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Dense Estimation and Object-Based Segmentation
of the Optical Flow with Robust Techniques

Etienne Mémin and Patrick Pérez

Abstract—In this paper, we address the issue of recovering and
segmenting the apparent velocity field in sequences of images.
As for motion estimation, we minimize an objective function
involving two robust terms. The first one cautiously captures
the optical flow constraint, while the second (a priori) term
incorporates a discontinuity-preserving smoothness constraint. To
cope with the nonconvex minimization problem thus defined, we
design an efficient deterministic multigrid procedure. It converges
fast toward estimates of good quality, while revealing the large
discontinuity structures of flow fields. We then propose an ex-
tension of the model by attaching to it a flexible object-based
segmentation device based on deformable closed curves (different
families of curve equipped with different kinds of prior can be
easily supported). Experimental results on synthetic and natural
sequences are presented, including an analysis of sensitivity to
parameter tuning.

Index Terms—Closed segmenting curve, incremental multireso-
lution, motion segmentation, multigrid nonconvex minimization,
optical flow, robust estimators.

I. INTRODUCTION

MANY TASKS in computer vision and image analysis

can be expressed as global optimization problems. The

general issue is to find the global minimum of a cost function

(or energy) involving the data and the “hidden” variables of

interest to be extracted from the data. Usually, a first part

of the energy expresses the interaction between the unknown

variables and the data, while the second one captures some

kind of prior knowledge about the researched information. This

latter ingredient is often a mere regularization term that only

encodes a weak prior, but whose essential role is to remedy

the ill-posed nature of the problem at hand (it guarantees, to

some extent, the existence and the uniqueness of a consistent

solution which continuously depends on the data). To keep

the energy-based model tractable, the cost function usually

decomposes as a sum of local interaction functions associated

with a neighborhood system [19], [29].

Within this energy minimization framework, we address

here the particular problem of optical flow estimation, and

its possible association with some kind of optical flow-based

segmentation. The motion estimator that we present belongs

to the class of differential methods which make use of the
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so-called optical flow constraint (OFC). Unfortunately, this

modeling is very sensitive to noise and behaves badly when

spatial or temporal variations of the luminance function are too

large. Another source of concern arises from the smoothness

regularizing prior, which is usually associated to these models.

The frontiers that demarcate the different apparent motions

coexisting within the same scene are ignored by a blind

smoothing. This deficiency results in a bad estimation nearby

these border lines. A great deal of studies has been dedicated to

this specific problem of discontinuity-preserving regularization

in computing optical flow (and in computer vision in general):

within Markovian framework, binary edge variables similar

to Geman and Geman’s line processes [19] have thus been

introduced (see, for instance, [22], [28] and [41]); within

anisotropic diffusion framework, nonlinear Euler–Lagrange

PDE’s have been devised along the same philosophy [11],

[14], [15], [32], [35].

Adopting a more global viewpoint, Black has pointed out in

[3] that the different problems we have just evoked can all be

seen as “deviations” from a model (either the data model or the

smoothing prior model). Though different in nature, they can

hopefully be located and treated within a unified framework:

the one offered by the robust statistics whose original aim

is the estimation of models in presence of many deviating

occurrences among the data [25].

Nevertheless, the introduction of robust estimators in

energy-based image applications leads most of the time to

a global nonlinear minimization in presence of numerous

local minima. Even within a multiresolution formulation of

the problem (which is almost inescapable in case of long range

motions to be estimated), one has to deal with a sequence of

global optimization problems which remain tricky.

To avoid the use of greedy stochastic algorithms, some

authors [3], [29] have proposed to get benefit from the “scale”

parameter involved in standard robust estimators. A proper

and progressive tuning of this parameter allows to define a

minimization strategy similar in spirit to continuation methods

such as the “graduated nonconvexity” algorithm proposed by

Blake and Zisserman [10].

For the same purpose (i.e., definition of an efficient de-

terministic algorithm to deal with the global optimization

problem at hand), we propose here to extend the multigrid

relaxation method presented in [23]. This method consists

in the minimization of the energy function through a hier-

archy of nested subspaces of the whole configuration space.

These subspaces correspond to configurations constrained to

be piecewise constant over smaller and smaller pixel subsets.

1057–7149/98$10.00  1998 IEEE
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This is equivalent to handling velocity fields which lie on

reduced grids, whereas observations are still viewed at the

current resolution.

It is well known that the estimation of the optical flow in

the one hand, and the segmentation of the images with respect

to the apparent motion in the other hand, are two important

issues of motion analysis which should help each other to

provide better results as well as richer information [12], [38].

Following this philosophy, we propose a connection of the

optical flow estimator under concern with an object-based

motion segmentation. This is addressed within an augmented

cost function, which involves one or several segmenting closed

curves.

From the point of view of the optical flow estimation, this

curve is used to hopefully drive and structure the apparition

of spatial discontinuities, thus improving the quality of the

estimation. Conversely, the segmenting curve, which provides

interesting information of its own, is driven by the spatial

discontinuities of the velocity field under estimation. Without

much pain, the efficient multigrid algorithm can be adapted to

this joint model.

The paper is organized as follows. In Section II, we start

from the standard gradient-based optical flow estimation, to

design an energy-based multiresolution model for a robust and

discontinuity-preserving estimation of the apparent motion.

The global optimization issue is then addressed in Section III.

A deterministic multigrid algorithm involving iteratively

reweighted least squares estimation is proposed. In Section IV,

we explore a way of coupling the motion estimation process

with a simultaneous segmentation of the current optical flow.

We especially show how a segmenting closed curve can

interact with the discontinuity “indicators” to extract moving

entities while improving the optical flow estimation nearby. In

Section V, experimental results of optical flow estimation and

object-based motion segmentation on synthetic and real-world

sequences are reported and discussed.

II. ROBUST INCREMENTAL OPTICAL FLOW ESTIMATION

Let and

be, respectively, the unknown bidimensional velocity field at

time and the luminance function at time , both defined on the

rectangular pixel lattice . The configuration space to explore,

, is a bounded subset of .

Assuming that the luminance of a given “physical point”

does not change much between times and , and that

the velocity field is reasonably smooth, one often addresses

the optical flow recovery problem by minimizing an objective

function of the following type [28]:

(1)

where is the set of neighboring site pairs (with respect to

the first- or second-order neighborhood system ), and

is a parameter controlling the balance between the smoothness

constraint and the global adequacy to the brightness constancy

assumption. The first term of this energy, which depends on

what the data exactly are, is highly nonconvex. To cope with

this problem, it is usual (as in Gauss–Newton minimization

procedures) to linearize this term, provided that a good esti-

mate is, somehow, already available. If so, an incremental

refinement is searched [2] by minimizing

where stands for the spatial gradient of

luminance , and is the

displaced frame difference. The first term of this approximate

expression now measures the deviation from the well-known

OFC, here displaced according to .

The weaknesses of this differential modeling, as follows,

are well known.

1) The first-order expansion used is valid for some if the

displacement falls into the domain of “linearity” of

the luminance around , this region

being smaller as the spatial gradient gets larger in the

direction of . As a consequence, large contribution

to this data term can be expected for large increments

and at sharp edges.

2) The underlying assumption of brightness constancy is

already very likely to be violated in cases of occlusions,

transparency, specular reflection, change of illumination,

etc.

3) Most of “real” velocity fields are, at most, piecewise

smooth: they usually exhibit motion discontinuities that

risk to be ignored and smoothed out by the quadratic

prior.

To efficiently cope with the large deviations both from the

data model and from the prior model, one can replace the

quadratic penalties by robust penalty functions [3], [5] in the

approximated energy. Thus, we now consider the new energy

function , with

(2)

(3)

where functions and are standard robust estimators.1

The estimation of the “guess” is usually addressed

by embedding this refinement approach in a multiresolution

coarse-to-fine procedure [2], [3], [16], [22]. To this end, for

each instant of the sequence, a pyramid of images

, , is derived from the original

frame by successive Gaussian smoothings and regular

1 See [8] for a catalogue of such robust objective functions in computer
vision. Most of them are bounded, and therefore nonconvex.
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Fig. 1. Synopsis of the multiresolution incremental optical flow estimation on three levels (N = 2).

Fig. 2. Energetic structure of the multiresolution model (N = 2).

subsamplings by a factor of two in each direction.2 The created

pyramidal structure then allows to incrementally estimate the

velocity field, by using ad hoc “reductions” of energy :

Low resolution components are estimated at coarsest level

where the domain of validity of the linearized data model is

hopefully larger (due to the joint reduction of spatial gradients

by smoothing, and of motion magnitude by subsampling).

This crude estimate is then refined step by step: at resolution

, an increment velocity field in is

estimated around the “projection” (by duplication or bilinear

interpolation) of the final estimate at previous resolution

level (see Fig. 1).

This is performed by minimizing the reduced energy func-

tion , with

(4)

(5)

where is the set of neighboring site pairs (w.r.t. neighbor-

hood system ) lying on grid . Fig. 2 shows this multires-

olution energy setup.

From a minimization point of view, the complete multires-

olution procedure can be viewed as a Gauss–Newton-type

minimization of the initial nonconvex energy defined by

(1). However, with the introduction of the different pyramidal

ingredients (smoothing/sampling of data, duplication/reduction

2 The resolution superscript k will span from 0 for the finest resolution, to
N for the coarsest one.

of energy expressions, top-down propagation of estimates),

along with the degree of nonlinearity of depending on the

data, no convergence guaranty of the whole procedure seems

to be within reach. However, this standard and pragmatic

multiresolution approach is of particular interest when the

scene at hand exhibits large displacements at some locations

in the image.

We now return to the robust aspect of the model. Roughly

speaking, robust objective functions are continuous even func-

tions, increasing on , and which penalize large “residual”

values less drastically than quadratic functions do. This is

usually achieved by letting their derivative, called influence

function in robust statistics [25], have finite limit at infinity

(usually zero). In the model currently discussed, this charac-

teristic makes them robust to data model outliers (for ) or

to spatial discontinuities of the apparent motion field (for ).

To give an insight into robust estimation as well as a practi-

cal way of handling it, it is fruitful transforming its use in terms

of dual optimization problem involving auxiliary variables [3],

[8], [13], [18]. To this end, we use the following reformulation

result (see [8] or [13] for a complete account): Let be a

real-valued continuously differentiable even function such that

1) is increasing on ;

2) is strictly concave on ;

3) ;

4) .

There exits a function , continuously differentiable on

, such that

(6)

This means that the graph of is the inferior envelope of a

family of parabolas continuously indexed by . The

minimum in (6) is given in closed form by [8] and [13]:

arg min (7)

where parameter is analog to a variance [

]. Function is obtained as

.

With such a cost function , one can thus replace the

multidimensional minimization in of some by

the minimization in of since

both sums have the same global minimum in . The extra
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(a) (b)

Fig. 3. (a) Leclerc’s estimator �(u) = 1� exp[�(u2=�2)] and Geman–McClure’s one �(u) = u2=(�2 + u2) for � = 1. (b) Associated optimal weight
functions ẑ(u) = exp[�(u2=�2)] and ẑ(u) = �4=(�2 + u2)2, for � = 1.

variables s act as adaptative weights continuously lying in

. Note that in practice, each function only depends on

a few components of (one or two in our problem, as we

shall see).

The minimization of the new compound function is usually

lead alternatively with respect to and to the ,s, as follows.

• The s being frozen, the minimization in becomes

arg min

If s are affine forms, one has to face a standard weighted

least squares problem equivalent to the resolution of a

(sparse) linear system.

• being frozen, the simultaneous minimization in

yields

(8)

according to (7). The assumptions about mean that

strictly decreases from into : when the th

“residual” gets larger, the corresponding optimal

weight gets smaller and smaller, providing the robust-

ness of the estimator.

In case s are affine, the whole alternate procedure constitutes

an iteratively reweighted least squares estimation [24]. Fig. 3

shows the two robust estimators we used in our experiments

and their associated optimal weight functions [20], [29].

Apart from the practical advantage in case of affine resid-

uals, transforming a robust estimator-based energy into its

auxiliary variable formulation offers appealing modeling flex-

ibility: the dual compound model can be extended by adding

interactions among auxiliary variables (e.g., to capture some

“geometric” a priori knowledge, either local or more global,

on the discontinuity configurations). The extended model

presented in Section IV relies on these variables to couple the

estimation of motion with an object-based motion segmenta-

tion.

In our case the weights are of two natures: (a) data outliers

weights (related to the dual formulation of ), and (b)

discontinuity weights lying on the dual grid of (provided

Fig. 4. Constrained increment fields (at resolution level k, from 
k; 2;

k; 1; 
k), and reduced increment fields associated to them through
[�k; `]�1, ` = 2; 1; 0.

by the dual formulation of ). The first set of weights,

denoted by , allows to attenuate the

effect of data for which the OFC is violated. The second

one, denoted by , prevents from

oversmoothing in locations obviously exhibiting significant

velocity discontinuities. The estimation at resolution level is

now expressed as the global minimization of ,

with

(9)

(10)

However, the underlying energy function being often

nonconvex with respect to the unknown variables of interest

(it will be the case in our experiments), we still have to deal
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Fig. 5. Multigrid structure (L = 2) for relaxation at resolution level k.

with a tough optimization problem, despite the reformulation.

In particular, the alternate minimization procedure is not

guaranteed to reach the global minimum, even though each

step is an exact minimization (but with respect to only a subset

of variables). Actually, only a “local” minimum depending on

the initialization is reached. For this reason, we designed an

extension of the multigrid method proposed in [23], which

hopefully converges fast without getting stuck in high local

minima.

III. MULTIGRID DETERMINISTIC OPTIMIZATION

To efficiently cope with the global optimization problem

at resolution , we design a hierarchical “constrained” ex-

ploration of the configuration space : the optimization is

led through a sequence of nested configuration subspaces

, where

is the set of increment fields which are piecewise constant

according to a -block partition of grid . Denote

this partition, the number of

blocks being . Each constrained

field of is equivalent to a reduced increment field

lying on the grid associated with .

Let be the set of such reduced fields and let be the

one-to-one mapping from into (see Fig. 4).

Constrained optimization in is then equivalent to the

minimization of the new energy function

(11)

At each resolution, we now have a cascade of optimization

problems of reduced complexity:

arg min (12)

where lies on the reduced grid , while

weights and data remain attached to , whatever the grid level

(see Fig. 5, where ). Each of these

problems is processed in terms of iteratively reweighted least

squares within a multigrid coarse-to-fine strategy: the final

estimate at level has a natural image at level (through

), which is used as an initial configuration

for the deterministic relaxation algorithm at that level. This

procedure is repeated until the finest level is reached

(see [23] for further details). Note that the definition of the

reduced energy by (11) along with the successive inclusion of

the configuration subspaces, ensures that the energy keeps

decreasing as the multigrid iterations proceed. Experiments

reported in Section V will show that the multigrid approach

is of great benefit both in terms of convergence speed and

quality of final estimates.

A. Multigrid Energy Derivation

We now go into deeper details about the new multigrid

function , which is obviously composed of two terms

similar to those of : . For sake

of readability, we will omit the resolution superscript in

all expressions throughout the remainder of this section. All

computations will be meant to concern resolution level .

1) Data Model Adequation Term: For any , denote

the sites of block , and define the following

blockwise expressions:

diag

for or

and

Also, we will denote for any two

-row matrices or vectors, and for any -

component column vector. It is then easy to get the following

compact expression:

(13)
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which is very similar to the one of the “parent” energy (9).

For each block, one gets a blockwise optical flow constraint

expression involving aggregated observations.

2) Smoothing Term: Let

be the set of neighboring site pairs included in block and

the set of neighboring

site pairs straddling blocks and . These sets and

form a partition of and reduced grid turns out to be

equipped with the same neighborhood system as (i.e., first-

or second-order neighborhood system). The corresponding set

of neighboring pairs will be denoted by . The smoothing

term of is

(14)

Noting that

one gets the following reduced prior energy:

(15)

with and

.

B. Energy Minimization

The current reduced increment estimate being fixed, we

know that the optimal weight values are directly accessible.

According to (8) in combination with energy definitions (4)

and (5), these values are

(16)

, (17)

According to (17), the discontinuity weights located in

between two neighboring blocks of (i.e., for

some ) are the only ones to be iteratively updated

as evolves. The others only depend on which is fixed

along the whole multigrid procedure at level . Therefore, they

can be computed right away at the first iteration of the current

level. As soon as the values of all weights are computed and

frozen, the energy function is quadratic

with respect to . Its minimization is equivalent to the

resolution of a linear system whose solution is searched

with an iterative Gauss–Seidel scheme. All sites of are

repeatedly visited, until convergence. If is the current site

of , the reduced increment vector is updated according

to (18), shown at the bottom of the page, with

and “det ,” “trace ,” “com ” stand, respectively, for the

determinant, the trace and the cofactor matrix of . Note

that in the above expressions, vectors, and

matrices as well, are displayed without for the sake of

concision.

We have completely described a multigrid reweighted least

squares minimization algorithm, which is here devoted to

robust optical flow estimation. The use of such a multigrid

iterative relaxation in the present context allows to build an

optical flow estimator which is formally speaking similar to

Horn and Schunck’s estimator. In contrast, it is robust to the

failures of the OFC-based model, and it is able to localize and

preserve the discontinuities of the optical flow.

det com

trace det
(18)
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IV. COUPLING WITH AN

OBJECT-BASED MOTION SEGMENTATION

We now introduce an extension of the model to couple

the motion estimation process with an object-based motion

segmentation. By this, we mean that we aim at simultaneously

extracting the silhouette of one dynamical entity.3 Hereafter,

the segmentation is defined as a single non-self-intersecting

closed curve lying in the image plane. Some discretization

scheme allows to associate with it a unique partition of the

pixel set in terms of “interior,” , and “exterior,”

. In the following will be called a segment. The

precise definition and parameterization of this curve may be

of different natures, depending on the problem at hand, on the

amount of known or assumed prior knowledge, and on the

affordable computational burden.

A parameterization of low dimension can be used to specify

a strong geometric prior knowledge on the region shape. This

is allowed by the deformable template framework proposed by

Grenander [21]. Conversely, a “weak” regularizing prior can

be captured with plane curves controlled by a large number

of parameters. This situation is thoroughly addressed within

the framework of active contour models and snakes [26].

Originally used in still image segmentation, these different

closed curve models have recently appeared as promising tools

to cope with object-based motion issues [9], [17], [27], [30],

[33], [36], [37].

Our purpose here is neither to choose among the different

deformable shape models, nor to propose a new one. We would

rather like to show how such a curve-based segmentation

may be connected to the optical flow estimator we propose.

Therefore, in the coming section, we remain general by neither

restricting ourselves to a specific family of possible curves, nor

to a specific prior knowledge. As for the experiments, we will

demonstrate the feasibility and the interest of the approach by

using two simple types of object-based segmentation models

that illustrate two extreme cases of parameterization.

A. Energy Design

The extension of the energy-based estimation model is

obtained by adding two terms to the global energy function .4

The first one, , captures the a priori knowledge about

the segmenting curve. The second one, , specifies

the mode of interaction between the segment and the rest of

the estimation model (i.e., velocity field, weights, and data).

Different ways of interaction may be considered: The segment

can directly interact with by “cutting” the regularization

through its border, as a set of binary line processes; The

segment can interact indirectly with the velocity field through

discontinuity and/or data outlier weights; The segment can

interact with the data to capture for instance the fact that

the boundary of a moving region is very likely to exhibit

large photometric discontinuities, while the interior should ex-

3 The extension to a fixed number of such entities would be straightforward.
The estimation of an unknown and varying number of regions is a tough
problem that we do not address in the present context.

4 Even though the superscript remains omitted, we still suppose in the
coming developments that some resolution level k is concerned.

hibit, to some extent, a noticeable spatial/temporal brightness

consistence.

In our first attempt to equip our complete estimation model

with an object-based interacting segmentation device, we

have chosen so far an interaction mode which leads to a

simple energy formulation, and to easy computations. The

segment will only interact with the estimation process through

the discontinuity weights. The corresponding cost function

component exhibits two terms: The first one is

proportional to the mean value of s over

. It then i) favors low values (close to zero) of

discontinuity weights along the border of the segment, and ii)

drives the curve toward the more significant gathering of low-

valued ’s. The second one is proportional to the opposite

mean value of s over . Its role is i) to

favor large values (close to unity) inside, and ii) to make the

curve surround areas with uniform velocity. The global energy

of the extended model is designed as follows:

(19)

where

(20)

with some positive parameters and . As for the class

of admissible segments, and associated prior energy, we have

considered two extreme cases in our experiments.

The first case corresponds to a tight geometric con-

straint associated with a weak prior on the shape: the

segmenting curve is a convex quadrilateral with prior energy

(for some ) favoring

“compact” shapes. For a given surface (i.e., fixed), the

prior on the segment is all the lower that the shape of the

segment is closed to a square. As concerns the size of the

segment, this prior obviously does not depend on it: there is

no a priori on the apparent size of the region. When updating

the segment such defined, local deformations will be simply

obtained by moving each vertex within a small window (e.g.,

3 3) around its current location. As for global transforma-

tions, rotations, translations and scalings will be considered,

which do not alter the prior energy.

This prior modeling of the segment is a very simple instance

of deformable templates [21]. More sophisticated modelings

could be used in this context, both in terms of admissible

curves (class of parametric shapes, number of control parame-

ters) and energy (e.g., prior on the angles of successive edges

of the polygonal silhouette [21], [33]).

The second choice corresponds to a loose geometric con-

straint associated with a classical minimum length descrip-

tion (MDL) prior [29]: the segmenting curve is any non-

self-intersecting closed curve whose cost is proportional to

its length above a certain threshold, i.e.,

for some and . Contrary to

the previous prior, this energy favors segment with short and
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smooth border (the threshold is thus necessary in general

not to have the segment shrinking to a point). Iterative local

deformations of the segment will be obtained by “moving”

border sites from to , and the other way around. As for

global transformations, scalings will change the prior energy.

This prior can be viewed as a very simple instance of snake

[26], with only a first-order smoothing. A more sophisticated

snake-type prior could probably be substituted to it, involving

a parameterized smooth closed curve with stretching and

bending penalties (first- and second-order smoothing).

B. Energy Minimization

The alternate minimization spirit is still considered. Com-

pared to the segmentation-free optical flow estimation of

Section III-B, two extra features have to be described: i) the

new computation rules for the optimal discontinuity weights,

and ii) the segment updating given the current optical flow

under estimation.

For given velocity field and segment , the optimal

weights , , are

arg min

(21)

where as a notational

convenience, [resp., ] if

(resp., ), and zero otherwise, and ,

. One gets the new optimal weight computation rule

(see Appendix A for the proof)

if ,

(22)

if ,

(23)

if ,

(24)

where . Basically, the optimal weight com-

putation rule is only changed along and within the segment,

according to a simple shift of the argument of under

the constraint that it remains positive. Along the border,

this (positive) shift results in a decrease of the weights

(i.e., smoothing reduction), which is all the more important

that the border is short. Inside the region, the (bounded

negative) shift results in an increase of the weights (i.e.,

smoothing accentuation), with a saturation at one. In this

context, Leclerc’s estimator yields a

very convenient updating rule: the computation of the optimal

weight turns out to be simply related to the segmentation-

free optimal weights ( ) through a single

Fig. 6. Modified discontinuity weight functions for Leclerc’s estimator
(�2

2
= 2:5, �0

2
=jCRj = 0:5, �0

1
=jC@Rj = 0:5), according to location of pair

hs; ri w.r.t. segment R.

multiplication (see Fig. 6 for a plot example):

if ,

(25)

if ,

(26)

if ,

(27)

A multigrid version with piecewise constant velocity incre-

ments is readily derived.

The minimization of the energy according to the segment

is addressed in two successive ways. First, on the coarsest

grid ( ) of the coarsest resolution ( ) where the

complete procedure starts and where the dimensionality of the

problem is drastically reduced, one can sweep efficiently over

the set of possible segmentations. A crude estimate of the

segment is thus obtained at low cost by a stochastic algorithm,

with no need of any manual initialization. The location and

shape of the segment is then refined deterministically through

the following grids of resolution , and through the finest

grids ( ) of the following resolution levels .

For both kinds of segment updating, the velocity field being

fixed, an iterative scheme is used which considers at each

step different possible segments along with the associated

optimal weights provided by (22)–(24). The part of energy

actually concerned by the updating process reduces to

the one involving the segment and/or the discontinuity weights
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TABLE I
COMPARATIVE RESULTS ON YOSEMITE

In the first stage ( ), in absence of any “initial

guess,” the set of possible segmentations has to be explored

thoroughly. This is done by using a simulated annealing

algorithm based on Metropolis dynamics. Given the current

segment at step , a new segment is proposed by

randomly applying a global deformation (rotation, translation,

and scaling) to [27], [33]. The new segment is accepted

with probability , according to a

geometric cooling .

For the second type of updating, an initial guess is always

available by properly interpolating the segment obtained at the

previous grid level (if ) or resolution (if ). Given

this initial guess, we simply seek a local minimizer of the

energy nearby this guess, proceeding with small deformations.

In the case of quadrilateral segment for instance, the four

vertices are displaced in a 3 3 window around their current

location, seeking for the largest energy decrease.

Before turning to experimental results, let us come back to

the energy change computation. In case of Leclerc’s estimator,

using a first-order expansion for inner contour sites such that

, one gets an approximate energy

variations with

which is very easy to compute (see Appendix B for details).

V. EXPERIMENTAL RESULTS

In this section, we present results of optical flow es-

timation alone (Section V-A), and results of joint estima-

tion/segmentation (Section V-B).

A. Optical Flow Estimation

The optical flow estimation model presented in the first

part of this paper has been validated both on synthetic and

real-world sequences. The first one, Yosemite [see Fig. 7(a)

and (b)], is the most complex (though synthetic) sequence

from the comparative study by Barron et al. [1] for which a

“ground-truth” exists. The two other sequences are real. They

exhibit far more motion discontinuities and OFC violations.

Therefore, they are probably more adapted than Yosemite

to demonstrate the nice characteristics and abilities of our

method, except that there is no ground-truth for them. Fig. 9(a)

shows a parking lot sequence that involves two moving cars.

The camera pans the scene and the wind shakes the trees

in the background. Calendar [Fig. 10(a)] is a TV sequence

involving large displacements. It includes several different

moving objects and a horizontal panning camera motion. The

calendar translates vertically and the toy train pushes a rolling

ball.

The choice of the two robust estimators and has

been based on heuristic considerations arising from our expe-

rience. Since frequent and large deviations from the brightness

constancy assumption are very likely to occur, a strongly

saturating estimator seems to be well suited to the correspond-

ing component of the energy function. We selected Leclerc’s

estimator [29] (see Fig. 3). As for the regularization, a softer

saturation seems to provide a better behavior of the alternate

minimization procedure. For that reason we chose Geman and

McClure’s estimator [20] (Fig. 3) to be embedded within the

smoothness constraint.

The values of the different parameters for the three se-

quences are the following: , , , ,

and for Yosemite; (the displacements are

small), , , , and for parking

lot; , , , , and for

calendar.

Following [1], quantitative comparative results on Yosemite

are provided for different algorithms. For each estimate,

the deviation with respect to the “real” flow is measured

at each pixel location by converting the two-dimensional

(2-D) vectors into three-dimensional (3-D) unit vectors,

and by computing the angle

between them.
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TABLE II
INFLUENCE OF THE DIFFERENT INGREDIENTS (MULTIGRID MINIMIZATION, ROBUST PENALTY ON SMOOTHING

TERM, ROBUST PENALTY ON DATA TERM) ON RESULTS FOR YOSEMITE SEQUENCE, WITH AND WITHOUT SKY

(a) (b) (c)

Fig. 7. (a) and (b) Two frames of Yosemite and (c) difference (� 10) with the “true” flow.

For some methods reported in [1], estimates are only

available at so-called “reliable” locations. The percentage of

such locations is the “density” of the estimate. The errors are

actually computed only at these locations. Table I lists the av-

erage and standard deviation of these angular discrepancies for

different algorithms. The five top-lines recall results presented

by Barron et al. (see references therein). They concern two

different versions of Horn and Schunck’s algorithms (whose

model is the basis of our approach), the best full-density

algorithm (Uras et al.) and the two algorithms yielding the best

results, but with reduced densities (Lucas and Kanade, Fleet

and Jepson). Other authors have provided similar comparisons,

but on a subsequence where the sky was removed. As a matter

of fact, this region is extremely tricky due to the complex

luminance and shape evolution of the moving clouds before

the sun. The second part of the table compares our method to

those by Szeliski and Coughlan [39], Szeliski and Shum [40],

Black and Anandan [6], Black [4], Black and Jepson [7], on

this reduced sequence.

On the complete scene, our method provides a dense esti-

mate almost as good as those obtained with the best (nondense)

mentioned methods. In addition, the obtained standard de-

viation is the smallest one. On the subscene, the average

error is slightly lower than the one obtained by Szeliski and

Coughlan, and slightly higher than the one obtained by Black

and Jepson, but with a standard deviation significantly reduced.

The difference between our estimate and the “real” flow is

displayed in Fig. 7(c) (subsampled and magnified ten times).

It clearly appears that most of the discrepancies are gathered

around the two moving clearings in the clouds, which the

sunlight breaks through.

In order to quantitatively evaluate the influence of the

different ingredients (multigrid minimization, robust penalty

on smoothing term, robust penalty on data term) both on the

quality of the final estimate and on the computational load,

we provide corresponding results on Yosemite in Table II.

The computational load is measured as a number of “mono-

grid/monoresolution equivalent sweeps.” This is the ratio of

the total number of single-site updates (whatever and ) over

the number of sites in lattice (i.e., one complete sweep at

level corresponds to of such equivalent sweeps).

It appears that the multigrid minimization allows to sig-

nificantly improve the global quality of results when put

on top of the linear Horn and Schunck’s model, while re-

ducing the computational load.5 The introduction of robust

penalization first in the smoothing term, and then in the data

term, provides further local improvements. The cost for these

late improvements is kept reasonable by the multigrid speed-

up. As a rough complexity comparison, our algorithm took

around 500 s on a SunSparc 10 (174 s on a SunSparc 20),

which is the same time as reported by Black and Anandan

for their continuation minimization method. In Black and

Jepson’s approach, a similar load seems to be necessary to

provide the initial dense optical flow estimate which is then

refined through parametric segmentation. Note that a nice

feature of the multigrid approach is that good results can be

already obtained on intermediate grids (thus at reduced cost).

It is the case on Yosemite where a slightly lower angular

error was actually obtained at convergence for

, after a total CPU time of 88 s (compared to the

174 s of the complete procedure).

To demonstrate the low sensitiveness of our method to pa-

rameters, we run it on Yosemite for 1000 triples

. In Fig. 8, we plot the corre-

5 Similar conclusions were reported in [23] for other (nonconvex) energy-
based motion analysis models.
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Fig. 8. Average angular error histograms for 1000 parameter triples (�; �2
1
; �2

2
) 2 [140; 320] � [3; 12] � [0:1; 1]: without the sky (left) and with the

sky (right); Average angular error for 100 parameter triples (�1; �2) 2 [3; 12] � [0:1; 1], with � = 320: without sky (lower surface) and with the sky
(upper surface). In both cases, the minimal error is obtained for �2

1
= 6 and �2

2
= 0:7.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Results on parking lot: (a) one frame, (b) flow estimate, (c) zoom on the foreground car, and (d)–(f) discontinuity weights at resolution level
k = 0, on grid levels ` = 4; 2; 0.

sponding histograms of average angular errors for the complete

scene and of the subscene. In both cases, a high robustness is

exhibited. This is also noticeable in the plot of the average

error versus for fixed .

Figs. 9 and 10 present final flow estimates and discontinuity

weights at different resolutions and/or grid levels for parking

lot and calendar. The discontinuity weights are displayed on

256 grey levels on sites of the dual lattice: white points

represent zero weights (i.e., maximal discontinuity) and black

points are for unity weights (i.e., no discontinuity).

Visually, the recovered optical flow fields seem of good

quality. The location of spatial discontinuities fits with a good

accuracy the boundaries of the different motion regions (e.g.,

the first car in parking lot, the train in calendar). This allows

the estimation in quite uniform regions not to be contaminated

by nearby flows of large amplitude belonging to other motion

regions. For instance, the estimation of the left-to-right appar-

ent motion induced by the camera panning within the street

region beneath the two cars would be dramatically influenced

in case of plain quadratic estimator, resulting in an almost zero
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Results on calendar: (a) one frame, (b) flow estimate, (c) zoom on the train, and (d)–(f) discontinuity weights in 
2; 3, 
1; 4, and 
.

(a) (b)

Fig. 11. Comparison of estimates on parking lot. (a) Estimation with the proposed model. (b) Estimation with a plain quadratic model.

estimate (see Fig. 11 for a comparison). One can also notice

that the motion estimation remains consistent in tough parts

of the dynamic scenes at hand. For example, the motion of

the calendar is quite well estimated despite highly textured

portions exhibiting periodical patterns (like the drawing of

houses). Another interesting example is found on the left part

of the front car windshield in parking lot. The motion of a

patch of specular reflection does not disturb the car velocity

estimation in the neighborhood. From the final velocity field

estimate, it appears as an independent moving patch that goes

in a direction opposite to the one of the car motion.

We believe that the good quality of these results is partly due

to the multigrid structure of the estimator. It produces good

intermediate coarse flows. Besides, it allows to extract long

structures of discontinuities. This is particularly noticeable in

calendar [see Fig. 10(d) and (e)].
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Single object motion segmentation on parking lot: (a)–(c) with an unconstrained closed curve at grid levels 4, 2, and 0, and (d)–(f) with a
convex quadrilateral at grid levels 4, 2, and 0.

B. Coupling with the Segmentation

We now report experiments of the augmented model (with a

single segmenting closed curve) on two real traffic sequences.

The first one is parking lot, which has already been introduced.

The second one, called “street,” is shot from a car driving in

a stream of moving vehicles (see Fig. 13). The motion of the

camera results in a divergent motion component in the image.

As for the choice of the two robust functions, we explained

in Section V-A why we chose Geman and McClure’s function

in the smoothing term. However, as pointed out in Section IV-

B, Leclerc’s estimator, due to its exponential nature, yields

simpler computations as far as the smoothing energy term is

concerned in the estimation/segmentation model. Therefore,

in place of Geman and McClure’s estimator, we made this

convenient choice for in experiments about the augmented

model.

Two “extreme” cases of a priori on the curve have been

considered: in the first case, the curve is constrained to be

a convex quadrilateral along with a prior favoring compact

shapes; in the second case, the curve is only constrained to

be closed and nonself-intersecting with an MDL-type prior.

Except for the number of resolutions ( for parking lot

and for street), the values of the parameters were set the

same for both sequences, namely: , , ,

for the quadrilateral and 0.3 for the unconstrained

curve, , and for the quadrilateral and 0.5

for the unconstrained curve.

Similar results of good quality are obtained with both kinds

of curve, on both sequences. In each case (see Figs. 12 and 13)

the region exhibiting the largest motion discontinuities along

its border (the car in the foreground in parking lot, the car

entering the image plane in the foreground, and moving away

from the camera in street) are correctly picked (even with the

MDL-type prior which favors short borders).

A low dimension parameterization (as with the quadrilat-

erals) yields computations of lower cost, while allowing to

capture a strong geometric knowledge (if available) on the

shapes of the moving entities. At the same time, this can

become a drawback if the prior knowledge is not sufficient or

the restricted family of curves is not well suited to the scene

content [compare (c) and (f) in Figs. 12 and 13]. In our case,

quadrilaterals are not able to completely fit the complex shape

of moving vehicles. As a consequence, the relative importance

of the border-based energy risks to shrink: the region-based

term has to be reduced by tuning to a very low value

in order to keep a proper balance. Otherwise, the template

would be mainly driven by regionwise flow uniformity, risking

to get stuck around spurious locations such as parts of still

background in case of nonmoving camera. These problems can



716 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 5, MAY 1998

(a) (b) (c)

(d) (e) (f)

Fig. 13. Single object motion segmentation on street: (a)–(c) with an unconstrained closed curve, in 
2; 2, 
2, and 
, and (d)–(f) with a convex

quadrilateral in 
2;2, 
2, and 
.

hopefully be circumvented by using less constrained curves,

but at increased cost.

VI. CONCLUSION

In this paper, we have presented a multiresolution/multigrid

framework for optical flow estimation and object-based motion

segmentation.

The estimation problem is expressed as the global minimiza-

tion of an energy function which involves robust estimators to

avoid spatial over-smoothing and to attenuate the influence of

large data model deviations. The minimization is processed

through a multigrid algorithm which consists in imposing

successively weaker and weaker constraints on the searched

estimates. Applied to a dual formulation of the original en-

ergy function, this method leads to a multigrid iteratively

reweighted least squares minimization which is efficient in

term of convergence rate and in term of quality of the produced

estimates. It is worth noting that this is a general purpose

multigrid approach which can be easily applied to most of

image analysis objective functions. Besides, it allows to define

efficient and original parallel relaxation algorithms [31], [34].

In the motion estimation context, one of the nicest features

of the approach is that it gives access to a consistent and mean-

ingful sequence of finer and finer configurations at each single

level of data resolution. The coarser grain estimates, which

are far easier to compute due to their reduced dimensionality,

reveal large discontinuity structures of the apparent motion

field. This kind of significant reduced estimates cannot be

produced by continuation-type minimization methods since the

earliest estimates they provide are, to some extent, “smoothed

versions” of their final estimates [3], [10], [29].

We get benefit from this compact and structured informa-

tion by introducing a closed curve-based device. It allows

to recover with improved accuracy the location of spatial

discontinuities and to naturally handle edge grouping to get

an object-based motion segmentation. The proposed model can

support any kind of parameterized or nonparameterized family

of curves, equipped with any prior energy function.

We thus contribute here to the efforts done to define

global approaches for a joint and cooperative handling of two

important interleaved issues of motion analysis. As far as our

object-based motion segmentation is concerned, it is worth

noting that neither knowing the motion of the camera (if any),
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nor initializing manually the curve are required. This work

has now to be extended to deal with complete motion-based

segmentation (i.e., partition of the whole image plane into

a variable number of regions with different motions). As a

fact, there is a straightforward way to extend the interaction

energy term to this case, with the MDL-type prior

on the segmentation becoming a standard Potts model [12],

[29]. However, algorithmic issues related to the choice of the

initial segmentation, and of the update strategy (in terms of

deformation, merge, split, etc.) need attention in this case.

Another direction for such an extension would consist in

joining a region-based parametric flow interacting with the

dense flow under estimation, as proposed in [36].

The interaction mechanism we designed for closed curve,

also suggests to use it with open curves. In this case, one would

not segment the images, but this would be useful for preserving

and refining through grid and resolution levels, the precious in-

formation captured by the (independent) discontinuity weights

on smaller grids.

APPENDIX A

MINIMIZATION OF WITH RESPECT TO

Let be a pair of neighboring sites. The part of

which actually depends on is

(28)

If , which means that and

, then is a decreasing function of

, since is decreasing [indeed, it is easy to derive

]. Its minimizer in is

then [and the corresponding “energy contribution”

reduces to since ] . In other cases

[ ], the minimizer zeros the partial derivative

(29)

Merging both cases provides the following optimal weight

computation rule:

• if the site pair is outside ( ):

;

• if the site pair straddles the “border” of (

): ;

• if the site pair is inside ( )

if ,

otherwise.

Also, notice that in case , it comes from (29)

that

since by defi-

nition. If (Leclerc’s estimator), the

above energetic contribution becomes

(30)

APPENDIX B

COMPUTATION OF AND ITS

APPROXIMATION FOR LECLERC’S ESTIMATOR

Suppose is fixed. Let be some segment, and the

optimal set of discontinuity weights associated to it according

to the computations previously derived. The part of energy

concerned by the segment updating process is

according to Appendix A. possibly holds

only for , where

.

(31)
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Using (25)–(27), we have

In the latter term of the right-hand side, if

, then a first order Taylor expansion yields6

Then energy approximation (31), shown at the bottom of the

previous page, is given.

The velocity field being fixed (and therefore such is ),

the energy comparison of two segments and is then driven

by , since does

not depend on the segment by definition of the s. The

approximate expression is very easy to compute. Especially, if

and have the same shape, the only terms changing from

to are and .
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