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Modelling dense gas flows inside channels with sections comparable to the diameter of gas molecules
is essential in porous media applications, such as in non-conventional shale reservoir management and
nanofluidic separation membranes. In this paper, we perform the first verification study of the Enskog
equation by using particle simulation methods based on the same hard-sphere collisions dynamics. Our
in-house Event-Driven Molecular Dynamics (EDMD) code and a pseudo-hard-sphere Molecular Dy-
namics (PHS-MD) solver are used to study force-driven Poiseuille flows, in the limit of high gas den-
sities and high confinements. Our results showed (a) very good agreement between EDMD, PHS-MD,
and Enskog solutions across density, velocity, and temperature profiles for all the simulation condi-
tions, and (b) numerical evidence that deviations exist in the normalized mass flow rate versus Knudsen
number curve compared to the standard curve without confinement. While we observe slight devia-
tions in the Enskog density and velocity profiles from the MD when the reduced density is greater than
0.2, this limit is well above practical engineering applications, such as in shale gas. The key advan-
tages of promoting the Enskog equation for upscaling flows in porous media lie in its ability to capture
the non-equilibrium physics of tightly confined fluids, while being computationally more efficient than
fundamental simulation approaches, such as molecular dynamics and derivative solvers.

I. INTRODUCTION

Gas transport in nano/microscale channels, such
as in nanotube membranes1 or porous rock2 presents
a serious modelling challenge. In these application
problems, the underlying assumptions of conventional
fluid mechanics — the requirements of local ther-
modynamic equilibrium — break down, which lim-
its the applicability of computational fluid dynam-
ics (CFD) solvers, such as the Navier-Stokes-Fourier
(NSF) equations. In microscale geometries, it is a well
known fact that a gas experiences a degree of rarefac-
tion when its molecular mean free path λ , which is
on the order of tens of nanometres at standard atmo-
spheric conditions, becomes comparable to the char-
acteristic lengthscale of the flow H (e.g. the chan-
nel height). This degree of rarefaction is caused
by insufficient intermolecular collisions and can be
characterised by the Knudsen number, Kn = λ/H.
The continuum approach can be safely applied for
Kn < 0.001, while larger Knudsen numbers describe
the non-continuum regimes of slip flow (0.001 <
Kn < 0.1), transition flow (0.1 < Kn < 10) and free-
molecular flow (Kn > 10).

In the slip flow regime, the predictions from the

a)Electronic mail: junli@kfupm.edu.sa
b)Electronic mail: matthew.borg@ed.ac.uk

NSF equations can be improved by using veloc-
ity/thermal slip boundary conditions3–5, while the
extended hydrodynamic equations6,7 can model rar-
efied flows in the early transition regime. Numer-
ical solutions of the Boltzmann equation based on
stochastic particle schemes8–12 and deterministic in-
tegration methods13,14, have successfully been used to
model the full range of Knudsen numbers in the non-
continuum regimes.

For these microscale geometries, the Knudsen
“paradox” describes the flow response to a pressure-
drop in a parallel-plate geometry subjected to differ-
ent rarefaction15. Starting from the continuum limit,
and increasing the Knudsen number, the mass flow
rate through a channel is observed to drop due to a
decrease in viscous diffusivity until around the tran-
sition regime, where the flow rate starts to increase
again, caused by the dominant gas-wall collisions (i.e.
the Knudsen diffusivity)16,17.

For nanoscale geometries, however, the channel
height becomes comparable to the diameter of the gas
molecule σ . These ultra-tight channel problems in-
validate the use of the Boltzmann equation central to
the above methods. When the average distance be-
tween molecules is of the order of σ , their space cor-
relations need to be taken into account and lead to ef-
fects which cannot be captured by kinetic equations
developed for dilute gases, like molecular ordering
near walls18 and non-local transport coefficients19–22.

mailto:junli@kfupm.edu.sa
mailto:matthew.borg@ed.ac.uk


2

While some experiments of gas flows exist for nanos-
tructured membranes, such as graphene oxide layers
or carbon nanotubes1,23,24, due to the extreme small
scales, these are normally challenging to perform ac-
curately and are very limited in data. This means
we need to continue to develop better computational
methods to enable new scientific insights.

In principle, the Enskog equation can be used
to extend the kinetic theory description of fluids to
densities beyond the dilute-gas Boltzmann limit25.
While keeping binary collision dynamics, atoms are
no longer treated as dimensionless points, as in the
Boltzmann approach, and the finite-size effects are ac-
counted for by including the space correlations be-
tween colliding molecules into the modelling, the
molecular mutual shielding, and the reduction of the
volume available to molecules. The Enskog equation
has been used over the years to study the properties of
a hard-sphere dense gas near the solid walls of micro
and nano-channels26–28 and its extension to systems of
weakly attracting hard-spheres has successfully been
used to describe liquid-vapor flows29–31, and the for-
mation and breakage of liquid menisci in nanochan-
nels32.

Molecular dynamics (MD) and other particle com-
putational tools, such as event-driven MD (EDMD),
provide a more fundamental description of the fluid
behaviour at the nanoscale. These techniques model
the Newtonian dynamics of individual atoms and their
collisions through potential energy functions, such as
Lennard Jones for smooth interactions33,34 or hard-
sphere interactions for EDMD35. These particle-based
approaches have been the dominant modelling route
of high-confined fluids36–42, although have mainly fo-
cussed on equilibrium properties and flow profiles of
the tight confinement, rather than on the overall gas-
flow response, which we cover in this paper.

The major barrier in MD as a simulation method
lies in its poor scale up; it would be computationally
intractable to simulate larger complex 3D porous me-
dia. In this regard, the use of the Enskog equation is
attractive because it reduces the computational burden
by avoiding the detailed computation of the atoms’
dynamics, but its capability of capturing the fluid be-
haviour in confined geometries needs to be more ex-
tensively assessed.

In a recent work43, one of the authors of this paper
found that dense gas flows under tight confinement de-
viated substantially from the classical Knudsen min-
imum curve for the flow response described earlier,
and the Knudsen minimum is observed to disappear
for flows at the highest confinement. However, these
results were not validated with other methods.

The scope and novelty of this paper is twofold: (a)
to verify the overall picture of the flow responses un-

der various Knudsen numbers for dense gases subject
to ultra-tight confinement, and (b) to rigorously assess
the accuracy of the Enskog solutions, by using inde-
pendent high-fidelity molecular dynamics simulations
with an identical collision model and boundary con-
ditions. The rest of the paper is organised as follows.
The simulation details are introduced in Section II and
results presented in Section III. We conclude and give
an overview of where we envisage this work will be
heading in Section IV.

II. COMPUTATIONAL METHODS

A. Simulation details

Force-driven Poiseuille flow between two infinite
parallel plates is considered in this work, using
three independent computational models: a) an En-
skog solver, b) an Event Driven Molecular Dynamics
(EDMD) solver and c) a pseudo-hard-sphere Molecu-
lar Dynamics (PHS-MD) solver. The details of these
three methods are given in the next sections.

The geometry, collisional model, and boundary
conditions are kept the same across the three mod-
els. The case set-up consists of a channel of height
H between the two plates in the z direction, and pe-
riodic boundary conditions in both the flow direction
x, and the transverse-flow direction y. The channel
lengths in the x, y directions are chosen to improve
statistics in the flow measurements, and may be dif-
ferent across cases. All walls are described as mathe-
matical walls, which are maintained at a fixed temper-
ature Twall and modelled as fully diffusive boundary
conditions, i.e. atoms are supposed to be re-emitted
according to the Maxwell scattering kernel with com-
plete accommodation3. No temperature control in the
bulk of the fluid is applied during the main simula-
tion run, as this would be an outcome from the bal-
ance between viscous dissipation and thermalisation
at the walls. All collisions consider a hard-sphere im-
plementation and, as such, collisions between parti-
cles and the walls occur at the circumference of the
particle, and not at its midpoint. We define our para-
metric space using two dimensionless parameters: the
confinement ratio R and the reference reduced density
η0. The confinement ratio is R=H/σ , and defines the
degree of scale separation between the gas atom diam-
eter σ and the channel height. In this work, changes
in R were adjusted by changes in H only. Gas flows
with the following different confinement ratios are in-
vestigated: R = 2, 3, 5, 10 and 20. The reference re-
duced density is given by η0 = n0πσ3/6, where n0
is the fluid reference number density, and defines the
packing fraction of gas atoms within the fluid volume.
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FIG. 1. Poiseuille flow set-up for all three models. Examples shown for three reference reduced densities η0, and three
confinements R. The channel height H is defined in the z direction from the solid black lines, while flow is driven in the x

direction by a body force. Note, only small slices of the case setups are shown in this figure; these simulation domains are
much larger in the x direction in order to improve the statistics in the measurements.

Gas flows are then investigated with reference reduced
densities in the range η0 = [0.0005,0.3], as shown in
Table II A. Note that the Knudsen number depends on
the confinement ratio and the reference reduced den-
sity through the relationship

Kn =
1

6
√

2

1
η0χ(η0)

1
R
, (1)

where χ is the contact value of the pair correlation
function in a hard-sphere fluid in uniform equilib-
rium3. An expression for χ can be obtained from the
equation of state of the hard-sphere fluid proposed by
Carnahan and Starling44, as

χ(η) =
1
2

2−η

(1−η)3 . (2)

In order to simulate the force-driven Poiseuille flow,
a force F̃ = F σ/kBT is applied to each atom, where
F is the force in dimensional units and kB is the Boltz-
mann constant. Any measurements of flow are only
performed after the fluid reaches a steady state.

B. Enskog solver

The kinetic theory description of fluids is statistical
in nature and it is based on the molecular velocity dis-
tribution function f = f (r,v, t), defined as the num-
ber of atoms in the element of volume dr around r,

Kn

η0 p0 µ0 R=2 R=3 R=5 R=10 R=20
0.0001 0.02 1.0001 – – – – –
0.0002 0.04 1.0001 – – – – 29.453
0.0005 0.1 1.0004 – – – 23.544 11.772
0.001 0.2 1.0007 58.788 39.192 23.515 11.757 5.879
0.005 1.0 1.0039 11.640 7.760 4.656 2.328 1.164
0.010 2.0 1.0084 5.747 3.832 2.299 1.149 0.575
0.050 12.2 1.0747 1.037 0.691 0.415 0.207 0.104
0.100 30.2 1.2492 0.452 0.302 0.181 0.090 0.045
0.200 95.0 2.0819 0.168 0.112 0.067 0.034 0.017
0.300 231.0 4.1327 0.079 0.053 0.032 0.016 0.005

TABLE I. Variation of Knudsen number Kn with reference
reduced density η0 and confinement ratios R considered
in this work. Also shown are the reference dimensional
pressure p0 (MPa) and dimensionless reference viscosity
µ0 (normalized by the viscosity of the hard-sphere system
µHS = (5/16σ2)

√

mkBT/π), which are calculated from η0.

having velocities in the range v to v+ dv. The En-
skog equation describes the space and time evolution
of f for a dense gas, i.e. a gas in which the effects of
the finite size of atoms and non-local collisions play a
prominent role,

∂ f

∂ t
+v · ∂ f

∂r
= σ2

∫

(vr · k̂)+dv1d2
k̂

{

χ[η ](r,r+σ k̂) f (r+σ k̂,v∗
1 , t) f (r,v∗, t)−

χ[η ](r,r−σ k̂) f (r−σ k̂,v1, t) f (r,v, t)
}

,(3)
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where σ is the molecular diameter, vr is the relative
velocity of the colliding atoms, k̂ is the unit vec-
tor associated to their relative positions at the time
of the impact, (v∗,v∗

1) are the pre-collisional veloc-
ities, which are transformed into the post-collisional
velocities (v,v1) by the hard-sphere collision dynam-
ics rules, and η is the reduced density. In the frame-
work of the so-called standard Enskog theory (SET),
χ is simply set equal to the equilibrium pair correla-
tion function taken at the midpoint of the line join-
ing the centers of colliding atoms, while in the re-
vised Enskog theory (RET) the local value of the non-
equilibrium pair correlation function is used instead45.
The RET was found to possess better theoretical prop-
erties, but it is mathematically more complicated and
its numerical solution is more involved, albeit feasible.

In the present work, the SET was used and, fol-
lowing the Fischer-Methfessel approach46, the actual
value of the density at the contact point is replaced
with the value of the density field averaged over a
spherical volume of diameter σ , namely:

χ[η ](r,r±σ k̂) = χ

[

η

(

r±σ
k̂

2

)]

, (4)

where χ is given by Eq. (2) and

η(r, t) =
3

4πσ3

∫

R3
η(r∗, t)w(r,r∗)dr∗, (5)

w(r,r∗) =

{

1, ‖r∗−r‖< σ
0, ‖r∗−r‖> σ

. (6)

The Enskog equation was solved by a particle
method, which is an extension of the classical direct
simulation Monte Carlo (DSMC) for dilute gases47. In
this numerical scheme, the main framework of DSMC
is preserved, with modifications occurring in the col-
lision algorithm due to the non-local structure of the
Enskog collision integral, i.e. the right hand side of
Eq. (3). The velocity distribution function of the fluid
atoms is represented by computational particles whose
number was set to 2 × 106 and made equal to the
number of real atoms by a proper choice of the cross
section normal to the non-homogeneous direction z.
The one-dimensional computational domain was di-
vided into a number of cells of equal size, not ex-
ceeding ∆z = σ/10. Particles’ motion and interac-
tions are decoupled over a time step ∆t, which was
set significantly shorter than the local mean free time
between collisions, namely 10−3

√

σ2m/kBT . In each
time-step, the particles are first translated as if they
do not interact with each other. Note that the over-
lapping between atom spheres may occur as a conse-
quence of this movement. During this step, diffuse

reflections were applied to describe the scattering of
atoms impinging on the channel solid walls. After-
wards, collisions are evaluated according to stochas-
tic rules, which essentially correspond to the Monte
Carlo evaluation of the Enskog collision integral. Note
that, unlike DSMC, collisions in general involve clos-
est neighbour cells due to the non-local structure of
the Enskog collision integral. The simulation was fol-
lowed until a steady state was formed, by letting the
transient behaviour evolve into a time-independent so-
lution. The calculation of the macroscopic quantities
commenced after the steady state has been reached
through weighted averages of the particles properties,
with the sampling time duration determined by requir-
ing that the relative statistical error does not exceed
2%.

C. EDMD solver

Molecular dynamics simulations for discrete poten-
tial systems are not as prevalent as for continuous po-
tential systems, but an extensive literature has been de-
veloped over the years48–50. Discrete potentials have
been shown to both approximate soft potentials51 and
directly reproduce thermodynamic data52. Their main
benefit is that they lead to simulations far more com-
putationally efficient than the ones based on contin-
uous potentials, especially for low to moderate densi-
ties. In contrast to time-stepping methods, simulations
based on a discrete potential are event driven, namely,
the time of the next collision is determined a priori

and the system is therefore analytically integrated to
the time at which the next ‘event’ occurs, all within a
single numerical time step. This distinguished feature
permits one to consider systems with larger number of
atoms and/or longer simulation time.

In the present work, Event-Driven Molecular Dy-
namics (EDMD) simulations was carried out for a sys-
tem of hard spheres. The number of particles was set
not less than 4×104 and the cross section x×y was de-
termined so as to match the target density η . Initially,
particle spheres are distributed randomly in a com-
putational domain, ensuring that they do not overlap.
The initial velocities are sampled from the Maxwell
distribution by using the Box-Muller algorithm. The
most computationally demanding part of the simula-
tion is to compute the collision times of each pair. The
earliest collision is then identified and the simulation
jumps to this ‘event’. The velocities of all particles
are then updated by considering the effect of the ex-
ternal constant force acted upon them during the con-
sidered time interval and the post-collisional veloci-
ties of the collision pair are computed according to
the hard-sphere dynamics. Note that inter-molecular
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collisions are not the only form of interaction that par-
ticles encounter. It may be possible that the nearest
collision of a particle is not with another particle but
rather the wall. In the following simulations, walls
are considered rough and the Maxwell scattering ker-
nel with perfect accommodation is considered. Just
like the Enskog simulations, the EDMD system evo-
lution was followed until a steady state was obtained,
by letting the transient behaviour evolve into the time-
independent solution. The calculation of the macro-
scopic quantities commenced after a steady state has
been reached through weighted averages of the parti-
cles’ properties.

D. PHS-MD solver

The pseudo-hard-sphere Molecular Dynamics
(PHS-MD) solver is equivalent to the EDMD solver,
although it avoids tracking to ‘events’, it instead
tracks using MD’s standard Verlet algorithm with a
fixed time step. This method is more computationally
demanding, but the time step can be chosen to ensure
the stability of the model. Furthermore, while our
previous two codes were both developed in house, the
PHS-MD simulations were performed using the open
source Large-scale Atomic/Molecular Massively
Parallel (LAMMPS) MD software53. The scope of
this section is therefore to provide an external, inde-
pendent means of reproducing our results, although at
a higher computational cost.

Similar to EDMD and Enskog simulations, the
PHS-MD also uses the same diffusive boundary con-
ditions at the mathematical walls, which is imple-
mented as a new reflective-wall ‘fix’ in the LAMMPS
software. Furthermore, while LAMMPS does not
have a hard-sphere interaction potential, we recon-
cile this by isolating the repulsive part of the (12,6)
Lennard Jones (LJ) potential. The standard LJ poten-
tial is given by:

ULJ(r) = 4ε

[

(σ

r

)12
−
(σ

r

)6
]

, (7)

where r is the separation between two atoms, σ is the
length scale parameter (equivalent, approximately, to
the diameter of an atom), and ε is the energy well
depth of the potential. It is common for LJ poten-
tials to be terminated and shifted at a cut-off distance
r = rc ∼ 3–4 σ to account for long range interactions.

A well-known application of the LJ potential
to hard-sphere interactions was initially suggested
by Weeks et al.55, known as the Weeks-Chandler-

FIG. 2. The pseudo-hard-sphere (PHS) interaction poten-
tial as a function of pair-atomic distance r, used in this
work. The potential is compared with the standard (12,6)
LJ equation with ε0 and rc = 2.4 σ ; the standard WCA po-
tential, which is a (12,6) LJ potential shifted by ε0 and cut at
rc = 21/6σ ; the (50,49) WCA potential used in Ref.54, with
rc = (50/49)σ . The PHS is a standard LJ potential with
larger ε0 (as indicated) and cut-off at rc = σ = 3.4 Å. In this
work we use PHS with 100ε0.

Andersen potential (WCA), and is given by:

UWCA(r) =

{

ULJ(r)+ ε0, if r < 21/6σ ,

0, if r ≥ 21/6σ ,
(8)

which is the LJ potential shifted by the well depth
ε0 and cut off at the minima of the energy well at
rc = 21/6σ , as shown in Fig. 2. The properties of
a WCA fluid are often used to represent an approxi-
mate hard-sphere system due to the steepness of the
potential, and no attractive energy. However, this ap-
proximation does not always hold, as it will depend
in great measure on the kinetic energy of the collid-
ing atoms, or equivalently, on the temperature of the
system54. In 2012, Jover et al.54 pointed out that the
traditional WCA potential does not provide the correct
system temperature. They proposed a (50,49) form of
the WCA potential, with rc = (50/49)σ , containing
a small smooth repulsive part which rapidly changes
to a very steep energy gradient, as shown in Figure 2,
and found some improvement on the hard-sphere dy-
namics.

Considering that the simulations in the present work
are at a relatively high reduced temperature T ∗ =
kBT/ε0 = 2.47 in comparison with the results of Jover
et al.54, we choose to adopt a pseudo-hard-sphere
(PHS) potential. The PHS potential, is also derived
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FIG. 3. Two-atom verification tests on PHS parameters ε and ∆t. (a) Two atoms are collided at the same initial speed vi

along a central axis. Measurements are taken for: (b) the minimum distance achieved between atoms during collision, (c) the
time taken during collision, and (d) the percentage conservation error between initial and post-collision velocities vi,vo. Our
choice of PHS parameters in this work are ε = 100ε0 and ∆t = 0.001∆t0.

from the standard LJ potential, but we further increase
the steepness of the energy gradient, by using a very
large value of well-depth ε = 100ε0, cut the poten-
tial at exactly the atom diameter rc = σ to avoid any
smoothness in the repulsive part of the potential, and
choose a much smaller value of integration time-step
∆t = 0.001∆t0, to maintain numerical stability and
avoid fluid heating or simulation ‘blow-up’. Here, σ
= 3.4 Å, ε0 = 0.239 Kcal/mol and ∆t0 = 2 fs are the
nominal parameters for a simple fluid such as argon,
which we use in this work. The quasi-hard-sphere
shape of the PHS potential used in this work is shown
in Fig. 2, and indicated by the label ‘PHS, 100 ε0’.

The PHS parameters were chosen using a two-atom
collision simulation test, as shown in Fig. 3, and sub-
sequently verified by recovering the thermodynamic
properties of hard-sphere systems44,56,57, as shown in
Fig. 4 for pressure vs. density and viscosity vs. den-
sity. Fig. 3 shows that for the choice of PHS parame-
ters, the collision diameter is preserved at high speeds
and the pre/post collision error in velocity is compa-
rable to standard LJ collisions. However, the over-
all simulations are much more computationally costly

than standard MD due to using a much smaller inte-
gration time step. We found that for the few number
of atoms employed in this work, these PHS-MD simu-
lations were all practically run on a high-performance
computer.

III. RESULTS AND DISCUSSIONS

In order to evaluate the effect of high densities and
tight confinements on flow through slit geometries, we
measure density, velocity and temperature profiles for
all three models and all combinations of simulations
for R and η0. These results will be compared and dis-
cussed in this section.

The driving force has been chosen for all cases pre-
sented next to ensure that the response to the forcing
remains in the linear regime. Linearity no longer holds
when the heat caused by viscous dissipation cannot be
dissipated through the diffusive boundary conditions.
Therefore all profiles presented in this section have
been verified to satisfy isothermal conditions. The
results for the non-linear regime are presented sepa-
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(a) (b)

FIG. 4. Verification of (a) pressure and (b) dimensionless viscosity µ as a function of reduced density η for our PHS-MD
simulations with literature. Viscosity measurements in (b) were obtained using a simple Couette flow simulation, which
involves setting the velocities of bottom and upper walls, separated by a distance of 200 nm, at -50 m/s and +50 m/s,
respectively. Both walls are modelled using the diffuse wall boundary condition. The viscosity is then calculated using
Newton’s law of viscosity, with shear stress and velocity gradient measured from the channel.

rately in Appendix A as a further verification of agree-
ment between the three numerical methods employed.

A. Density and velocity profiles

Macroscopic quantities across the channel are
shown for a representative set of confinement ratio
and reference reduced densities, i.e. R = [10,5,2] and
η0 = [0.01,0.1,0.3]. These cases are selected to cover
a significant range of Knudsen numbers (i.e. from slip
to early transition regime) and specifically highlight
the peculiar features of fluids when dense effects and
confinement come into play.

For a relatively loose confinement, R = 10, when
the reference reduced density is small, η0 = 0.01 (Fig.
5(a)), we can see all the three methods predict a fluid
ordering near the surface at z/σ = 4.5, with a peak
of about 1.15, while the predominant fluid being bulk.
When the reference reduced density is increased to 0.1
and 0.3, as shown in Figs. 5(b),(c), we can see more
fluid ordering starting to penetrate into the bulk fluid
with two and three layers observed in the density pro-
files, respectively, with the largest peak closer to the
surface. In all three models, there is very good agree-
ment at the lower reference reduced densities, while
the Enskog starts to show initial signs of small devi-
ations from EDMD and PHS-MD at the largest ref-
erence reduced density considered (η0 = 0.3), in the
magnitude and location of the peaks of the layers. This
is not unexpected, as the Enskog solution is known to
provide accurate predictions of hard-sphere systems

only up to moderate values of reduced density57, as
seen in Fig. 4(b). For the velocity profiles (see Figs.
5(d)–(f)), the agreement between the three models is
also very good, with noticeable slippage at the walls,
and indications of non-parabolic behaviour.

Figures 6(a)–(f) shows the density and velocity pro-
files for the higher confined case of R = 5. We can
make a similar comparison. Fluid ordering in the den-
sity profiles are similar to R = 10 with the values of
the peak for the first layer being similar, but the den-
sity layering occupying more of the fluid bulk. Veloc-
ity profiles exhibit more pronounced non-continuum
behaviour, as observed from the inflection points and
plug-like profiles.

When the channel height is reduced to R = 2, a
distinct heterogeneous distribution of density is ob-
served, as shown in Figs. 7 (a)–(c). It is clear that the
ordering now occurs throughout the channel, distinct
of two layer ordering in the highest reference reduced
density, η0 = 0.3, while velocity profiles are indicative
of quasi plug flow.

In summary, the Enskog equation is found to be able
to capture the density and velocity profiles quite well
when compared with the molecular dynamics simula-
tions, although slight discrepancies are observed at the
highest densities, in particular with errors in capturing
the ordering at the midpoint of the channel in the high
confined cases.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Profiles of (a), (b), (c) normalized reduced density (top) and (d), (e), (f) normalised velocity (bottom) for gas flow
with η0=0.01, 0.1, 0.3 (columns: left to right) in the channel of R=10.

(a) (b) (c)

(d) (e) (f)

FIG. 6. Profiles of (a), (b), (c) normalized reduced density (top) and (d), (e), (f) normalised velocity (bottom) for gas flow
with η0=0.01, 0.1, 0.3 (columns: left to right) in the channel of R=5.
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Profiles of (a), (b), (c) normalized reduced density (top) and (d), (e), (f) normalised velocity (bottom) for gas flow
with η0=0.01, 0.1, 0.3 (columns: left to right) in the channel of R=2.

B. Flow response with confinement

The normalized mass flow rates for a dense gas in
ultra-tight confinement and in the linear flow response
regime are shown in Fig. 8. The mass flow rate was
measured as a spatial integration of local density, area
and velocity, using discretised bins along the z di-
rection. The normalization for mass flow rate is de-
scribed in more detail in Appendix B. To illustrate
the influence of confinement and density, we com-
pare our results with the linearized Boltzmann solu-
tion by Ohwada et al.58, which is only applicable to
R → ∞, and the slip Poiseuille mass flow rate pre-
diction, which represents the limit of Kn → 0. Other
methods are shown to predict the full extent of this Kn

range, such as the efficient DSBGK method9 .
Of all results in our parametric study, the results for

the lowest confinement R = 20 captures the best ap-
proximation to the standard Knudsen minimum curve
of Ohwada et al.58, especially when Kn is large (i.e.
within the transition and free molecular flow regimes).
When Kn > 0.1 the normalized mass flow rate is less
than the Knudsen minimum curve by about 5%, which
should be attributed to the slight confinement that ex-
ists. However, when Kn < 0.1, there is a noticeable
reduction in mass flow rate compared with the original
non-confined Knudsen minimum curve. Overlapping
results were obtained for a few data points with larger

FIG. 8. Dependance of normalized mass flow rate on gas
rarefaction Kn and confinement R.

R ∼ 100.
When the channels are reduced from R = 20, 10, 5,

3 to 2, a flattening of the minimum curve (or a dis-
appearance of the Knudsen minimum, as indicated in
Ref.43) and a shift in the curves downwards at larger
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(a)
(b) (c) (d)

FIG. 9. Dependance of normalized mass flow rate on confinement R for Knudsen numbers (a) Kn = 0.05, (b) Kn = 0.1, (c)
Kn = 1 and (d) Kn = 10.

Kn are also observed with the proposed normalisation,
which is not unexpected. While visual comparison
seems to indicate different trends between our results
and those of Wu et al.43, this is only due to the differ-
ent normalisation schemes adopted across these two
studies; we confirm that the dimensional values for
flow rate per unit width are the same for all R and Kn

considered in43. The normalisation for R = H/σ in
this work is taken to be the actual wall-to-wall chan-
nel height (as is illustrated in the set-up of Fig. 1),
while in Wu et al.43, the height is taken from the
midpoint of those atoms upon collision with the walls
(i.e. R = (H −σ)/σ ). The reason this is important is
that in the dilute-gas Boltzmann limit, molecules are
treated as point-like masses, and as such, they can fill
the whole channel. By contrast, the space available
to molecules in a confined channel is H −σ if their
finite size is accounted for. As the confinement ratio
reduces, this mismatch between nominal and effective
channel widths becomes more and more important, as
we demonstrate in Fig. 8, and eventually, it leads to a
mass flow rate which is smaller than the one predicted
based on the Boltzmann equation. This explains why
there should be downward shifts in the Knudsen min-
imum curve as R → 2.

Deviations from the Knudsen minimum curve are
seen more clearly in Figure 9, with the larger devia-
tions occurring in the dense gas region (low Kn), that
cannot be fully explained by just changes in our nor-
malisation for R. Note also that, to some extent, the
effect of the increasing viscosity at small Kn is al-
ready taken into account by including the pressure in
the normalisation factor of the mass flow rate. Even
reverting to the normalisation of Wu et al.43, reveal
these large deviations for Kn → 0 remain.

In the original explanation of the Knudsen min-
imum, there is a trade-off between two competing
mechanisms: viscous dissipation at Kn → 0 and
Knudsen diffusion when Kn→∞

16,17. Our simulation
results suggest that the molecular ordering of dense
gases under tight confinement now play an added role,

such that there is a larger non-continuum viscous dis-
sipation in the limit of Kn → 0, which leads to a drop
in the overall flow response (i.e. a higher flow resis-
tivity). As the confinement increases, the width of the
bulk region reduces and eventually disappears. Ac-
cordingly, the viscosity of the fluid is expected to be
different from the nominal one 19–22. It is possible that
this and other effects (e.g. surface and Knudsen diffu-
sion) could be playing a role. The interplay between
these effects are at this stage unclear, and require a
deeper fundamental study in this area.

IV. CONCLUSIONS

The main scope of this paper has been to verify
the phenomena of the Knudsen minimum disappear-
ance observed in a recent publication based on the
Enskog equation43. A validation study was neces-
sary to clarify whether or not that conclusion de-
pended on the approximations behind the kinetic the-
ory treatment of the hard-sphere collision dynam-
ics. We studied the force-driven Poiseuille flow by
using three very different approaches: the Enskog
equation, solved by using a stochastic Monte Carlo
scheme, Event-Driven Molecular Dynamics (EDMD),
and pseudo-hard-sphere Molecular Dynamics (PHS-
MD). The PHS-MD simulations were carried out by
using the popular LAMMPS software for external re-
producibility of our simulation results. Density, veloc-
ity, and overall flow rate showed agreement between
EDMD, PHS-MD and the Enskog solutions. Further-
more deviations and flattening of the mass flow rate
versus Knudsen curves were verified with increases
in density and in tight confinement of the gas. At
very high reference reduced densities, corresponding
to η0 ∼ 0.3, we found that the Enskog equation be-
gins to deviate from the MD-based solutions, indicat-
ing possible breakdown, although these deviations re-
main small. In porous media applications, such as
in shale gas, the practical reduced density limit oc-
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curring in these reservoir conditions is η̄ < 0.2, aris-
ing from pressures less than 100 MPa. In addition,
we find that in terms of computational cost, the En-
skog solver outperforms the MD solvers by 3 orders of
magnitude for the EDMD and 4 orders of magnitude
for the PHS-MD. This paper therefore raises the ap-
plicability and profile of the Enskog equation to deal
with these porous media problems. Further studies are
required to investigate the underpinning causes of this
anomalous flow response behaviour, as well as sys-
tematically investigate the effects of long range inter-
actions, realistic potentials, and realistic surfaces with
chemical specificity, that replace the basic hard-sphere
collisions and diffusive walls considered in this work.
The Enskog equation can also be developed for 3D ge-
ometries, and modified to handle complex multiphase
flows in porous media, such as in the Enskog-Vlasov
formalism29–31,59.
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A: Results for gas flows in non-linear regime

In Figure 10 and 11 we show a small sample of sim-
ulations results. More specifically, a comparison is
shown between Enskog, EDMD and PHS-MD, for R

= 4 and 10, respectively. The scope is to demonstrate
the good agreement that still exists across the meth-
ods in the non-linear flow response regime, i.e. when
the forcing is too high for heat to be dissipated; this
is evident by the normalized temperature profile being
larger than one.

B: Reference quantities

In the present work, the number density is made di-
mensionless by using a reference number density, n0,
and the velocity by using the reference flow speed, V0,
assumed to be proportional to the mean molecular ve-

locity:

V0 =
n0F0H

p0

(

2kBT0

m

)1/2

, (B1)

where kB is the Boltzmann constant, m the molecular
mass, F0 is the constant force applied on each atom to
simulate the Poiseuille flow, H the channel height, and
p0 is the reference pressure, related to reference den-
sity and temperature through the Carnahan and Star-
ling equation of state:

p0

n0kBT0
=

1+η0 +η2
0 −η3

0

(1−η0)3 , η0 =
πσ3n0

6
. (B2)

Note that the pressure is included in Eq. (B1) to ac-
count for the fluid compressibility. This choice per-
mits one to rule out the effects of the different fluid
bulk properties at high densities.

Likewise, the reference mass flow rate per unit of
time is defined as follows:

Q0 = ρ0 V0 H D, (B3)

where D is the depth of the channel and ρ0 = mn0. By
substituting Eq. (B1) into Eq. (B3), the reference mass
flow rate per unit of time reads:

Q0 =
ρ0 n0 F0 H2 D

p0

(

2kBT0

m

)1/2

. (B4)

The reference state is taken to be the argon gas at
T0=298 K, i.e. m = 6.63× 10−23 g, σ = 3.4× 10−10

m.
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(a) (b) (c)

FIG. 10. Profiles of (a) normalized reduced densities, (b) normalised velocity and (c) normalised temperature for gas flow
with η0 = 0.2 in R=4; F̃ = 0.2.

(a) (b) (c)

FIG. 11. Profiles of (a) normalized reduced densities, (b) normalised velocity and (c) normalised temperature for gas flow
with η0 = 0.2 in R=10; F̃ = 0.2.
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