

0.5) were compared based on a two-sample t-test. 1198 

Synapse-size consistency analysis 1199 

To determine the consistency of primary spine synapses between a given axon-1200 

dendrite pair, we calculated the axon-spine interface area (ASI, (de Vivo et al., 2017) 1201 

(Staffler et al., 2017)) of a synapse as the total contact area between the 1202 

corresponding axon and spine head agglomerates. For axon-dendrite pairs 1203 

connected by exactly two primary spine synapses, we then calculated the coefficient 1204 

of variation (CV) of the ASI areas by CV = 21/2 (ASI1 – ASI2) / (ASI1 + ASI2) with ASI1 1205 

and ASI2 being the larger and smaller of the two ASI areas, respectively. To avoid 1206 

false same-axon same-dendrite (AADD) pairs caused by remaining merge errors in 1207 

the axon reconstruction, this analysis was performed only after splitting all axons at 1208 

all branch points. The measured distribution of CV values was compared against the 1209 

CV values obtained by randomly drawing pairs from the observed ASI area 1210 

distribution (Fig. 6e,f). To test whether same-axon same-dendrite (AADD) primary 1211 

spine synapse pairs have a lower CV than random pairs, a one-sided Kolmogorov-1212 

Smirnov test was used. The critical CV value that defines the upper limit of the range 1213 

in which AADD pairs occur more often than expected was determined by searching 1214 

for the intersection of the kernel density estimates of the observed and expected CV 1215 

distributions. A lower bound on the fraction of overly-consistent primary spine 1216 

synapse pairs is given by the difference between the cumulative probability functions 1217 

of the two distributions at the critical CV value. Finally, we built kernel density 1218 

estimates of the probability density function over the two-dimensional space defined 1219 

by the CV and mean log10(ASI) for AADD pairs, random pairs, and random pairs of 1220 

AADD synapses. The differences between these density estimates were used to 1221 
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extract the non-random components in CV-ASI relationship of AADD pairs relative to 1222 

random pairs and random pairs of AADD synapses, respectively.  1223 

Comparison between dense reconstructions 1224 

For the comparison of published dense reconstructions and the invested resources 1225 

(Fig. 1p,q), we used the following numbers: Dense reconstruction in the mouse 1226 

retina (Helmstaedter et al., 2013): about 640 mm reconstructed neuronal path length, 1227 

about 20,000 invested work hours; Dense reconstruction in the mouse cerebral 1228 

cortex (Kasthuri et al., 2015): 6.75 mm of path length reconstructed within 253 hours 1229 

(37.5 h/mm, 4.5 µm/µm3, 1500 µm3 reconstructed; see (Berning et al., 2015) for 1230 

derivation of numbers); Dense reconstruction in the zebrafish olfactory bulb (Wanner 1231 

et al., 2016b): 492 mm path length with 25,478 invested work hours; Dense 1232 

reconstruction in the fly larval nervous system (Eichler et al., 2017): 2.07 meters 1233 

(based on skeleton reconstructions in Supplement of (Eichler et al., 2017)) with 1234 

28,400 hours investment (73 µm / h; see (Schneider-Mizell et al., 2016)); L4 dense 1235 

reconstruction:  2.724 meters (of these in mm: dendritic shafts 342, dendritic spines 1236 

551, dendrites connected to a cell body in the volume 62.5, axons connected to a 1237 

cell body in the volume 6.5; axons 1760; note about 80% of the volume is dense 1238 

neuropil) within 3,982 hours. 1239 

 1240 

Computational cost estimate 1241 

For the estimation of the total computational cost, a runtime of 5 hours for SynEM, 1242 

72 hours for TypeEM and 24 hours for all other routines on a cluster with 24 nodes 1243 

each with 16 CPU cores and 16 GB RAM per core was used. The runtime was 1244 

converted to resources using 0.105 USD/h per CPU core with 16 GB RAM (Amazon 1245 

EC2: 6.7 USD/h for 64 CPU cores with 1000 GB RAM). The computational cost for 1246 

Flood-Filling Networks was calculated using 1000 GPUs that ran for a total wall time 1247 

of 16.02 hours (Suppl. Table 3, (Januszewski et al., 2018)) and a cost of 0.9 USD/h 1248 

for a single GPU which was multiplied by the ratio of the sizes of our dataset (61 x 94 1249 

x 92 µm3) and the dataset used in (Januszewski et al., 2018) (96 x 98 x 114 µm3). 1250 

 1251 
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Error Measurements 1252 

To quantify the errors remaining after axon reconstruction, we chose the same 10 1253 

randomly selected axons (total path length, 1.72 mm) that had also been used for 1254 

error rate quantification in (Boergens et al., 2017). These axons were not part of any 1255 

training or validation set in the development of FocusEM. Repeating the analysis 1256 

described in (Boergens et al., 2017) for the largest axon agglomerate overlapping 1257 

with the ground truth axon, respectively, yielded a total number of 22 errors, of which 1258 

15 were continuity errors (compare to panels 1l,m in (Boergens et al., 2017)).  1259 

The error rates and recall of soma-based dendrite reconstructions were calculated 1260 

from proofread ground truth annotations comprising a total of 89 cells and 64.08 mm 1261 

path length. Each node of the ground truth skeleton was marked as recalled if it 1262 

overlapped with the corresponding dendrite agglomerate (see “Query analysis”), or 1263 

flagged invalid if placed outside the segmented volume. A ground truth edge was 1264 

considered recalled if both end nodes were recalled, or invalid if any of the end 1265 

nodes was invalid. 54.51 mm, or 87.3%, of the 62.46 mm valid ground truth path 1266 

length were recalled. Split errors, by definition, result in partial dendrite 1267 

reconstructions and were thus detected as non-recalled ground truth fragments with 1268 

at least 5 µm path length. The detected were proofread, yielding a total of 37 split 1269 

errors. 1270 

The identification of axonal target specificity (Fig. 3) was insensitive to split- and 1271 

merger errors, because as long as axonal reconstructions were long enough to 1272 

provide meaningful statistical power for the analyses, split axons were expected to 1273 

correctly sample target specificities and mergers of axons were expected to only 1274 

dilute specificities. Therefore the results about the existence of target specific 1275 

inhibitory and excitatory axon classes represent a lower bound of specific wiring. The 1276 

results on the lack of geometric predictability (Fig. 4) were similarly unaffected by 1277 

remaining split and merge errors. 1278 

For the finding that no inhibitory axons show target specificity for AIS in L4 (Fig. 3i), 1279 

however, we needed to control that this lack of specificity was not induced by 1280 

remaining axonal merge errors. We manually inspected a subset of 10 axons 1281 

innervating AIS. Only one synapse (out of more than 100 synapses) was erroneously 1282 
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added to an AIS innervating axon due to a merger, thus providing no evidence that 1283 

the lack of AIS target specificity could be an artifact of merged axons. 1284 

For the results on synaptic input composition (Fig. 5) we varied the sensitivity of our 1285 

detection of TC axons and found that also for detections with a higher TC axon recall 1286 

and a lower recall at higher precision the conclusions were unchanged. 1287 

The results on synaptic size consistency could be strongly affected by the remaining 1288 

merge errors in axons, diluting data on consistent synapses when merging unrelated 1289 

axons together. To control for this, we obtained the results in Fig. 6 using axons for 1290 

which all 3-fold intersections in all axons had been artificially split before the 1291 

analysis. For the results in Fig. 3, we repeated analyses after splitting of axons and 1292 

found the key conclusions unaltered.  1293 

 1294 

Statistical methods 1295 

The following statistical tests were performed (in order of presentation in the figures):  1296 

The existence of axon subpopulation with unexpectedly high synapse rate onto a 1297 

given target class was tested using the one-sided Kolmogorov-Smirnov test (Fig. 1298 

3i,j). Axons belonging to a given target-specificity class were identified based on the 1299 

false detection rate criterion (q=20%, (Storey and Tibshirani, 2003)) (Fig. 3k). 1300 

The degree to which synaptic variance is explainable by geometry-based models 1301 

was evaluated using the coefficient of determination (R2) (Fig. 4f). Binomial variance 1302 

was corrected for by subtracting the surface fraction-based expected binomial 1303 

variance from the squared residuals. The result was set to zero, if negative. 1304 

Path-length dependent axonal synapse sorting was tested using a two-sided t-test. 1305 

F-tests were used to evaluate synaptic gradients as function of cortical depth (Fig. 1306 

5f,h) or dendritic orientation (Fig. 5j). 1307 

To test whether the axon-spine interface areas of a given spine synapse pair 1308 

configuration were more similar than randomly sampled pairs, a one-sided 1309 

Kolmogorov-Smirnov test was used (Fig. 6e). 1310 

Data availability, software availability 1311 
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All raw segmentation data, skeleton annotations, connectomic data, and software 1312 

developed and used in this study will be made publicly available upon publication. 1313 

 1314 
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FIGURE LEGENDS 1316 

 1317 

Figure 1 1318 

Dense connectomic reconstruction of cortical neuropil from layer 4 of mouse 1319 

primary somatosensory cortex. (a-d) Location (a, red) of 3D EM dataset (b), WM: 1320 

white matter; high-resolution example images (c,d). Asterisk, examples of dendritic 1321 

spines. (e) Low-resolution automated reconstruction of cell bodies (blue-green) and 1322 

blood vessels (gray). (f) Sketch of FocusEM, a set of methods for semi-automated 1323 

reconstruction of dense EM data. Sketch illustrates neurite segments obtained from 1324 

SegEM (Berning et al., 2015), their neighborhood graph (dots and lines), the 1325 

classification results for connected neurite pieces and synaptic interfaces, and a cell 1326 

type classifier used to determine the neurite and/or glia type. For details see 1327 

Methods.  (g) Classification result of the neurite/glia type classifiers; red: spine head 1328 

segments. (h) Reconstruction of all neurons with a cell body and dendrites in the 1329 

dataset (n=89, total path length of 0.069 m, thus only 2.6% of the path length in the 1330 

tissue volume, see j).  (i) 6 spiny example neurons (SpNs, top, middle) and 2 1331 

interneurons (INs, bottom); see Supplementary Material 1 for gallery of all neurons. 1332 

(j) Quantification of circuit components in the dense reconstruction. Note the majority 1333 

of circuit path length (total: 2.68 m) is contributed by non-proximal axons (1.78 m, 1334 

66.4%), spine necks (0.55 m, 20.5%), and dendritic shafts (0.28 m, 10.4%) not 1335 

connected to any cell body in the volume. (k) Display of all reconstructed 34,221 1336 

axons contained in the dataset. (l) Zoom into the dataset illustrating density of axons 1337 

(Ax, top, blue-green) and comparison to effective prevalence of dendrites (Dend, 1338 

bottom, orange-red) at an example location. (m-o) Focused annotation strategy 1339 

(FocusEM) for directing human annotation queries (Q, red) to ending locations of the 1340 

automatically reconstructed axon pieces (m, blue). Human annotators were oriented 1341 

along the axon’s main axis to trace its continuity in webKnossos using flight mode (n, 1342 

(Boergens et al., 2017)) yielding flight paths of 5.5 ± 8.8 µm length (21.3 ± 36.1 s per 1343 

annotation, n= 242,271). To detect and correct neurite mergers after automated 1344 

outgrowth of neurites, locations of chiasmatic shape (o) were detected, and queries 1345 

(Q) directed from the exits of the chiasma towards its center to determine correct 1346 

continuities (see Methods). (p,q) Quantification of circuit size and invested work 1347 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2018. ; https://doi.org/10.1101/460618doi: bioRxiv preprint 

https://doi.org/10.1101/460618
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

hours for dense circuit reconstructions so far performed in connectomics, and 1348 

resulting order-of-magnitude improvement provided by FocusEM compared to 1349 

previous dense reconstructions (q). Fish o.b.: Zebrafish olfactory bulb (Wanner et al., 1350 

2016a; Wanner et al., 2016b); M. retina: Mouse retina IPL (Helmstaedter et al., 1351 

2013); Fly larva: mushroom body in larval stage of D. melanogaster (Eichler et al., 1352 

2017); M. cortex: (Kasthuri et al., 2015) and this study (magenta). Note that only 1353 

completed dense reconstructions were included in the comparison. Scale bars in c 1354 

apply to d; h apply to i. 1355 
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Figure 2 1357 

Postsynaptic target classes and dense cortical connectome. (a-d) Display of all 1358 

apical dendrites (AD, a, magnified one apical dendrite bundle (left), and top view in 1359 

tangential plane illustrating AD bundles), smooth dendrites (SD, b, magnification 1360 

inset illustrates low rate of spines), axon initial segments (AIS, c) and their respective 1361 

path length and spine density distributions (d). (e) Display of connectome between 1362 

all axons (n=6,979) and postsynaptic targets (n=3,719) in the volume with at least 10 1363 

synapses, each; total of 153,171 synapses (of 388,554 synapses detected in the 1364 

volume). Definition of postsynaptic target classes, see (a-d); definition of presynaptic 1365 

axon classes: see Fig. 3. Note that for AIS also those with less than 10 input 1366 

synapses are shown. SOM: neuronal somata; Prox. Dend.: proximal dendrites 1367 

connected to a soma in the dataset; asterisk, remaining unassigned axons (see Fig. 1368 

2b). 1369 

 1370 
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Figure 3 1372 

Connectomic definition of axon classes. (a) Example axons with high (top) and 1373 

low (bottom) fraction of output synapses made onto dendritic spines. (b) Distribution 1374 

of spine targeting fraction over all n=6,979 axons; dashed lines indicates thresholds 1375 

applied to distinguish non-spine preferring, likely inhibitory (i, <20% spine 1376 

innervation, n=893, 12.8% of all axons) from spine-preferring, mostly excitatory (e, 1377 

>50% spine innervation, n=5,894, 84.5% of axons) axons. Sketch illustrates 1378 

measurement of spine fraction as fraction of primary spine innervations out of all 1379 

other synapses. (c-e) Identification of thalamocortical axons by previously 1380 

established criteria (Bopp et al., 2017) relating to their high frequency of multiple-1381 

target large boutons (example in c,d; red asterisks, postsynaptic spine heads of 1382 

same TC bouton). Quantification of these properties for all excitatory axons (gray 1383 

shaded) and test sets of clear thalamocortical (TC, blue) and cortico-cortical (CC, 1384 

black) axons (relative distributions, right axes). (f) Resulting set of n=569 TC axons 1385 

in dataset.  (g-m) Connectomic evidence for subcellular target specificity of certain 1386 

axon classes. (g) Two example axons innervating three somata (SOM, left, n=8 1387 

synapses onto somata of 18 total) and an apical dendrite (AD, right, n=2 synapses 1388 

onto AD of 13 total), respectively. All other cell bodies and ADs in gray. (h) Overall 1389 

fraction of synapses onto SOM, PDs, ADs, SDs, AIS for all n=6,979 axons. Arrows 1390 

indicate binomial probabilities over axons to establish at least one synapse onto the 1391 

respective target (1ste for excitatory axons, arrow pointing right; 1sti for inhibitory 1392 

axons, arrows pointing left). Black lines, average over axons. (i) Comparison of 1393 

predicted synapse fraction onto target classes per inhibitory axon based on the 1394 

binomial probability (p1sti, see h) to innervate the target at least once (gray shaded) 1395 

and measured distribution of synapse fractions onto targets (black lines). Note longer 1396 

tail of measured innervation fraction in measured vs. expected data for SOM, PD, 1397 

AD and SD, but not AIS. (j) Same analysis as in (i) for excitatory axons indicates AD-1398 

, PD- and SD-specificity. (k) Fraction of target-specific excitatory (Exc) and inhibitory 1399 

(Inh) axons identified using the false detection rate criterion (q=20%, (Storey and 1400 

Tibshirani, 2003)). Black bars indicate TC axons. Mixed colors indicate axons 1401 

specific for both SOM and PD. (l,m) 2nd order innervation pattern for target-specific 1402 

axons; numbers report fractional innervation by non-class specific, remaining 1403 

synapses per axon; colors indicate under- (blue) or over-(red)-frequent innervation. 1404 
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Diagonal entries report fraction of synapses onto same specific target (black boxes). 1405 

The conditional dependence of target innervation especially for the inhibitory axon 1406 

classes in this 2nd order analysis serves as post-hoc evidence of the connectomic 1407 

definition of axonal types as shown in (a-k). 1408 
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Figure 4 1410 

Contribution of neurite geometry and postsynaptic membrane availability to 1411 

cortical wiring. (a) Comparison between the fraction of membrane surface area 1412 

attributed to one of the subcellular target classes (colors, see Figs. 2,3) and the 1413 

actual fraction of synapses made onto these target classes, sampled in cubes of ~5 1414 

µm edge length (dots) distributed across the dataset volume (average over entire 1415 

dataset, large circles). (b) Sketch of the axon-based measurement of the fraction of 1416 

surface area of the various subcellular target classes (colors) within a distance rpred 1417 

from a given axon (black). (c) Example surfaces around two axons (Ax1, Ax2, same 1418 

as in Fig. 3g) with rpred = 5 µm (shaded colors: target classes as in a). Ax1 showed 1419 

soma, Ax2 AD specificity in the analyses in Fig. 3. (d) Corresponding surface fraction 1420 

of somata and apical dendrites for the two axons in c, in dependence of rpred. (e) 1421 

Same as (d) for all n=6,979 axons in the dataset, shown separately for the target 1422 

classes (see symbols). Colors denote the fraction of synapses of a given axon that 1423 

innervate the respective target class. (f) Relation between the surface fraction 1424 

around all axons and the synaptic innervation by these axons for each target class, 1425 

shown for rpred of 10 µm. Black lines show linear regression to obtain optimal model 1426 

parameters for geometrical innervation prediction in g. (g) Coefficient of 1427 

determination (R2) reporting the fraction of synaptic innervation variance (over all 1428 

axons, see f) explained by an innervation model using the available postsynaptic 1429 

surface area around axons (shaded area; red, excitatory axons; blue, inhibitory 1430 

axons; lower end of shades indicates prediction; upper ends indicate correction by 1431 

the variance contributed by the multinomial sampling of targets along axons, see 1432 

Methods). Insets (right) show sampling-corrected predictive power of excitatory (top) 1433 

and inhibitory (bottom) axons for the innervation of target classes. This analysis 1434 

refutes a random geometry-based innervation rule for axons in dense cortical 1435 

neuropil. 1436 
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Figure 5 1438 

Distribution of synapses along dendrites and axons, and variability of synaptic 1439 

input composition. (a) Neuron with cell body and primary dendrites; all input 1440 

synapses are indicated, colored according to the type of presynaptic axon (yellow: 1441 

inhibitory; red: TC, blue: CC; black, axon with less than 10 synapses). (b) 1442 

Distribution of input synapses (top) and resulting inhibitory/excitatory balance and TC 1443 

input fraction (bottom) summed over all neurons in the dataset (n=90 neurons, 1444 

n=183 primary dendrites, total of n=47,552 synapses) as function of dendritic path 1445 

length to soma. Black line indicates number of neurons (nneuron) contributing to the 1446 

respective distance bin. (c) Neuron with soma and local axon collaterals, all output 1447 

synapses are indicated according to the target (magenta: spine; black: non-spine). 1448 

(d) Average distribution of spine and non-spine targets along path length of L4 1449 

output axons refuting path-length dependent axonal synapse sorting (PLASS) for L4 1450 

of mouse S1 (compare (Schmidt et al., 2017) for mammalian cortex). (e-h) 1451 

Distribution of TC synapses within L4 dataset (e) shows gradient along the cortical 1452 

axis (f), which is absent for inhibitory or CC synapses (g). (h) Resulting gradient in 1453 

TC synapse fraction (increase by 83% from 7.0% to 12.8% (+5.8%) within 50 µm 1454 

along the cortical axis; line fit, p<1.1x10-12, n=134,537 synapses). (i-k) Analysis of 1455 

the variability of TC input onto the primary dendrites of neurons possibly resulting 1456 

from the TC synapse gradient (h): example reconstructions (i) aligned to the somata; 1457 

(j) fraction of excitatory input synapses originating from TC axons evaluated for each 1458 

primary dendrite, plotted according to the direction of the dendrite in relation to the 1459 

cortical axis (-1: dendrite aligned towards the pia; +1: dendrite aligned towards the 1460 

white matter). The TC input fraction (TC/(TC+CC)) of each dendrite was compared to 1461 

the TC input fraction of its entire parent neuron, ratios are shown. (k) Summary 1462 

analysis of relation between dendrite direction and relative TC input fraction. Note 1463 

that at the level of single dendrites, TC input fraction is determined by the dendrites’ 1464 

orientation relative to the cortex axis (k, 1.28-fold higher relative TC fraction for 1465 

downwards pointing dendrites (projection >0.5) than upwards pointing dendrites 1466 

(projection <-0.5), n=183, p=0.026, two-sided t-test for dendrites with a normalized 1467 

absolute projection >0.5; bars correspond to dendrites from projection ranges -1..-1468 

0.5; -0.5..0.5; 0.5..1, respectively). This data indicates a synaptic input mixing that 1469 

enhances synaptic input variability at the level of single dendrites.  1470 
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Figure 6 1471 

Analysis of multisynaptic connections for spine synapse size homogenization 1472 

possibly induced by Hebbian learning. (a,b) Example of an axon innervating the 1473 

dendrites of a postsynaptic neuron 4 times within the dataset (b; red asterisks 1474 

indicate innervated spine heads). (c) Frequency of multi-hit connections. Note that 1475 

n=6,045 connections involved 2 synapses, and n=557 at least 3; numbers are for 1476 

control reconstruction set, in which all axons were split at branch points to avoid 1477 

contamination by axon mergers (unsplit axons in inset); see Methods. (d) Distribution 1478 

of axon-spine interface (ASI, (de Vivo et al., 2017; Staffler et al., 2017)) size over 1479 

single and multi-hit connections indicating larger synapses in multisynaptically 1480 

connected pairs. Inset: overall single synapse ASI size distribution following a log-1481 

normal distribution. (e) Analysis of synapse size similarity for pairs of synapses 1482 

drawn randomly (rand, green) and from unrelated axons and dendrites (AaDd, 1483 

purple), pairs of same axon but different dendrites (AADd, red), same dendrite but 1484 

different axons (AaDD, yellow), and same axon – same dendrites (AADD, blue). The 1485 

distribution of synaptic size variability (coefficient of variation) for pairs of randomly 1486 

drawn synapses and for those involved in AADD connections shows that low-1487 

variance connections are over-represented (inset). Based on the fraction of axons 1488 

with less-than expected variability, one can obtain the intersection point on the CV 1489 

axis (dashed line, CV=0.54) and estimate the fraction of axon-dendrite pairs in the 1490 

circuit that could have undergone Hebbian learning as at least 8.9%, whereas at 1491 

least 35.1% show no sign of CV reduction possibly induced by Hebbian learning-1492 

related plasticity (inset). (f-j) Analysis of relation between highly consistent 1493 

connections and average synapse size (f) in comparison to randomly drawn pairs of 1494 

synapses from the entire synapse population (g) and in comparison to synapse pairs 1495 

drawn randomly from the joint synapse population (h). Difference maps (i,j) show 1496 

that in fact low-CV synapse pairs and larger synapse size are correlated (i); and that 1497 

two populations of overrepresented low-CV synapses can be described (j, dashed 1498 

areas); possibly corresponding to synapses with a history of LTP (up to 7.9%) and a 1499 

small connection type or history of LTD (up to 15.5%). 1500 

  1501 
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