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Abstract

In this article a domain decomposition approach is combined with the
nonsmooth contact dynamics approach for analysing the global behaviour
and the micromechanical structure of large-scale dense granular systems.
Previously introduced and theoretically investigated, this method is herein
investigated precisely on two aspects: the properties of the interface op-
erators, especially when applied to the corners of the subdomains, and
the influence of the substructuring on the solution of a mechanical test.
Such topics are specific to the dense granular systems characterized by
the discreteness and the nonsmoothness of their behavior.
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1 Introduction

In connection with a domain decomposition strategy, the granular dynamics
reveals two main features: discreteness and nonsmoothness.

The non-overlapping decomposition of a granular domain is all the more
delicate since such a medium is a non-structured discrete system. Contrary to
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trusses or tensegrity structures studied in [36] for which an elementary pattern
may be defined during the whole process, a granular system involves a perma-
nent evolution of the connectivity of the particles, specially when granular flows
occur. Consequently a box-like partitioning insuring a locality of data, useful for
a parallel implementation, provides two possible approaches. A primal strategy
leads to a ‘non-perfect’ interface between the subdomains made of nonsmooth
interactions. Because such a method is a simple algebraic partition of the equa-
tions and is easy to implement, it has been applied to an industrial problem,
the simulation of railway ballasts [21]. However when some large rigid bodies
constitute the boundaries of several subdomains of the system (as the sleepers
on a railway track), the size of the interface increases drastically. The dual
strategy is less intuitive because it requires to split the grains at the interface.
Contrary to the primal approach the interface behavior is now ‘perfect’, in the
sense that only linear equations are describing it (local equilibrium and veloc-
ity continuity). Indeed we have to glue the interface grains by adding a new,
but linear, equation which modifies strongly the global nonlinear (nonsmooth)
solver and which complicates the implementation. However this dual approach
has two advantages: (i) the occurrence of large rigid bodies do not perturb the
size of the interface; (ii) the perfect boundary of each subdomain should allow
to introduce an automatic homogenization process to switch possibly from a
discrete model toward a continuous model. This second approach is detailed in
the following.

Once the sub-structuring has been performed, a nonsmooth solver has to be
combined with the domain decomposition strategy. The nonsmooth relations
are derived from the NonSmooth Contact Dynamics (NSCD) approach which is
well suited to the simulation of granular systems. NSCD or Contact Dynamics in
short, has been developed by J. J. Moreau and M. Jean over the last two decades
[24, 34]. It is suited to many applications but has proven to be particularly
useful when collections of rigid or deformable bodies are packed together in
a dense assembly and subjected to dynamic loading deformations. Numerical
simulations have to be performed using a fully implicit resolution of the contact
impulses. This allows us to deal properly with nonlocal momentum transfers
involved in multiple collisions, contrary to classical molecular dynamics schemes
that consider the system evolution as a succession of binary collisions. The
approach proposed by Cundall [14], inspired from the molecular dynamics, as
the event-driven methods, requires very short time steps for accounting for the
successive collisions and such a strategy leads to a prohibitive computational
cost, especially for the dense granulates with a large number of simultaneous
collisions. The NSCD approach refers to a time-stepping method that requires
at each time step the solution of nonsmooth equations by an iterative solver. The
computational cost may be quite high, but the gain is substantial. Simulations of
very large granular systems can range from 10 m of a ballast railway submitted to
cyclic dynamic loading, to the behavior of the Nı̂mes arena and Arles aqueduct
(France) subjected to seismic loading, which are examples of two challenges in
computational mechanics.

The Domain Decomposition Methods (DDM) in the context of multiproces-
sor computations are well established from theoretical and practical standpoints
when dealing with a linear system derived from a discretization of a continuous
problem [29]. For nonlinear continuous problems the DDM seems to be effi-
cient when it is used only to solve an intermediate linear problem embedded in
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an iterative process as a Newton type method [15]. Unfortunately the simula-
tion of the granular systems with nonsmooth interactions between grains does
not use such a nonlinear solver and the combination with a DDM has to be
rethought. Indeed the NonLinear Gauss-Seidel (NLGS) algorithm may be con-
sidered as the generic nonsmooth solver because it allows to embed a large range
of interaction laws such as adhesion, cohesion, capillarity... without modifying
deeply the algorithm. In line with the NSCD approach, the velocity-impulse
formulation is extended herein to a multidomain reformulation preserving the
generic algorithm. More precisely the multidomain reformulation is based on
a FETI-type approach where the subdomains are ‘glued’ by Lagrange multipli-
ers which are inter-domain forces. This choice is made in accordance with the
NSCD approach where the impulses are privileged variables. The so-called Non-
Smooth Contact Domain Decomposition (NSCDD) solving method consists of
a two-stage algorithm. One of these stages recovers the generic NLGS method
applied subdomain per subdomain in conjunction with the NSCD formulation;
for details about convergence, refer to [25]. This generic algorithm is presented
in Section 2 and a theoretical study of the convergence is developed in [4].

The DDM introduces different types of interface according to their dimen-
sion. For a three-dimensional continuous problem, we distinguish facets, edges
and corners. Specific strategies are developed for dealing with the corners result-
ing from the domain decomposition of structures discretized by a finite element
method [19, 30]. For discrete systems the distinction is less clear and we have
developed in [3] the concept of ‘weak’ interfaces in the context of static problems
solved by a LATIN type method. We investigate in Section 3 the features of the
interface problem solved at the second stage of the generic algorithm when some
grains, located at the corners, are connected to more than two subdomains.

Finally the evaluation of the efficiency of a new multidomain solver in com-
parison with a previous monodomain one is a difficult topic because a dense
granular system is an evolutive nonsmooth problem leading to a large multi-
plicity of solutions [32]. Consequently we have not relevant error estimates as
underlined in [24]. Only the quality of the computation may be appreciated
using a set of qualitative indicators as presented in Section 4 for studying the
global behavior and the micromechanical structure of a granular sample submit-
ted to a biaxial test. A time consuming analysis is performed on a Sequential
Multidomain implementation in order to estimate the CPU time gain that we
can expect from a multiprocessing implementation on a distributed memory
architecture. The present approach has been implemented into the LMGC90
platform [16].

2 Dual domain decomposition method for gran-

ular systems

2.1 Reference problem

When a time-stepping scheme is used, we denote known quantities at the be-
ginning of the time slab [ti, ti+1] with a superscript (−); the quantities at the
end of the time slab (without a superscript) have to be determined.
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Figure 1: Coordinate basis; Rg: global coordinate basis (for interface quanti-
ties), Ri: local (related to the grain i) coordinate basis (for grain dynamics),
Rα: local (related to an interaction α between two grains) coordinate basis (for
interactions). Details of the local contact frame (n, t) at a contact α between
two touching particles i and j.

Grain nonsmooth dynamics. Considering a rigid model for the grains, the
dynamics of the granular medium is written as the following vector equation
[34]

MV −R = F d (1)

where the prescribed right-hand side is F d = Rd+MV −. V is the velocity of the
grain (it contains the translational degrees of freedom, and the rotational ones);
R is the resultant impulse on the grain due to interactions with other grains.
The matrix M contains both the mass (for the translational degrees of freedom)
and the inertia (for the rotational degrees of freedom). A choice leading to get a
constant, and diagonal, matrix M consists in expressing the global coordinates
of rotation vectors in the inertia eigenbasis of each grain, Figure 1. With such
a choice, Rd = Rext + Rrot, where Rext are the prescribed external forces and
Rrot are the fictitious forces defined as

Rrot =

(

0
ω × Iω

)

,

where I is the moment of inertia and ω is the angular velocity. These fictitious
forces are non linear with respect to the degrees of freedom. In the case of
dense granular media, angular velocities are small enough to express Rrot in
an explicit way, by choosing the value obtained at ti, as reported in [37]. This
renders them explicitly known, and so, they are assembled into the right-hand
side Rd, that contains also the prescribed impulse fields. The assembly of these
equations (independent for each grain) for all the involved grains is formally
written in the same way (1).

Contact interaction. Here we focus on simple unilateral contact which is
naturally expressed as a complementary condition linking contact force to a
gap. For dynamics, Moreau proved via a viability lemma [34], that we can use
a velocity-impulse complementary law. The constitutive relation is summarized
in the following formal equation:

R(v, r) = 0 (2)

v is the velocity jump at the contact point between the two interacting grains,
r is the impulse at the same contact point. R is usually a non linear and mul-
tivalued relationship between the previous two dual quantities. For instance,
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for frictionless contact, it relates the normal components with the KKT com-
plementary conditions vn ≥ 0, rn ≥ 0 and vnfn = 0. Other models, such as
extensible cables and frictional contact can be found in [36, 46]. The assembly
of the interaction-related quantities for all interactions is also written formally
in the same way (2).

Both v and r are expressed in the local coordinate basis to the contacts
between the interacting grains, Figure 1. Therefore, they are linked to the
global kinematic and static quantities with a compatibility condition:

v = HTV and R = Hr (3)

H is the signed mapping between the global quantities related to the grains in
their local basis Ri with the local relative quantities related to the interactions
in the local basis Rα.

Reduced dynamics. Taking the dynamics (1) and the compatibility condi-
tions (3) into account, the reduced dynamics involving material variables can
be obtained:

Wr − v = −vd (4)

where W is the Delassus operator: W = HTM−1H, and vd = HTM−1F d.
To close the problem, one adds the constitutive relation (2), and the reference

problem reads:
{

Wr − v = −vd

R(v, r) = 0
(5)

This problem is classically solved within the NSCD (NonSmooth Contact Dy-
namics) method with a non-linear Gauss-Seidel (NLGS) solver [34, 24, 25].

Extension to deformable grains. Even if it will be not tested in the numer-
ical results presented in the following, the case of modeling the grain behavior as
an elastic deformable solid, with a finite element discretization, can be derived
easily. This leads to even more large problems for which a domain decomposi-
tion method has also potentials for larger gains. Such a modeling is suited in
particular for granular materials where deformation and eventually fracture of
grains is under concern.

Now, the kinematic global unknowns V are the whole set of translational
degrees of freedom of the nodes, K is the classical finite element stiffness matrix
of the grain and M is the mass matrix of the grain. Some care must nevertheless
be taken with this mass matrix to get a discretized well-posed problem, see for
instance [26].

A co-rotational formulation [1, 2] has several advantages: if the rotations
are finite, but the deformation is small, expressing the degrees of freedom in the
inertia eigenbasis of the grain allows to consider constant operators M and K.
In such a case, as previously, the Coriolis and centrifugal effects are explicitly
written, and are part of the given right-hand side of generalized forces Fd.

A two-scale description consists in setting V = RsVs + Ve where Vs is the
previously described small-sized vector of the global rigid body movement of
the grain, at its center of mass. Rs is the extension of this movement to all
the nodal degrees of freedom of the discretized body (in its inertial eigenbasis).
Ve is an additional movement mainly containing the elastic deformation of the
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grain (in its inertial eigenbasis as well), to be precised in the following. The non
smooth dynamics of the grain therefore reads:

MV +Rint −R = F d (6)

with the internal impulse

Rint =

∫ ti+1

ti

KU dt (7)

where U is the nodal vector of the displacement in the inertial eigenbasis). Using
the test functions V ⋆ = RsV

⋆
s + V ⋆

e , the dynamics leads to

MVe +Rint +MRsVs −R = F d (8)

M̄Vs +RT
s Rint +RT

s MVe − R̄ = F̄ d (9)

where M̄ = RT
s MRs, R̄ = RT

s R, F̄ d = RT
s F

d.
With a constant stiffness matrix, one coupling term is

RT
s Rint = RT

s K

∫ ti+1

ti

U dt = 0

since KRs = 0, and, to ensure the uniqueness of the two-scale description,
we choose as an orthogonality condition between the two kinematic spaces:
RT

s MVe = 0 that cancels the second coupling term in (9), which is therefore
identical to the rigid model (1). Once Vs is obtained, the “deformable” compo-
nent Ve then arises from (8):

MVe +Rint −R = F d −MRsVs

The last step is to link the displacement update U to the velocity V . A
possibility is to obtain it from two sources: U = Us + Ue, where Us is a rigid
body rotational finite movement (useful to update the finite rotation of the
inertial eigenbasis), and Ue corresponds to the complementary part. Us can be
obtained with the Hughes-Winget scheme [22] or the Rodrigues formula, while
Ue can be obtained with a θ-method as a time integration scheme. Neglecting
the residual KU−

s in algebraic developments, one gets the internal impulses as

Rint = hKU−
e + hθ[h(1− θ)KV −

e + hθKVe]

where the time step is h = ti+1 − ti. The corresponding dynamics therefore
reads:

M̃Ve −R = F̃ d −MRsVs (10)

where F̃ d is a given right-hand side, and M̃ = M +h2θ2K. One can check that,
with the coupling term MRsVs, the dynamics (10) gives a solution that satisfy
to the orthogonality condition. Indeed, by pre-multiplying (8) with RT

s , one can
easily check that it leads to RT

s MVe = 0.
Finally, the reduced dynamics can also be drawn for this model case, as

previously with a new definition of matrix H which is now correlated to the
whole set of degrees of freedom, but with the same expression as in (3):

v = HT (RsVs + Ve) and R = Hr, R̄ = RT
s Hr (11)
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which leads to
{

W̃ r − v = −ṽd

R(v, r) = 0
(12)

with, in fine, W̃ = HT M̃−1H and ṽd = HT M̃−1F̃ d. Therefore, the problem
characteristics are very close to the ones obtained from the case of rigid grains
and algorithmic choices in a domain decomposition approach should be valid
for both modelings.

2.2 Domain partitioning

The domain has to be split into subdomains in order to use parallel computing.
This decomposition is performed as frequently as needed to take into account
the migration of grains from one subdomain to another. Such a strategy may
be implemented with minimal computational efforts using sophisticated routines
out of the purpose of this paper. Since the nonsmoothness may occur in inter-
actions between grains, we choose to distribute interactions among subdomains
as in [4] (we proceed by distributing the middle points between the centers of
mass of interacting grains, according to their coordinates, using an arbitrary
regular underlying grid, Figure 2 and Figure 3). Indeed, with such a choice,
the “boundary” grains are duplicated in the two subdomains. If a grain indexed
with i is connected with mi subdomains, mi is called its multiplicity number.
For consistency for the rigid model of the grains, the masses and moments of
inertia are distributed among the neighboring subdomains according to their
multiplicity number. More precisely the distribution of masses and inertia is an
algebraic partitioning and not a geometrical partitioning. It is more meaningful
to speak about a duplication of the boundary grains than a splitting of them.
For the elastic deformable model of the grains, this splitting can be performed
with a classical mesh decomposer. The interface between two subdomains is de-
fined as the set of these grains, that joins the subdomains. The nonsmoothness
is therefore localized only within the subdomains. This modeling choice is iden-
tical to [10] and somehow the dual of that proposed in [28], where nonlinearities
(contact on crack lips) are isolated at the interfaces. Note that a direct alge-
braic partitioning of the reference problem can also be chosen, leading to a dual
partitioning and a different algorithm [21]. Some advantages and disadvantages
have been mentioned in the introduction but such a topic has to be investigated
more deeply in forthcoming works.

2.3 FETI-like formulation and NSCDD algorithm

In each subdomain E, the problem is identical to the global one (with the
subscript E), provided that a term arising from the inter-grain interface is added.
It is therefore described in the following only for the rigid model of the grains.
It can be built from the interconnecting condition (on the velocities of boundary
grains) that has been added to “glue” neighboring subdomains, where AΓE is a
signed boolean matrix with a finite rotation, to map the grain velocities VE to
the global coordinate basis into which the interconnectivity is expressed:

nsd
∑

E=1

AΓEVE = 0 (13)
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Figure 2: Geometrical partitioning of the discrete domain and duplication of
the interface grains.
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Figure 3: Illustrations of the proposed domain partitioning technique: four
grains having a multiplicity of 2 (a) (cf. Figure 6(b)), four grains having a
multiplicity of 2 and one having a multiplicity of 3 (cf. Figure 10(b)). Contacts
are colored according to the subdomain they belong to. The grains having a
multiplicity of 2 are hatched, the grain having a multiplicity of 3 is crossed-
hatched.
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Γ denotes the global interface between all the neighboring grains. Formally the
previous summation is performed on all the subdomains (number equal to nsd),
even if, for a given interface grain the only neighboring subdomains have to
be considered. Then we obtain a FETI-like formulation [18] for the reference
problem using a multiplier field FΓ and the notations ÂT

ΓE = HT
EM

−1
E AT

ΓE :

WErE − vE − ÂT
ΓEFΓ = −vdE

R(vE , rE) = 0

}

E = 1, . . . , nsd

nsd
∑

E=1

AΓEVE = 0
(14)

The reduced problem on (rE ,vE ,FΓ), with the notations f̂ =
∑

E AΓEM
−1
E F d

E

and X =
∑

E AΓEM
−1
E AT

ΓE , reads:

WErE − vE − ÂT
ΓEFΓ = −vdE

R(vE , rE) = 0

}

E = 1, . . . , nsd

XFΓ −

nsd
∑

E=1

ÂΓErE = f̂
(15)

As for many domain decomposition approaches, the goal is to be able to
localize the same typical problem that is under consideration on each subdomain
independently, while designing a suited coupling recovery algorithm between
subdomains, i.e. on the interface.

Here, the algorithmic formulation described in Algorithm 1 has been im-
plemented into the LMGC90 platform [16] for time-evolution problems (N is
the number of time steps). At each new time step of the incremental solving
procedure, the mapping H and the contact graph have to be reevaluated within
a contact detection phase. Eventually, the domain could also be repartitioned
according to the new contact graph. For each time step, the iterative resolution
proceeds with several stages. First, the interface impulses obtained at the pre-
vious iteration are disassembled into FE = −AT

ΓEFΓ that is considered as given
additional external impulses in the subdomain E, and added to the prescribed
values F d

E . At each iteration, the solver is itself a predictor-corrector scheme,
for which a “free” grain velocity is first computed as V̄ d

E = M−1
E (F d

E + FE). At
the interaction level, one then computes v̄dE = HT

E V̄
d
E . The correction phase

is composed with an incomplete solving procedure of the nonsmooth dynamics
problem on each subdomain, with nGS prescribed iterations of non-linear Gauss-
Seidel algorithm. This provides the local impulses r̄E (satisfying the reduced
dynamics, even if the solve is incomplete). The resultant impulse per grain is
R̄E = HE r̄E , and the correction reads: V̄E = V̄ d

E +M−1
E R̄E .

Up to this point, it is interesting to note that the interface problem in (15)
can be stated in a correction form, using ∆FΓ = F̄Γ−FΓ: noting that r̄E satisfies
to the grain dynamics, this interface problem can be restated as

X∆FΓ = f̂ +

nsd
∑

E=1

ÂΓE r̄E −XFΓ =

nsd
∑

E=1

AΓE V̄E (16)

the last term being the residual on the interface, i.e. the velocity jump.
At each time step, inner iterations are stopped when the classical NLGS

convergence criterion (on the subdomains, [12]) and the gluing criterion over
the interface [23] are verified.
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Algorithm 1 NonSmooth Contact Domain Decomposition (NSCDD)

for i = 1, . . . , N do

contact detection (eventually parallelized) and
possible new decomposition of the domain
initialize unknowns at time ti: (rE , vE , FΓ)
while (convergence criterion not satisfied) do

In parallel for E = 1, . . . , nsd

Disassemble interface impulses FΓ into local impulses FE

Compute the “free” velocity V̄ d
E and v̄dE

Compute (r̄E ,v̄E) with nGS non-linear Gauss-Seidel iterations on:

{

WE r̄E − v̄E = −v̄dE
R(v̄E , r̄E) = 0

Update (rE , vE)← (r̄E , v̄E)
Compute R̄E and correct the velocity on interface grains to get

AΓE V̄E

In sequential (may be partially parallelized)
Compute ∆FΓ as: X∆FΓ =

∑nsd

E=1 AΓE V̄E and update interface
impulses FΓ

end while

Update grain positions in parallel
end for

3 Interface topics

For discrete systems, several specificities of the interface treatment are detailed
in this section, in particular the structure of the interface operator X.

3.1 Structure of the interface

For discrete systems, the global interface Γ is constituted of grains supporting
contacts in more than one subdomain. The number of subdomains a grain i is
connected to is called its multiplicity mi. As for classical domain decomposition
methods [43] one gets mE = 1+AT

ΓEAΓE as the diagonal matrix whose entries
for each grain i kinematic dof is mi. Depending on their multiplicity, the grains
are called “internal grains” if mi = 1 (otherwise, they will be called “interface
grains”), “face grains” if mi = 2 and “corner grains” if mi > 2. Contrary to the
continuous media case where face, edge and corner nodes can be distinguished
in 3D, the discrete systems we are considering here do not differentiate edge and
corner topology.

Corner grains are split in mi parts and links are stated as gluing conditions
between these parts (the impulses in such gluing conditions are stored in FΓ).
Sufficient gluing conditions should be stated for each interface grains (face or
corner) to ensure to recover the reference problem solution. Several options are:

• Discard the treatment of corner grains. This option can be used for several
DDM for the continuous media case when interface fields are defined at the
finite element level on edges of elements rather than at nodes [17, 11] since
the measure of corner nodes is zero. For a discrete model as considered
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herein, this is not an available option since then, continuity at these grains
won’t be taken into account.

• Consider as many gluing conditions as the mutiplicity of the considered
corner grain: ni

l = mi. In this case, there is a small overconstrained gluing
condition (only mi − 1 links are sufficient to glue mi parts).

• Consider an even larger number of gluing condition, similarly to redun-
dant corner conditions in FETI methods [43]. The maximal number of
conditions that can be established between mi parts is 1

2m
i(mi − 1).

In order to avoid singularity of the interface operator X, and to allow several
solving procedures for the interface problem, we choose to prescribe the nec-
essary and sufficient number of gluing conditions on corner grains, i.e. mi − 1
conditions only.

Figure 4: Gluing conditions between interface grains. (a) mi = 2 and ni
l =

mi − 1 = 1
2m

i(mi − 1) = 1; (b) mi = 3 and ni
l = mi = 1

2m
i(mi − 1) = 3;

(c) mi = 3 and ni
l = mi − 1; (d) mi = 4 and ni

l = mi; (e) mi = 4 and
ni
l =

1
2m

i(mi− 1) = 6; (f) mi = 4 and ni
l = mi− 1. (For convenience the grains

have been split even if they are not geometrically cut.)

3.2 Analysis of the interface operator X

Internal grains (mi = 1) indeed have no contribution to X. When only face
grains exist (mi = 2), X has been proved to be diagonal per block, i.e. each
grain is decoupled with the other ones [4] and each block is at most of size
(b, b) where b is the number of kinematic or static components for each grain:
b = 3(D − 1) for rigid grains where D = 2, 3 is the dimension of the considered
physical space. In a dynamic framework“sthenic”may be preferred to“static” in
reference to a description of dual variables to the kinematics. This is a specific
issue of the dynamics of rigid grains: the interface problem does not condense
information from the inner part of subdomains. Moreover, each block may itself
be diagonal for special cases (circular or spherical grains). In these cases, solving
the interface problem is trivial. Corner grains do indeed modify the structure of
this operator. It is still block-diagonal, but a full block occurs on links related
to each corner grain i with a size (ni

lb, n
i
lb).

Consider the contribution of corner grain i from the various subdomains that
share this grain; this corresponds to a block in matrix X denoted as:

Xi =

nsd
∑

E=1

Ai
ΓE(M

i
E)

−1(Ai
ΓE)

T
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There are no gluing impulse FΓ between different corner grains, so blocks Xi are
decoupled to each other. M i

E is the mass matrix for the part of grain i located
in subdomain E. Since they are always symmetric, positive definite, and for
sake of simplicity, they are omitted in the following developments (they are
all considered as identity matrices, which does not change the structure of the
interface operator), moreover, all the following matrix entries will correspond
to a block of size (b, b) corresponding to a whole set of kinematic or static
(or sthenic) components. With an arbitrary sign convention in Ai

ΓE , and for
ni
l = mi − 1 gluing conditions, which is an open cyclic connectivity graph, the

block Xi is a permutation of the following pattern:

Xi =













2 −1

−1
. . .

. . .

. . . 2 −1
−1 2













(17)

which is clearly invertible. Adding an additional gluing condition will close a
sub-cycle in the connectivity, and therefore produces a sub-block in Xi with the
pattern

















2 −1 1

−1
. . .

. . .

. . . 2 −1
−1 2 1

1 1 2

















(18)

which turns out to be singular (last row is the sum of all the previous ones). Since
this is a minor of Xi, this last matrix will be singular as soon as ni

l > mi − 1.
The convergence study of the NLGS algorithm is quite complicated and

will not be discussed herein. Nevertheless, simulations using corner grains will
exemplify the impact of those grains on the physical properties of the granular
system are discussed in the following.

4 A mechanical study as a validity test

The issue of this section is to test the robustness of the DDM approach with
respect with various “well-known” aspects of the mechanical behavior of model
granular media. To do so, at a first hand, we describe the numerical samples,
and compare the macroscopic response of sheared granular packings for differ-
ent decompositions. The microstructure (i.e. the spatial organization of the
particles and their contacts) is analyzed at a second hand as a function of the
number of subdomains.

4.1 Simulation of a biaxial test

A dense packing composed of 12000 disks is first set up by means of a layer-
by-layer deposition model based on simple geometrical rules [49]. The particles
are deposited sequentially on a substrate. Each new particle is placed at the
lowest possible position on the free surface as a function of its diameter. This
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procedure leads to a random close packing in which each particle is supported
by two underlying particles and supports one or two other particles. To avoid
long range ordering a small polydispersity in size is used.

σ0

σ0(a)

σ0

(b)

σ0

vy

Figure 5: Boundary conditions for (a) isotropic and (b) biaxial compactions.

Following this geometrical process, the packing is compacted by isotropic
compression inside a rectangular frame of dimensions l0×h0 in which the left and
bottom walls are fixed, and the right and top walls are subjected to a compressive
stress σ0. The gravity g and friction coefficients µ between particles and with
the walls are set to zero during the compression in order to avoid force gradients
and obtain isotropic dense packings, see Figure 5(a). The isotropic samples are
then subjected to a vertical compression by downward displacement of the top
wall with a constant velocity vy for a constant confining stress σ0 acting on the
lateral wall, see Figure 5(b). The friction coefficient µ between particles is set to
0.35 and to zero with the walls. Since we are interested in quasistatic behavior,
the shear rate should be such that the kinetic energy supplied by shearing is
negligible compared to the static pressure. This can be formulated in terms of
an inertia parameter I defined as [20]:

I =















ε̇
√

m
p in 2D,

ε̇
√

m
pd in 3D,

(19)

where ε̇ = ẏ/y is the strain rate, m is the mean particle mass, d the mean
diameter and p is the mean pressure (defined as the force per unit width for the
2D case). The quasistatic limit is characterized by the condition I ≪ 1; in the
proposed simulations, I is below 10−4.

This simulation is repeated 5 times, with various numbers of subdomains
ranging from 0 (corresponding to the reference simulation) up to 4 (they are
tagged in the following with S0 up to S4). Figure 6(a) depicts the five decom-
positions we choose at the initial state. Figure 6(b) is a zoom of the case S4 to
illustrate the particle arrangement.

4.2 Macroscopic behavior

In this section, we consider the stress-strain and volume-change behavior ac-
cording to the domain decomposition. We therefore need to evaluate the stress
tensor and solid fraction during deformation from the simulation data at micro-
scopic scale.
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S0 S1 S2 S3 S4(a)

(b)

Figure 6: Examples of decomposition at the initial state (a) and zoom at the
intersection of the four subdomains of case S4 (b). The multiplicity is (b): 1
for a gray particle and 2 for a black particle.

4.2.1 Definition of some macroscopic parameters

In granular media, the expression of the stress tensor σ in the volume V is an
arithmetic average involving the branch vectors ℓα (joining the centers of the
two neighbouring particles) and the contact force vectors fα at contact α. It is
given with [33, 47]:

σ =
1

V

∑

α∈V

fα(ℓα)T (20)

Under biaxial conditions with vertical compression, we have σ1 ≥ σ2, where
the σk are the stress principal values. The mean stress is p = (σ1 + σ2)/2, and
the stress deviator is q = (σ1 − σ2)/2. According to the Mohr-Coulomb model,
the shear strength of dry granular materials can be linked to the internal angle
of friction ϕ as follows [31]:

sinϕ =
q

p
=

σ1 − σ2

σ1 + σ2
(21)

The vertical macroscopic strain ε1 is the cumulative value defined as:

ε1 =

∫ h

h0

dh′

h′
= ln

(

1 +
∆h

h0

)

(22)

where h0 is the initial height and ∆h = h0 − h is the total downward displace-
ment.

4.2.2 Shear strength and solid fraction

Figure 7 depicts the internal angle of friction sinϕ as a function of the shear
strain ε1 for all the decompositions. The jump observed at ε1 = 0 reflects both
the rigidity of the particles and the large initial solid fraction of the samples.
In all cases, the shear stress passes by a peak (q/p)peak ∼ 0.38 before relaxing
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Figure 7: Internal angle of friction sinϕ as a function of the vertical deformation
ε1.

to a stress plateau (q/p)∗ ∼ 0.28 corresponding to the so-called “residual state”
in soil mechanics [31]. We see that, up to the fluctuations, all curves join nicely
on the same curve.

Figure 8: Solid fraction ν as a function of the vertical deformation ε1.

Figure 8 shows the variation of the solid fraction ν = Vp/V as a function
of ε1 for all the decompositions, where Vp is the volume (area in 2D) occupied
by the particles. The solid fraction decreases first from ν0 ≃ 0.84 to 0.825. It
is remarkable that, during this phase the solid fraction is rigorously identical
for all the samples. At larger strains, the solid fraction decreases much more
slowly and, up to the fluctuations, saturates on the same curve. Indeed, at
larger strains, dilation is localized within shear bands appearing and vanishing
throughout the system underlying the saturation of ν. This is well illustrated
in Figure 9 where two maps of the particle velocities are shown at ε1 = 0.2 for
S0 and S3 cases. We see clearly that the topology of the shear band are slightly
different even if, on average, the solid fraction is identical. In fact, localization
phenomena leads to multiple possible physical solutions, and it has been already
been exemplified that the formation of the shear band depends on the details
of the numerical parameter of the simulations (time step, solver, number of
iterations...) [41].

In this section we have shown that the macroscopic response of a sheared
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S0
(a)

S3
(b)

ω/ω0

0

10

Figure 9: Maps of the normalized angular velocities of the particle for S0 (a)
and S3 (b) cases, at ε1 = 0.2.

16



granular material is independent of the chosen number of subdomains. Nev-
ertheless, a granular material is a typical example of multi-scale material: the
macroscopic behavior results from the average properties of a collection of in-
teracting particles through the contact network. This is clearly illustrated in
the case of elongated particles where the residual shear strength increases lin-
early with elongation [7], whereas for angular or non-convex particle shapes,
the residual shear strength increases first and saturate as the level of angular-
ity or non-convexity of the particles is increased [6, 45]. An other surprising
effect is that the residual shear strength is independent of the polydispersity
[50]. This wide variety of behaviors finds its origins at the scale of the particle
and contact properties. Thus, we also need to test the robustness of the domain
decomposition solver in terms of the granular microstructure.

4.3 Micromechanical analysis

The granular microstructure (granular texture), i.e. the spatial organization of
the particles and their contacts, is basically controlled by steric exclusions be-
tween the particles and force balance conditions [48]. The strong inhomogeneity
of contact forces is a well known feature of granular media. Figure 10 shows the
contact forces for S2 and S4 cases at the residual state. For the same level of
strain, the force-carrying backbones are different, even if the global inhomogene-
ity seems to be preserved. Of course, this is due to the fact that the resolution of
the contact forces is performed domain by domain, and to the plurality of local
solutions for frictional granular media. Nevertheless, this anisotropic structure,
generally at the origin of the shear strength of granular media, can be described
more rigorously in terms of various statistical descriptors pertaining to the force-
bearing network of particles. In the following, we consider two aspects of the
microstructure: (i) the angular average of the contact and force orientations,
and (ii) the normal force distributions.

4.3.1 Contact and force anisotropy

A common approach is to consider the probability distribution of the contact
normals n, which is usually nonuniform. As shown in Figure 1, for the 2D
case the unit vector n is described by a single angle θ. The probability density
function P (θ) of contact normals provides detailed statistical information about
the texture. In the same way, expressing the force vector in the local contact
frame (n, t), where t is an orthonormal unit vector oriented along the tangen-
tial direction, we can compute the angular distributions 〈fn〉(θ) and 〈ft〉(θ) of
normal and tangential forces, respectively. The above three functions describe
the general state of the packing. Under shearing, the packing organizes itself
into a state where these functions are well approximated with their lowest-order
Fourier expansion [44, 27, 39, 7]:







Pθ(θ) = 1
2π{1 + ac cos 2(θ − θc)}

〈fn〉(θ) = 〈f〉{1 + afn cos 2(θ − θfn)}
〈ft〉(θ) = 〈f〉aft sin 2(θ − θft)

(23)

where ac, afn, and aft are the anisotropy parameters and θc, θfn, and θft rep-
resent the corresponding privileged directions. In a sheared state the privileged
directions tend to follow the principal stress direction (i.e. θc = θfn = θft = θσ).
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(a)

(b) (c)

Figure 10: Maps of force chains in a portion of S2 (a) and S4 (b) samples,
at ε1 = 0.2; (c) is a zoom on map at the subdomains intersection (b). Line
thickness is proportional to the normal force. Strong forces (fn > 〈fn〉) are in
black and weak forces (fn < 〈fn〉) in gray (see text). The multiplicity is: 1 for
a light gray particle, 2 for a medium gray particle and 3 for a black particle.
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In practice the values of all anisotropy parameters can be computed from gen-
eralized fabric and force tensors presented in [40, 7].

(a)

(b)

Figure 11: Contact anisotropy (a) and normal and tangential force anisotropies
(b) as functions of the vertical deformation ε1 for all the tested decompositions.

Figure 11 shows the variations of all these anisotropy parameters as functions
of ε1 for all the domain decompositions. Up to fluctuations, all the curves join
also nicely on the same curve. We see that ac follows the same trend as the
shear strength, increases first to a maximum value equal to ≃ 0.35 and then
declines to a plateau at ≃ 0.26. In contrast, afn decreases from ≃ 0.38 to a
constant value ≃ 0.24, whereas aft remains nearly constant with the strain.

These anisotropy parameters are very relevant to the analysis of the granular
microstructure because they can bring to light the geometrical and mechanical
origins of the shear strength. Indeed, it can be shown that the general expression
of the stress tensor (21) leads to the following “stress-force-fabric” relationship
(a term coined for the first time by Rothenburg and Bathurst in [44]):

sinϕ ≃
1

2
(ac + afn + aft), (24)

where the cross products between the anisotropy parameters have been ne-
glected. It is very important to test the validity of relation (24) in the context
of numerical simulation by DDM because this equation reveals an explicit link
between microscopic and macroscopic scales in granular media. We plot in Fig-
ure 12 the variation of the shear strength together with the harmonic fit of
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equation (24). We see that data are in quantitative good agreement with this
harmonic approximation which is not affected by the number of subdomains.

Figure 12: Friction angle sinϕ (symbol) together with the harmonic approxima-
tion (line) as functions of the vertical strain ε1 for all the tested decompositions.

4.3.2 Force distribution

Force transmission has been investigated by experiments and numerical simula-
tions for disks, elongated, polygonal and non-convex particles in 2D as well as
for spherical, cylindrical and polyhedral particles in 3D [38, 13, 35, 5, 42, 8, 9].
The probability density function (pdf) of normal forces is characterized by two
features that are specific to granular media: (i) the pdf is roughly a decreasing
exponential function for forces above the mean value, (ii) in the range of weak
forces below the mean value, the pdf does not decline to zero with the force. The
relative scattering of data reported by different authors for weak forces shows
the sensitivity of the pdf within this range to the microstructure details.

The probability density function (pdf) of normal forces normalized by the
mean normal force 〈fn〉 is shown in Figure 13 in log-linear and log-log scales
at large strains (the data are cumulated from several snapshots in the residual
state) for all the simulations. As usually observed in the literature [38, 13, 35, 5,
42, 8, 9], the number of forces above the mean value 〈fn〉 falls off exponentially
whereas the number of forces below the mean value varies as a power-law:

P (fn) ∝

{

e−α(1−fn/〈fn〉) for fn > 〈fn〉
(fn/〈fn〉)

β for fn < 〈fn〉
(25)

where α and β are the exponents. As we can observe, the pdf of the forces in
each samples collapse to the same curve given precisely by (25). This shows that
the inhomogenous character of the force distribution chain in granular media is
not affected by the number of subdomains used for the solver.

The genuine organization of contact forces in granular media was first ana-
lyzed by Radjäı et al. by means of contact dynamics simulations for packings
of circular and spherical particles [40]. The most important result was that
the contact network can be decomposed unambiguously into two subnetworks
named “weak” and “strong” networks with complementary mechanical proper-
ties. More precisely, stronger forces chains are propped by large number of weak
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(a)

(b)

Figure 13: Probability distribution function of normal forces fn, normalized by
the average normal force 〈fn〉 in log-linear (a) and log-log (b) plots for all the
tested decompositions.
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contacts, so that the shear stress is almost totally sustained by the strong con-
tact network. This is well illustrated also in Figure 10 where strong forces are
plotted in black whereas weak forces are plotted in red. We see that strong
forces are mainly vertical (along the principal shear direction) whereas weak
forces are, in average, perpendicular to the direction of shear. Data are also
in good qualitative agreement with this feature, without much influence of the
number of subdomains.

5 Time consuming analysis of the NSCDD Se-

quential Multidomain implementation

The issue of this section is to estimate the CPU time gain that we can ex-
pect from a multiprocessing implementation of the NSCDD algorithm on a dis-
tributed memory architecture. We present at first the implementation and the
parameters chosen before to an analyse of the numerical tendencies of the pro-
posed method.

5.1 Sequential Multidomain implementation and chosen

parameters

A Sequential Multidomain implementation of NSCDD algorithm has been per-
formed on the LMGC90 software to study the influence of a domain decompo-
sition on the biaxial test presented above. To do so, the sequential LMGC90
database has been duplicated, according to the number of subdomains consid-
ered, to mimic the behavior of a multiprocessing environment. This approach
allows to separate the topic of physical validity of the solution given by the
proposed domain decomposition method from the technical aspects of MPI im-
plementation.

For the simulations we selected ngs = 1 (cf. Algorithm 1), which means that
one NLGS iteration in subdomains is always followed by an interface resolution,
consistently with the study of the influence of ngs parameter on the convergence
of the NSCDD algorithm reported in [23].

The cumulative elapsed time and timers of the main steps of the NSCDD
algorithm for samples S0, S2 and S4 is given in Table 1, for the Biaxial test
presented above, and performed over 250 103 time steps. The various stages are
classified as:

• White: generic stages of NSCD algorithm which may be parallelized,

• Light-gray: stages introduced by the domain decomposition which may
be parallelized (intermediary routines between generic stages of NSCD
algorithm and specific stages of the NSCDD one).

• Dark-gray: stages of the NSCDD algorithm which must be done sequen-
tially (if a slave/master communication scheme is presupposed) and im-
plies exchanges between processors.
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Main
stages/Samples

S0 S2 S4

% Elapsed % Elapsed % Elapsed
time time time

Preprocessing
Domain parti-
tioning and rough
detection

2 % 4 103s 2 % 4 103s 2 % 5 103s

Fine detection 5 % 14 103s 6 % 14 103s 8 % 19 103s
NLGS prepro-
cessing

32 % 83 103s 25 % 57 103s 16 % 41 103s

NSCDD iterations
Compute v̄dE(FΓ) 0 % 0 103s 4 % 9 103s 7 % 17 103s
NLGS iterations 50 % 131 103s 42 % 101 103s 40 % 100 103s
Compute AΓE V̄E 0 % 0 103s 9 % 21 103s 13 % 33 103s
Interface problem 0 % 0 103s 1 % 2 103s 2 % 4 103s
Check conver-
gence

1 % 2 103s 1 % 1 103s 1 % 1 103s

Updates and outputs
Update positions 9 % 23 103s 9 % 21 103s 10 % 26 103s
Write files 2 % 6 103s 2 % 5 103s 2 % 5 103s

Total 100 % 262 103s 100 % 235 103s 100 % 251 103s

Table 1: Percentage and absolute elapsed time in the main stages of the NSCDD
algorithm related to samples S0, S2 and S4.

5.2 Analysis of the main referenced stages

“Domain partitioning and rough detection” (cf Table 1). As presented above,
the proposed domain partitioning leans on contact distribution among the sub-
domains. More precisely, the considered contacts are those roughly selected
according to a box method referenced as the “rough detection”. The elapsed
time for each samples is quite similar, a small increase is observed only for S4.
In our simulations this phase is performed every 10 time steps leading to a very
small contribution to the overall computation time.

“Fine detection” and “Update positions”. The increase in the elapsed time
related to those stages arises from the number of particles in samples, which in-
creases with the number of subdomains (nsd) due to the duplication of interface
grains, as illustrated in Table 2.

“NLGS preprocessing”. This routine stores every extra-diagonal block matrix
of the Delassus operator (Wαβ , α 6= β). Its running time decreases according
to the number of subdomains. Indeed the duplication of the interface grains in
the neighboring subdomains reduces the number of the adjacent contacts (and
so the number of Wαβ , cf. Table 2). This phenomenon also explains the similar
behavior of “NLGS iterations” stage.

“Compute v̄dE(FΓ)” and “Compute AΓE V̄E”. As expected, the elapsed time
increases regularly according to the size of the interface.

“Check Convergence”. A similar elapsed time is observed for each samples.
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S0 S1 S2 S3 S4
Total number of
NSCDD iterations

164.5 105 164.1 105 164.1 105 166.4 105 166.0 105

Number of inter-
face grains

0 117 104 207 227

Number of Wαβ 418 103 380 103 341 103 366 103 303 103

Table 2: Total number of NSCDD iterations, mean number of interface particles
and mean number of extra-diagonal block matrices of the Delassus operator
(Wαβ) over the 250 103 time steps of the processes related to samples S0, S1,
S2, S3 and S4.

The numerical monitoring shows that the time consuming stages may be
parallelized whereas the sequential stages requires at most 5% of the total CPU
time in our study. Moreover, even for a Sequential Multidomain implementa-
tion, the total elapsed time may be reduced when using several subdomains in
comparison with a single subdomain, in spite of the increase of the interface size
(in terms of unknowns and equations). This is due to the simultaneous decrease
of W size (from 418 103 to 303 103 Wαβ , cf. Table 2). However, the expected
gain from MPI implementation may be quite different because of the potentially
expensive exchanges between processors.

6 Conclusion

The present work gives a new illustration of the ability to use a domain decom-
position method coupled with the nonsmooth contact dynamics approach for
dealing with large-scale dense granulates. The proposed approach is as close as
possible to the standard nonoverlapping DDM for large-scale linear problems,
more precisely the FETI approach. As the interfaces are made of grains, the
features of the interface matrix has been systematically studied, for example
when a grain belongs to more than two subdomains. A mechanical analysis
of a biaxial test exemplifies the relevancy of the results in spite of the chaotic
behavior of such a system with a large multiplicity of solutions. The solutions
may depend locally on the substructuring procedure but the global behavior of
the granular medium is preserved. We rediscover the sensitivity, with respect
to the discretization, of a ductile material involving localization effects such as
shear bands, of plastic nature, that it is modeled by finite elements or by discrete
elements. However the discrete elements are not determined by a discretization
process but imposed by the microstructure. Moreover the forthcoming behavior
is not strongly oriented by the early localization because of the appearance and
the vanishing of multiple different shear bands in dry granulates.

The numerical efficiency, especially the scalability, is recovered if a single
NLGS iteration is performed in each subdomain in the first stage of the algo-
rithm [23]. It is not necessary to iterate many times in the first stage because
the second stage, characterized by the quasi-diagonal interface matrix, does not
transfer long-distance correlation through subdomains. Likewise it is not pos-
sible to improve the convergence by adding a coarse problem as in classical
computational structural mechanics based on the finite element method. Before
extracting a macro-homogenized model from the interface problem it is neces-
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sary to enrich this interface problem. Such an approach has been developed in
[4] from a theoretical and semi-analytical point of view. As a conclusion of this
study the convergence of the so obtained algorithm does not seem to be signifi-
cantly accelerated whereas the computational cost of the second solution stage
strongly increases. Consequently we propose now to develop, not a nonsmooth
solver on a single time step but a multiscale time integration scheme over a time
interval for granular systems. The principle would be to combine an explicit
linear prediction of the interface forces and an implicit correction of the contact
impulses inside the subdomains.

Finally the main drawback of the NSCD approach is the possible indeter-
mination of the contact impulses generated by severe kinematic constraints,
especially for dense granular systems. This is conveyed in the singularity of
the Delassus matrix whose null space represents the self-equilibrated impulse
networks. To overcome this indetermination, from an algorithmic viewpoint,
represents an important challenge. To conceive a time integration scheme dur-
ing a process requires to tackle this topic.
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1998. Laboratório Nacional de engenharia Civil (LNEC), Lisboa, Portugal.

[3] P. Alart and D. Dureisseix. A scalable multiscale LATIN method adapted
to nonsmooth discrete media. Computer Methods in Applied Mechanics
and Engineering, 197(5):319–331, 2008.

[4] P. Alart, D. Iceta, and D. Dureisseix. A nonlinear domain decomposition
formulation with application to granular dynamics. Computer Methods in
Applied Mechanics and Engineering, 205-208(0):59 – 67, 2012. Special Issue
on Advances in Computational Methods in Contact Mechanics dedicated
to the memory of Professor J.A.C. Martins.

[5] S. J. Antony. Evolution of force distribution in three-dimensional granular
media. Phys. Rev. E, 63:011302, 2001.
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