
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

3-1-2017 

Dense Gray Codes in Mixed Radices Dense Gray Codes in Mixed Radices 

Jessica C. Fan 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Fan, Jessica C., "Dense Gray Codes in Mixed Radices" (2017). Dartmouth College Undergraduate Theses. 
117. 
https://digitalcommons.dartmouth.edu/senior_theses/117 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/117?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dartmouth College Computer Science
Technical Report TR2017-818

Dense Gray Codes in Mixed Radices

Jessica C. Fan
jessica.c.fan.17@dartmouth.edu

1



Abstract

The standard binary reflected Gray code describes a sequenceof integers0 to n�1, wheren

is a power of2, such that the binary representation of each integer in the sequence differs from
the binary representation of the preceding integer in exactly one bit. In September 2016, we
presented two methods to compute binary dense Gray codes, which extend the possible values
of n to the set of all positive integers while preserving both theGray-code property such that
only one bit changes between each pair of consecutive binarynumbers, and the density property
such that the sequence contains exactly then integers0 to n � 1. The first of the two methods
produces a dense Gray code that does not have the cyclic property, meaning that the last integer
and the first integer of the sequence do not differ in exactly one bit. The second method, based
on the first, produces a cyclic dense Gray code ifn is even. This thesis summarizes our previous
work and generalizes the methods for binary dense Gray codesto arbitrary radices that may
either be a single fixed radix for all digits or mixed radices where each digit may be represented
in a different radix. We show how to produce a non-cyclic mixed-radix dense Gray code for any
set of radices and any positive integern—that is, a permutation of the sequenceh0; 1; : : : ; n � 1i

such that the digit representation of each number differs from the digit representation of the
preceding number in only one digit, and the values of the digits that differ is exactly1. To this
end, we provide a simple formula to compute each digit of eachnumber in the permutation in
constant time. Though we do not provide such a formula to generate the digits of a cyclic mixed-
radix dense Gray code, we do present, forn equal to the product of the radices, a recursive
algorithm that computes the entire cyclic mixed-radix Graycode with the density, strict Gray-
code, and modular cyclic properties: given ak-tuple of mixed radicesr D .rk�1; rk�2; : : : ; r0/,
each of then integers in the cyclic mixed-radix Gray code differs from its preceding integer—
with the first integer differing from the last integer—in only one digit positioni , and the values
of those digits differ by exactly1, except for the digits of the first and last numbers, which may
also be the integers0 andri � 1. For values ofn that are less than the product of the radices, we
show a list of cases for which we prove it is impossible to generate a mixed-radix dense Gray
code that has the modular Gray-code and cyclic properties for a set of mixed radicesr and a
positive integern.

2



1-bit 2-bit 3-bit
binary reflected Gray code binary reflected Gray code binary reflected Gray code

0 00 000
1 01 001

11 011
10 010

110
111
101
100

Table 1: The first3 binary reflected Gray codes forn D 2, n D 4, andn D 8.

1 Introduction

The standard binary reflected Gray code, patented by Frank Gray in 1953 [5], is a sequence ofn binary
integers in the range0 to n � 1 (or equivalently, a permutation of the integersh0; 1; : : : ; n � 1i) that holds
theGray-code property: each integer in the sequence differs from the preceding integer in only one bit. This
property gives rise to many powerful applications of the binary Gray code, such as finding Hamiltonian paths
alongn-dimensional hypercubes [6] and generating Dyck words to compute alln-node binary trees [10].
Though exceptionally useful, Gray’s binary code allows only for values ofn that are a power of2; Table 1
shows the first3 binary reflected Gray codes forn D 2; 4; and8. Notice that each Gray code is alsocyclic:
the first and last numbers of each sequence preserve the Gray-code property, differing in only one bit as the
sequence wraps around.

In our 2016 paper [3], we identified three properties of the binary Gray code that are of interest to us:
the Gray-code property and the cyclic property as we described before, and the density property, which
identifies the sequence as a permutation ofh0; 1; : : : ; n � 1i. The wide success of the binary reflected Gray
code is due in part to its ability to hold all three of these properties. Despite its many uses, however, the
binary reflected Gray code constrainsn to powers of2. Our paper expanded upon the possibilities ofn while
preserving the three properties we listed above.

Our first method for a dense Gray code generates a Gray code that is not cyclic but preserves den-
sity for any positive integern. For example, a non-cyclic dense Gray code forn D 7 is the se-
quenceh011; 010; 000; 001; 101; 100; 110i, which corresponds to the integersh3; 2; 0; 1; 5; 4; 6i. Our second
method builds upon the first and produces a cyclic dense Gray code ifn is even. Both methods are based on
the standard binary reflected Gray code and, as in the binary reflected Gray code, each number in the output
sequence can be computed in a constant number of word operations given just its indexx in the sequence.

After publishing our paper on binary dense Gray codes, we turned our attention to dense Gray codes for
fixed- and mixed-radix numbers. We wondered whether there was a larger mathematical principle behind
our methods for binary dense Gray codes that could be extended to compute dense Gray codes for any
radices. And sure enough, there was! Not only that, but the method we developed for a non-cyclic mixed-
radix dense Gray code shed new light upon our previous work for dense Gray codes in binary, providing
a more intuitive way of reasoning about all dense Gray codes and simplifying beautifully to recreate the
results of our 2016 paper.

Part I of this thesis discusses Gray codes exclusively for binary numbers. It briefly introduces the
standard binary reflected Gray code [5] and discusses its applications. Then, it covers the two methods for a

3



binary dense Gray code that we presented in our 2016 paper, showing how to derive both Gray codes from
the standard binary reflected Gray code. Part II begins our discussion for dense Gray codes in mixed radices
and builds up to an efficient formula that we can use to computenon-cyclic dense Gray codes for any radices.
Within this part of the thesis, we exploit the path we took when discovering the non-cyclic binary dense Gray
code to guide us on an analogous approach to the non-cyclic mixed-radix dense Gray code. We find that,
like its binary counterpart, the non-cyclic mixed-radix dense Gray code is based on a reflected Gray code,
which we can easily produce using Er’s recursive methods [4]for fixed- and mixed-radix reflected Gray
codes. By closely deconstructing Er’s methods, we are able to develop a set of formulas that calculate each
integer of the Gray code from just its ordinal index in the sequence. From these equations, we can engineer
our simple solution for the non-cyclic mixed-radix dense Gray code. The last section of Part II demonstrates
that indeed, a simplified version of our method for a non-cyclic mixed-radix dense Gray code reaffirms our
results for the binary dense Gray code as stated in Part I.

Part III discusses cyclic mixed-radix dense Gray codes withthe modular Gray-code and cyclic proper-
ties, where, given a mixed-radix sequence of integers and ak-tuple of mixed radicesr D .rk�1; rk�2; : : : ;

r0/, each integer in the sequence differs from its preceding integer—with the first integer differing from the
last integer—in only one digit positioni , and the values of those digits are either0 andri � 1, or they differ
by exactly1. We first present several methods for cyclic mixed-radix full Gray codes, which are where the
numbern of integers in these sequences is equal to the product of the radices inr . The methods we review
from previous literature create restrictions on the radix tuple r in order to guarantee the target sequence,
but this thesis introduces a new recursive procedure that generates a cyclic mixed-radix full Gray code for
any mixed-radix tupler . To compute cyclic mixed-radix dense Gray codes withn integers, wheren is less
than the product of the radices, we introduce a graphical model to represent the modular Gray-code property
among integers. Then, we equate the problem of generating a cyclic mixed-radix dense Gray code to the
task of finding a Hamiltonian cycle in that graph. This graph-theoretic approach helps us reveal several cases
where it is impossible to compute a cyclic mixed-radix denseGray code for a radix tupler and sequence
lengthn.

Contributions of this thesis

In summary, the five major contributions of this thesis are asfollows:

� A formula for each digit of the non-cyclic binary dense Gray code for any positive integern, as given
in our earlier paper [3]. With this formula, we can generate each number in the non-cyclic binary
dense Gray code in constant time.

� An algorithm that generates a cyclic binary dense Gray code for any even number of integers. The
algorithm computes each number in constant time.

� A formula for each digit of the non-cyclic mixed-radix denseGray code for any mixed-radix tupler
and positive integern less than or equal to the product of the radices inr .

� A recursive algorithm that generates each integer in the cyclic mixed-radix full Gray code for a mixed-
radix tupler and positive integern equal to the product of the radices inr .

� A list of cases where it is impossible to compute a cyclic mixed-radix dense Gray code for a mixed-
radix tupler and positive integern strictly less than the product of the radices inr .

4



(a) (b)

Figure 1: Two possible designs for a rotary encoder forn D 8, or 3 bits. Each design shows8 different settings, with
the setting numbers displayed so that the more significant bits are closer to the center of the circular design. Values of
the bits are represented in black and white, where black indicates a1 and white indicates a0. (a) The design shows
the binary ordinal sequence000 to 111 counterclockwise from the arrow.(b) The design shows the binary reflected
Gray code counterclockwise from the arrow.

Part I
Gray codes in binary
We start in Section 2 with an introduction to the standard binary reflected Gray code, including a set of
equations that calculate each integer in the Gray code from just its index in the sequence. Then, in Section 3,
we summarize our previous work [3] on Gray codes and describewithout proof how to compute non-cyclic
dense Gray codes in binary based on the solution for a reflected Gray code. (In Part II, we will prove a more
generalized equation for computing non-cyclic dense Gray codes in any radices and apply that equation to
the binary case, which will both recreate the equations stated in this part of the thesis and serve as a proof
of their correctness.)

In Section 4, the last section of this part, we show how to easily modify our method for a non-cyclic
binary dense Gray code to generate a cyclic binary dense Graycode for even-valued sequence lengths.

2 The standard binary reflected Gray code

Originally designed for use in pulse code communication, Gray codes have since proven their versatility
in a number of applications including rotary encoders, error-correcting codes, and mechanical puzzles such
as Towers of Hanoi. Let’s examine how a Gray code can be used toenhance a rotary encoder. We can
think of a rotary encoder as a dial-like interface made to mapa set ofn physical settings to binary numbers
that it serializes and sends as a bit stream to a receiving computer. Figure 1 shows two different design
possibilities for a rotary encoder. The one on the left contains eight settings that encode for the binary
sequenceh000; 001; : : : ; 111i, corresponding to the decimal sequenceh0; 1; : : : ; 7i, going counterclockwise.
Alternatively, the design on the right shows the eight different settings in Gray-code order, which also
contains all the binary numbers from000 to 111 but with the added Gray-code and cyclic properties that
only one bit changes between any two adjacent states.

We can assume that each of thek D lg n bits change independently when we jump from one setting
to the next. Notice that with the in-order binary sequence, there is a momentary risk of reading the wrong

5



setting. Consider the transition from setting101 to setting110. In this example, the two least-significant
bits change. If the two bits do not change at the same time, theunintended settings100 or 111 may briefly
be in effect. Worse, if we are using the settings to define states in a finite state machine, the state that the
computer receives may momentarily be either of these two erroneous readings and, as a result, the computer
might start executing the wrong set of instructions pointedto by the incorrectly-read state. The Gray-code
property obviates this problem. Therefore, a rotary encoder that defines settings in Gray-code order will
never receive an unintended input.

Gray’s patent describes a simple recursive process that generates thek-bit binary reflected Gray code
for n D 2k. Whenn D 2, the 1-bit binary reflected Gray code is simply the sequenceh0; 1i. To cre-
ate the.lg n/-bit binary reflected Gray code of lengthn, wheren > 2, we start with the.lg n � 1/-bit
binary reflected Gray code of lengthn=2 and follow a3-step process: draw a line of reflection after the
last integer in the.lg n � 1/-bit binary reflected Gray code, reflect the.lg n � 1/-bit Gray code over the
line, and prepend or concatenate0 as the leftmost bit of then=2 numbers before the line and1 as the
leftmost bit of then=2 numbers after the line. For example, to generate the 3-bit binary reflected Gray
code forn D 8, imagine a line of reflection below the 2-bit binary reflectedGray codeh00; 01; 11; 10i for
n D 4; reflect the sequence over that line to generateh00; 01; 11; 10; 10; 11; 01; 00i; and finally, prepend0
to the four numbers of the original sequence and1 to the four numbers of the reflected sequence, yielding
h000; 001; 011; 010; 110; 111; 101; 100i.

Gray observed a method [5] to generate thexth value of the binary reflected Gray code for2k—which
we will denoteg—in a constant number of word operations. The equation is simply g D x ˚ bx=2c, where
˚ is the bitwise exclusive-or operator andb�c is the mathematical floor operator. Thus, we simply need to
set each bit ofg equal to the result of XORing the corresponding bit inx with the next most significant bit
of x, leaving the most significant bit alone. If the binary representation ofx is xk�1xk�2 � � � x0, then the
binary representationgk�1gk�2 � � � g0 of g is calculated as

gk�1 D xk�1 ; (1)

gi D xiC1 ˚ xi for i D 0; 1; : : : ; k � 2 : (2)

In C code, we can denote the set of equations asg = x ˆ (x >> 1) , where ˆ is the bitwise
exclusive-or (XOR) operator and>> is the bitwise right-shift operator. Assuming that bitwiseXOR and
right-shift both take a constant number of word operations,then calculatingg from x will also take a con-
stant number of word operations.

3 The non-cyclic binary dense Gray code

Our method to generate the binary non-cyclic dense Gray codefor n, wheren is not a power of2, is a simple
two-step process. We start by taking the firstn numbers from the binary reflected Gray code for the next
higher power of2. We then perform a bitwise XOR operation on each of those numbers by the bit mask
m D bn=2c to complete the non-cyclic dense Gray code. Let us denote thexth integer of the non-cyclic
dense Gray code forn asd . Table 2 then shows the stepwise generation of all sequence elementsd for
n D 13 andx D 0; 1; : : : ; n � 1. Becauseb13=2c D 6, the maskm in binary is0110.

Recall our claim that we can generated in ‚.1/ word operations given its indexx. We start by defining
k D blg nc to be the minimum number of bits needed to represent the valuen � 1, which is the highest
number we will need to compute. Then the binary reflected Graycode for the next higher power of2 must

6



binary reflected non-cyclic dense decimal
ordinalx Gray codeg maskm Gray coded counterpart

0 0000 0110 0110 6
1 0001 0110 0111 7
2 0011 0110 0101 5
3 0010 0110 0100 4
4 0110 0110 0000 0
5 0111 0110 0001 1
6 0101 0110 0011 3
7 0100 0110 0010 2
8 1100 0110 1010 10
9 1101 0110 1011 11

10 1111 0110 1001 9
11 1110 0110 1000 8
12 1010 0110 1100 12
13 1011
14 1001
15 1000

Table 2: XORing each of the firstn D 13 numbers in the binary reflected Gray code for16 numbers with the mask
m D bn=2c D 0110 produces a permutation ofh0; 1; : : : ; 12i with the Gray-code property.

have sequence length2k . Therefore, we compute thexth value of the binary reflected Gray code and XOR
the result withbn=2c to generate thexth value of the non-cyclic dense Gray code.

Section 2 showed how to computeg, the xth number in the Gray code, in‚.1/ word operations,
so we now proceed to calculated using the maskm, which we denote with the binary representation
mk�1mk�2 � � � m0. We setm to bn=2c, which has the binary representation0 nk�1nk�2 � � � n1. Thus,

mk�1 D 0 ; (3)

mi D niC1 for i D 0; 1; : : : ; k � 2 ; (4)

and therefore, the binary representationdk�1dk�2 � � � d0 of d becomes

dk�1 D gk�1 ˚ mk�1

D xk�1 ˚ 0 (by equations (1) and (3))

D xk�1 (5)

and

di D gi ˚ mi (6)

D xiC1 ˚ xi ˚ niC1 (by equations (2) and (4)) (7)

for i D 0; 1; : : : ; k � 2. In C code, we haved = x ˆ (x >> 1) ˆ (n >> 1) . Since we already
assumed that bitwise XOR takes a constant number of word operations, the process fromx to d also requires
only constant number of word operations.

With more work, we can also compute the inverse of the non-cyclic dense Gray code function. Letx be
the ordinal index where the integerd appears in the non-cyclic dense Gray code. By equation (5), we have

7



xk�1 D dk�1. To compute the remaining bits ofx, we must first understand how to compute the inverse
of the binary reflected Gray code function, which is the ordinal indexx where the integerg appears in the
binary reflected Gray code. Gray [5] showed that

xi D gk�1 ˚ gk�2 ˚ � � � ˚ gi for i D 0; 1; : : : ; k � 2 :

XORingxiC1 to both sides of equation (2) gives

xi D gi ˚ xiC1 for i D 0; 1; : : : ; k � 2 : (8)

XORingmi into both sides of equation (6) and subsequently applying equation (4) gives

gi D di ˚ mi

D di ˚ niC1 for i D 0; 1; : : : ; k � 2 : (9)

Finally, combining equations (8) and (9) gives, fori D 0; 1; : : : ; k � 2,

xi D di ˚ niC1 ˚ xiC1 :

In C, givend , n, andk, we can compute the inversex of the integerd in the non-cyclic dense Gray code,
assuming that the variables have all been declared as integer types. The following code uses equations (5)
and (8) to computex one bit at a time, from bitk � 1 down to bit0. The code places each bitxi into bit
position0 and then shifts it one position to the left before computing bit xi�1:

g = d ˆ (n >> 1);
x = (d >> (k-1)) & 1;
for (i = k-2; i >= 0; i--) {

x <<= 1;
x |= ((x >> 1) ˆ (g >> i)) & 1;

}

This code requires‚.lg n/ word operations, assuming that shifting right by at mostk � 2 bits takes‚.1/

word operations.

4 The cyclic binary dense Gray code

We can easily adapt the method for a length-n non-cyclic dense Gray code to form the cyclic dense Gray
code for2n. The method we describe here is not the same as the method we published in our 2016 paper,
but the intuition behind the new procedure is so obviously correct that it subsumes the work we had done
previously. To generate the cyclic dense Gray code for2n using the new method, we take the non-cyclic
dense Gray code forn and, as with the binary reflected Gray code, reflect the sequence of numbers over a
line of symmetry drawn after the last number of the sequence.Then, append0 as the rightmost bit of the
n=2 numbers before the line, and append1 as the rightmost bit of then=2 numbers below the line to form
the set of even numbersf0; 2; : : : ; 2n � 2g and the set of odd numbersf1; 3; : : : ; 2n � 1g respectively. The
resulting sequence contains the numbers0 to 2n � 1 and is dense. We can easily see that it maintains the
Gray-code and cyclic properties since it mimics the stepwise generation of the binary reflected Gray code
for 2k . Table 3 shows this process in detail for2n D 26; we denote thexth number in the cyclic dense Gray
code for2n with c.

8



non-cyclic dense cyclic dense decimal
ordinalx Gray coded Gray codec counterpart

0 0110 01100 12
1 0111 01110 14
2 0101 01010 10
3 0100 01000 8
4 0000 00000 0
5 0001 00010 2
6 0011 00110 6
7 0010 00100 4
8 1010 10100 20
9 1011 10110 22

10 1001 10010 18
11 1000 10000 16
12 1100 11000 24
13 11001 25
14 10001 17
15 10011 19
16 10111 23
17 10101 21
18 00101 5
19 00111 7
20 00011 3
21 00001 1
22 01001 9
23 01011 11
24 01111 15
25 01101 13

Table 3: Reflecting the non-cyclic dense Gray code forn D 13 and prepending0s to the original sequence and1s to
the reflected sequence generates the cyclic dense Gray code for 2n D 26.

In C, given any positive integern and an ordinal numberx in the range0 to 2n � 1, we can compute the
xth integerc in the cyclic dense Gray code as follows:

if (x >= n) // is x in the second half?
x = 2 * n-1-x; // if so, use x’s reflection

d = x ˆ (x >> 1) ˆ (n >> 1); // compute d
c = d << 1; // left-shift by 1 to double d
if (x >= n) // again, is x in the second half?

c |= 1; // if so, change the least-significant bit to 1

Using our previous definition for the inverse function of thenon-cyclic dense Gray code, we can easily
define an inverse function for the cyclic dense Gray code. Letx be the ordinal index where the integerc

appears in the cyclic dense Gray code. In C, we’ve denoted theinverse function of the integerd in the non-
cyclic dense Gray code asinv(d) and the modulus operator as%. Then, givenn and the valuec, which lies

9



in the range0 to 2n � 1, we can computex as follows:

d = c >> 1; // right-shift c to form d
x = inv(d);
if (c % 2 == 1) // is c in the reflected half?

x = 2 * n-1-x; // if so, reflect x

10



Part II
Non-cyclic Gray codes in fixed and mixed radices
Within this part of the thesis, we will construct a formula that computes each digit in the non-cyclic mixed-
radix dense Gray code. Like the binary case, fixed- and mixed-radix dense Gray codes are based on reflected
Gray codes generated using the corresponding radices. Therefore, Sections 5 and 6 begin our quest for a
mixed-radix dense Gray code by presenting Er’s recursive method [4] for a fixed-radix reflected Gray code
and generalizing his methods to mixed-radix systems. In each of these sections, we analyze the structure of
Er’s recursive method and generate formulas that directly compute each element of Er’s fixed- and mixed-
radix reflected Gray codes given just its index in the sequence, much like the equations that Gray developed
to generate each element of his binary reflected Gray code.

With the equations for fixed- and mixed-radix dense Gray codes in hand, Section 7 then builds an
intuitive formula for each element of a non-cyclic mixed-radix dense Gray code and subsequently proves
its correctness. Finally, Section 8 uses generalized observations about dense Gray codes to circle back and
prove the binary case as described in Part I.

5 The fixed-radix reflected Gray code

Inspired by Gray’s work, Er [4] expanded the reflected Gray code to any radixr � 2. His new Gray code, the
fixed-radix reflected Gray code, is a sequence of integers represented in radixr : each digit may only take on
a value between0 andr � 1. Furthermore, Er’s fixed-radix reflected Gray code holds thegeneric Gray-code
property, where each integer in a sequence of numbers radixr differs from the preceding integer in exactly
one digit. Though Er does not explicitly say so, each pair of consecutive integers in his fixed-radix reflected
Gray code not only differs in one digit, but the difference between the two digits that differ is exactly 1.
Thus, Er’s Gray-code property can be strengthened to make the strict Gray-code property: given any two
consecutive integers in a fixed-radix Gray code, the absolute difference between the only two differing digits
is 1.

Er’s algorithm borrows much of the intuition that Gray used generate the binary reflected Gray code.
His 3-step recursive process contains some minor alterations togeneralize the procedure to radixr . Let us
definen D rk to be the length of the fixed-radix reflected Gray code produced by Er’s method. Here,k
refers to the number of digits used to represent each value inthe sequence. Ifk D 1, the 1-digit fixed-
radix reflected Gray code is simplyh0; 1; : : : ; r � 1i. If k > 1, we can define the.k � 1/-digit sequence
as�k�1, wherek D logr n. Then, thek-digit sequence�k is calculated by starting with the sequence�k�1,
appending its reflection (call it�R

k�1
), then its copy, then its reflection, then its copy, and so on until the

resulting sequence is of lengthrk . The intermediate sequence now hasr parts,dr=2e of which are copies of
the .k � 1/-digit fixed-radix reflected Gray code andbr=2c of which are reflections. Now, we prepend the
numbers0; 1; : : : ; r � 1 to ther parts of the reflected sequence we computed, assigning0 for the firstn=r

numbers,1 for the secondn=r numbers, and so on until we’ve prependedr � 1 for the lastn=r numbers. If
r is odd, then we can write�k as

h0�k�1; 1�R
k�1; 2�k�1; 3�R

k�1; : : : ; .r � 1/�k�1i ; (10)

wherexY indicates the digitwise concatenation ofx with each numbery from the sequenceY . Notice that
since we have an odd number of subsequences, the last subsequence that we prependr �1 to must be a copy

11



of �k�1. Alternatively, ifr is even, the last subsequence of�k is a reflection of�k�1, and thus we can write
�k as

h0�k�1; 1�R
k�1; 2�k�1; 3�R

k�1; : : : ; .r � 1/�R
k�1i : (11)

Let’s take an example wherer is odd: r D 3 andk D 2 so thatn D rk D 9. We start with the1-digit
ternary.r D 3/ reflected Gray code forn D 3 which is the sequence�1 D h0; 1; 2i. First, we append
to �1 the sequence�R

1 and then�1, giving the sequenceh0; 1; 2; 2; 1; 0; 0; 1; 2i. Notice the3 parts of the
intermediate result:h0; 1; 2i, h2; 1; 0i, andh0; 1; 2i. To then=r D 3 numbers in each of these subsequences,
we prepend the digits0, 1, and2 respectively to generate Er’s ternary reflected Gray code for n D 9,
h00; 01; 02; 12; 11; 10; 20; 21; 22i.

How do we calculate a single element from�k? Given an indexx such that0 � x < n, how do we
find thexth number in Er’s fixed-radix reflected Gray code? To answer these questions, we need to build
a stronger understanding of the reflection function. Let’s say a single digitxi in radix r is reflected. Then,
lettingRr.xi / be the reflection function applied to digitxi in radix r , we have

Rr.xi / D r � 1 � xi ; (12)

and we say that the functionRr.xi / reflectsxi around the radixr . But what if the sequence of single
digits �1 D h0; 1; : : : ; r � 1i is reflected? In this case, we can describe the reflected sequence �R

1 D

hr �1; r �2; : : : ; 0i as adescending sequence in contrast with the original sequence�1, which isascending.
With these definitions in hand, we can derive an algorithm to generate each element of the fixed-radix

reflected Gray code from its indexx in the sequence. Our first step is to find the connection between the
steps to compute a fixed-radix reflected Gray code and the corresponding steps for a fixed-radix ordinal
sequence, which is simply a sequence of numbers in increasing order starting from0. Just as we described
Er’s method for an fixed-radix reflected Gray code as a recursive 3-step process, we can do the same for the
ordinal sequence with one minor step change: instead of building thek-digit fixed-radix ordinal sequence
from copies and reflections of the.k � 1/-digit sequence, we build it solely from copies so that the resulting
sequence contains digit positions that follow only the ascending patternh0; 1; : : : ; r � 1i and never the
descending patternhr � 1; r � 2; : : : ; 0i. Let’s walk through this process in detail. We start by defining
n D rk to be the length of the ordinal sequence we are trying to generate, which we will callPk. As before,
if k D 1, thenPk is simply the sequenceh0; 1; : : : ; r � 1i. Otherwise,k > 1 and we can constructPk as

h0Pk�1; 1Pk�1; 2Pk�1; 3Pk�1; : : : ; .r � 1/Pk�1i ; (13)

wherePk�1 refers to the.k � 1/-bit ordinal sequence. Notice that this equation holds regardless of whether
r is even or odd, since we never evaluate its parity to reflectPk�1.

Now, compare how to generatePk with how to generate�k. What can we say about the pattern of thei th
digit in the fixed-radix ordinal sequence compared with the corresponding digit in the fixed-radix reflected
Gray code for the digit positionsi D 0; 1; : : : ; k � 1? The ordinal case is easy. From sequence (13), we
know that we must constructPk by prepending each of the digits inh0; 1; : : : ; r � 1i to each element in
the.rk�1/-length sequencePk�1. Let xy be a condensed notation representing ay-length sequence of the
repeated digitx. Then, if we isolate the most significant digit in each numberof Pk—that is, the digits in
positionk � 1—we see that they follow exactly the patternh0rk�1

; 1rk�1

; : : : ; .r � 1/rk�1

i. Continuing this
logic recursively, we find that fori D 0; 1; : : : ; k �2, the digit in positioni always repeats the.r iC1/-length

12



pattern
0ri

1ri

:::

.r � 1/ri

(14)

until the constructed sequence is of lengthn.
The digits in Er’s fixed-radix reflected Gray code follow a similar rule. As with the fixed-radix ordinal

sequence, the most significant digit in�k follows the patternh0rk�1

; 1rk�1

; : : : ; .r�1/rk�1

i. Here, however,
the recursive rules described in sequences (10) and (11) reflect each alternate subsequence; therefore, the
pattern for thei th digit first takes the form of the sequence (14) and then takes its reverse, giving the new
pattern

0ri

1ri

:::

.r � 1/ri

.r � 1/ri

:::

1ri

0ri

(15)

for i D 0; 1; : : : ; k � 2. Let’s describe the above pattern as having two.r iC1/-length parts: ascending
h0ri

; 1ri

; : : : ; .r �1/ri

i and descendingh.r �1/ri

; .r �2/ri

; : : : ; 0r i

i. If we denote the.r iC1/-length pattern
that digit positioni in �k takes asi , and pattern (14)—the.r iC1/-length pattern that digit positioni in Pk

takes—as�i , then we have simply

i D

�
�i if i is ascending;
�R

i if i is descending:
(16)

For example, Table 4 shows the ternary ordinal sequence juxtaposed with the ternary reflected Gray code
for 3 digits. We’ve denoted thexth element of the sequence�3 by g.

Given a radixr , let us define the fixed-radix representation of ordinalx to bexk�1xk�2 � � � x0. If we take
thexth elementg from the fixed-radix sequence�k and define its digit representation asgk�1gk�2 � � � g0,
then by equation (16), at every digit positioni D 0; 1; : : : ; k�1, digit gi is either an element of an ascending
sequence identical to the pattern forxi , or part of a descending sequence reflecting the pattern forxi . Clearly,
gi is in the ascending sequence if it lies in the first half of the.r iC2/-length pattern (15)—that is, ifr iC1

fits into its index an even number of times—and is in the descending sequence otherwise. Then, using the
reflection functionRr for a single digit as given by equation (12), we have

gi D

�
xi if

�
x=r iC1

˘
is even;

r � 1 � xi otherwise:
(17)

Notice that the expression
�
x=r iC1

˘
is also equivalent to dropping the rightmosti C 1 digits ofx. This for-

mula completes our algorithm for generating ther th elementg in the sequence�k , given only the ordinalx,
the radixr , and the numberk of digits as our inputs.

13



fixed-radix reflected
ordinalx Gray codeg

000 000
001 001
002 002
010 012
011 011
012 010
020 020
021 021
022 022
100 122
101 121
102 120
110 110
111 111
112 112
120 102
121 101
122 100
200 200
201 201
202 202
210 212
211 211
212 210
220 220
221 221
222 222

Table 4: The ordinal and reflected ternary sequences fork D 3 (andn D 27). The underlined digits represent the
digits that were reflected from their values in the ordinal sequence.

6 The mixed-radix reflected Gray code

Although Er’s recursive method for a Gray code [4] was intended for fixed radix, we can easily extend it
to compute Gray codes in mixed radices as well. Furthermore,as with the fixed-radix Gray code, we can
produce a formula that computes thei th digit of thexth element of the mixed-radix Gray code given just its
ordinal indexx in the sequence and the set of mixed radices we are using.

We begin with a few guiding principles for working with numbers in mixed radices. Instead of a single
radix r , we now consider ak-tuple .rk�1; rk�2; : : : ; r0/ of radices. With such a mixed-radix notation, we

can represent the integers0 to
�Qk�1

iD0 ri

�
� 1. Since this section will discuss products of the radices, we

use the notationpi D
Qi

j D0 rj to refer to the product of the rightmosti C 1 radices, with the boundary
casep�1 D 1. Thus, if a number has the mixed-radix representationxk�1xk�2 � � � x0, then its integer value
is

Pk�1
iD0 xi pi�1. In the special case that all radices are equal and represented with a fixed radixr , then

pi D r iC1 and the formula for the value simply becomes
Pk�1

iD0 xi r
i .

Now that we have defined our mixed-radix environment, we analyze the method to construct a mixed-

14



radix reflected Gray code. Letn be the number of integers in the Gray code, so that the highestinteger
we will generate isn � 1. Then, we haven D pk�1. Like Er’s method, the algorithm for a mixed-radix
reflected Gray code follows a3-step recursive process. If the lengthk of the radix tuple is1, then the1-digit
mixed-radix reflected Gray code is simplyh0; 1; : : : ; r0i. Otherwise,k > 1 and we denote the.k � 1/-digit
sequence as�k�1. Thek-digit sequence�k is calculated by appending copies and reflections of the�k�1

subsequence until the sequence is of lengthpk�1—a total ofrk�1 appended subsequences. Finally, to each
of the subsequences, we prepend a digit in the range0 to rk�1 � 1, assigning0 for the first subsequence,1

for the second subsequence, and so on until we have assignedrk�1 for the last subsequence. If we were to
isolate digitk � 1 from �k , we would see the pattern

h0pk�2 ; 1pk�2 ; : : : ; .rk�1 � 1/pk�2i ; (18)

and for digitsi D 0; 1; : : : ; k � 2, we would see the length-2pi pattern

0pi�1

1pi�1

:::

.ri � 1/pi�1

.ri � 1/pi�1

:::

1pi�1

0pi�1

(19)

until the constructed sequence is of lengthn.
The digits of the mixed-radix ordinal sequence follow a similar pattern, except they do not recur-

sively reflect subsequences. Therefore, the pattern for digit k � 1 in the mixed-radix ordinal sequence
is h0pk�2 ; 1pk�2 ; : : : ; .rk�1 � 1/pk�2i as in the mixed-radix Gray code, and the pattern for digiti in the
mixed-radix ordinal sequence is

0pi�1

1pi�1

:::

.ri � 1/pi�1

(20)

for i D 0; 1; : : : ; k � 2.
We can view pattern (19) as having two length-pi halves: an ascending half and a descending half. As in

the fixed-radix Gray code, if we are in the descending half of pattern (19) that a digiti takes in�k , then we
can simply perform a reflection around radixri to get the ordinal pattern (20) for digiti . Table 5 shows the
ordinal and reflected Gray-code sequences for the mixed-radix tuple .2; 3; 4/. Here, we’ve denoted thexth
integer of�k asg. Notice that each descending sequence in a digit positioni is simply a reflection around
ri of the corresponding ascending sequence in the ordinal column.

We end by constructing the formula to compute thexth number of the mixed-radix reflected Gray code
from x. Given ak-tuple of mixed radices.rk�1; rk�2; : : : ; r0/, we define the mixed-radix representation of
ordinalx to bexk�1xk�2 � � � x0 and similarly define thexth elementg from the mixed-radix sequence�k

to have the digit representationgk�1gk�2 � � � g0. By our earlier observation, for each digit positioni D

0; 1; : : : ; k � 1, the digitgi is either an element of an ascending sequence identical to the pattern forxi ,
or part of a descending sequence reflective of the pattern forxi . Clearly,gi is in the ascending sequence

15



ordinalx ordinalx mixed-radix reflected
(decimal) (mixed-radix) Gray codeg

0 000 000
1 001 001
2 002 002
3 003 003
4 010 013
5 011 012
6 012 011
7 013 010
8 020 020
9 021 021

10 022 022
11 023 023
12 100 123
13 101 122
14 102 121
15 103 120
16 110 110
17 111 111
18 112 112
19 113 113
20 120 103
21 121 102
22 122 101
23 123 100

Table 5: The numbers0 to 23 represented using the mixed-radix tuple.2; 3; 4/, along with the reflected Gray code.

if it lies in the first half of the length-2pi pattern (19)—that is, ifpi fits into its index an even number of
times—and is in the descending sequence otherwise. Then, using the reflection functionRri

for a single
digit as given by equation (12), we have

gi D

�
xi if bx=pi c is even;

ri � 1 � xi otherwise:
(21)

As in the case for fixed radix, the expressionbx=pic is equivalent to dropping the rightmosti C1 digits ofx.
The mixed-radix reflected Gray code generated by equation (21) turns out to be equivalent to the sequence
generated by an algorithm in Knuth’s book [8, p. 300] for a “loopless mixed-radix Gray code,” but with
the radices in reverse. Thus, running Knuth’s algorithm using the ordered radix tuple.r0; r1; : : : ; rk�1/ pro-
duces a sequence that, when read from right to left—that is, from least-significant digit to most significant—
is exactly the sequence produced by computing equation (21)for the radices.rk�1; rk�2; : : : ; r0/.

7 The non-cyclic mixed-radix dense Gray code

Having discussed the mixed-radix reflected Gray code, we cannow build an intuition for what is required
for an non-cyclic mixed-radix dense Gray code. As with the non-cyclic binary dense Gray code, we want
to expand the possibilities for sequence lengthn to the set of all whole numbers and produce a permutation

16



of the fixed-radix sequenceh0; 1; : : : ; n � 1i that holds the strict Gray-code property (consecutive pairs of
integers differ in only one digit by only1). Let .rk�1; rk�2; : : : ; r0/ be thek-tuple of mixed radices we will
use to generate a Gray code. How could we go about generating thek-digit, mixed-radix dense Gray code
for n? We’ll first answer this question intuitively by reasoning about ascending and descending patterns in
the fixed-radix reflected Gray code. From this intuition, we will build a formula to calculate eachxth value
of the mixed-radix dense Gray code forn. Finally, we’ll use rigorous methods to prove the algorithm’s
correctness.

We start with an attempt to generate a non-cyclic mixed-radix dense Gray code by taking the firstn

integers of the mixed-radix reflected Gray code. Suppose ourradices are.3; 3; 4/ and we wish to produce
the dense Gray code forn D 30 using these radices. Table 6 shows the first30 numbers of the mixed-radix
reflected Gray code. This approach did not work because we have included the mixed radix numbers213

and212 which correspond to the integers31 and30, respectively, and are both out of range for our dense
Gray code. Meanwhile, we have missed the numbers210 and211, or 28 and29 in decimal.

Notice that the0th digit (the rightmost digit) within the mixed-radix reflected Gray code is cut off within
a descending sequence. Intuitively, if we could make the cut-off point occur outside a descending sequence,
then we would favor getting lower numbers in the generated Gray code. To that end, if thei th digit would
be cut off within a descending sequence, we reflect alln values for that digit, which either cuts off that digit
in an ascending sequence or between ascending and descending sequences. Let us denote thexth value of
the mixed-radix dense Gray code, calculated with the mixed-radix tuple.rk�1; rk�2; : : : ; r0/, asd . Then
Table 6 shows the correct mixed-radix dense Gray code forn D 30.

We now produce a formula to generate each digit of the mixed-radix dense Gray code, using the intuition
we gathered about cut-off points. We know that the cut-off point for thei th digit occurs within a descending
sequence in the mixed-radix reflected Gray code ifbn=pi c is odd. In this case, we reflect alln values for
the i th digit of the mixed-radix reflected Gray code, as given in equation (21). Because composing two
reflection functions gives the identity function, we can modify equation (21) to get the following formula
for thei th digit di in thexth integerd of the mixed-radix dense Gray code:

di D

�
xi if bx=pic mod2 D bn=pic mod2 ;

ri � 1 � xi otherwise:
(22)

Assuming that thek valuespk�1; pk�2; : : : ; p0 have all been precomputed (which can be done easily in
‚.k/ time), we can compute each digit in the mixed-radix dense Gray code in constant time.

Proof of our method for the non-cyclic mixed-radix dense Gray code

Here, we show that the digits produced by equation (22) form numbers that give a dense Gray code. We
need to prove three properties, which we will prove in the following order:

� Eachk-digit number is unique.

� Eachk-digit number is in the range0 to n � 1.

� The sequence obeys the strict Gray-code property, so that each number in the sequence differs from
the preceding number in exactly one digit, and the values of these digits differ by exactly1.

17



ordinalx ordinalx mixed-radix reflected mixed-radix dense decimal
(decimal) (mixed-radix) Gray codeg Gray coded counterpart

0 000 000 003 3
1 001 001 002 2
2 002 002 001 1
3 003 003 000 0
4 010 013 010 4
5 011 012 011 5
6 012 011 012 6
7 013 010 013 7
8 020 020 023 11
9 021 021 022 10

10 022 022 021 9
11 023 023 020 8
12 100 123 120 20
13 101 122 121 21
14 102 121 122 22
15 103 120 123 23
16 110 110 113 19
17 111 111 112 18
18 112 112 111 17
19 113 113 110 16
20 120 103 100 12
21 121 102 101 13
22 122 101 102 14
23 123 100 103 15
24 200 200 203 27
25 201 201 202 26
26 202 202 201 25
27 203 203 200 24
28 210 213 210 28
29 211 212 211 29

Table 6: The firstn values of the mixed-radix reflected Gray code and the mixed-radix dense Gray code for radices
.3; 3; 4/ andn D 30. Because the0th digit (the rightmost digit) in the mixed-radix reflected Gray code is cut off
within a descending sequence, the mixed-radix dense Gray code is the mixed-radix reflected Gray code with the0th
digit reflected aroundr0 D 4.

18



Lemma 1 Let x and y be whole numbers such that 0 � x; y < n and x ¤ y. Let x0 and y0 be the xth
and yth values, respectively, of the mixed-radix dense Gray code whose digits are given by the formula in
equation (22). Then x0 ¤ y 0.

Proof: Becausex ¤ y, there must be some leftmost digit positionj such thatxj ¤ yj . As we ob-
served earlier, the value

�
x=pj

˘
equals the.k � j � 1/-digit mixed-radix numberxk�1xk�2 � � � xj C1 for

radicesr D .rk�1; rk�2; : : : ; rj C1/. Likewise, the value
�
y=pj

˘
equals the.k � j � 1/-digit mixed-radix

numberyk�1yk�2 � � � yj C1 for radicesr . By how we defined positionj , we havexk�1xk�2 � � � xj C1 D

yk�1yk�2 � � � yj C1. Putting these equalities together, we have
�
x=pj

˘
D xk�1xk�2 � � � xj C1

D yk�1yk�2 � � � yj C1

D
�
y=pj

˘
:

By equation (22), therefore, we either havex0

j D xj and y0

j D yj or we havex0

j D rj � 1 � xj and
y0

j D rj � 1 � yj . In either case, sincexj ¤ yj , we havex0

j ¤ y0

j , and sox0 ¤ y0.

Lemma 2 Let x be a whole number such that 0 � x < n, and let x0 be the xth value of the mixed-radix
dense Gray code whose digits are given by the formula in equation (22). Then x0 < n.

Proof: Becausex ¤ n, there must be some leftmost bit positionj wherex andn differ. Additionally,
becausex < n, we must havexj < nj . We can use this information along with the following claim to prove
our lemma:

For digit positionsi D j; j C 1; : : : ; k � 1, we havex0

iC1 D niC1.

To prove the claim, we note that we havexk�1xk�2 � � � xj C1 D nk�1nk�2 � � � nj C1 by the definition
of j , which impliesxk�1xk�2 � � � xiC1 D nk�1nk�2 � � � niC1 for i D j; j C 1; : : : ; k � 1. Earlier, we
noticed that for any digit positioǹ, the.k � ` � 1/-digit mixed-radix numberxk�1xk�2 � � � x`C1 is equal
to bx=p`c for radices.rk�1; rk�2; : : : ; r`C1/ and, similarly,nk�1nk�2 � � � n`C1 is equal tobn=p`c for the
same radices. Therefore, we have

bx=pic D xk�1xk�2 � � � xiC1

D nk�1nk�2 � � � niC1

D bn=pic (23)

for i D j; j C 1; : : : ; k � 1. By equation (22) and the definition ofj , we havex0

iC1 D xiC1 D niC1 for
digit positionsi D j; j C 1; : : : ; k � 1, which proves the claim.

Now we return to our proof of the lemma. By the claim, we have

x0

k�1x0

k�2 � � � x0

j C1 D nk�1nk�2 � � � nj C1 :

Furthermore, by equation (23), we have
�
x=pj

˘
D

�
n=pj

˘
. Equation (22) andxj < nj imply thatx0

j D

xj < nj , giving us

x0 D x0

k�1x0

k�2 � � � x0

j C1x0

j x0

j �1 � � � x0

0

D nk�1nk�2 � � � nj C1xj x0

j �1 � � � x0

0

< nk�1nk�2 � � � nj C1nj nj �1 � � � n0

D n :

19



Thus, we have shown that ifx < n, thenx0 < n.

Lemma 3 Let x and y be whole numbers such that 0 � x; y < n and y D x C 1. Let x0 and y0 be the xth
and yth values, respectively, of the mixed-radix dense Gray code whose digits are given by the formula in
equation (22). Then x0 and y0 differ in only one digit, and the values of those digits differ by 1.

Proof: Becausey D x C 1, there must be some leftmost digit positionj such thatxj ¤ yj , so that
xk�1xk�2 � � � xj C1 D yk�1yk�2 � � � yj C1. Moreover, we must have thatyj D xj C 1 and, fori D 0; 1; : : : ;

j � 1, bothxi D ri � 1 andyi D 0. In other words, we can viewx andy as

x D xk�1 � � � xj C1 xj rj �1 � 1 � � � r0 � 1 ;

y D xk�1 � � � xj C1 xj C 1 0 � � � 0 :
(24)

We will examine bit positionsk � 1; : : : ; j C 1, bit positionj , and bit positionsj � 1; : : : ; 0 of x0 andy0 in
three separate cases.

� Bit positionsk � 1; : : : ; j C 1:
Because

bx=pic D xk�1xk�2 � � � xiC1

D yk�1yk�2 � � � yiC1

D by=pic

for i D k � 1; : : : ; j C 1, equation (22) implies that

x0

k�1x0

k�2 � � � x0

j C1 D y0

k�1y0

k�2 � � � y0

j C1 : (25)

� Bit positionj :
Here, we have

�
x=pj

˘
D xk�1xk�2 � � � xj C1 and

�
y=pj

˘
D yk�1yk�2 � � � yj C1. Thus, we have

�
x=pj

˘
D xk�1xk�2 � � � xj C1

D yk�1yk�2 � � � yj C1

D
�
y=pj

˘
:

Therefore, we either havex0

j D xj andy0

j D yj D xj C 1 or we havex0

j D rj � 1 � xj and

y0

j D rj � 1 � yj

D rj � 1 � .xj C 1/

D rj � 2 � xj :

In either case, we must have that
y0

j D x0

j ˙ 1 : (26)

20



� Bit positionsj � 1; : : : ; 0:
For bit positionsi D j � 1; : : : ; 0, equation (24) gives

bx=pic D xk�1 � � � xj C1 xj rj �1 � 1 � � � riC1 � 1 ;

by=pic D xk�1 � � � xj C1 xj C 1 0 � � � 0 :

Therefore, we have thatby=pic D bx=pic C 1, and soby=pic andbx=pic have different parities.
Thus, by equation (22), we either havex0

i D xi D ri � 1 andy0

i D ri � 1 � yi D ri � 1 or we have
x0

i D ri � 1 � xi D 0 andy0

i D yi D 0. Either way, we have

x0

j �1x0

j �2 � � � x0

0 D y0

j �1y 0

j �2 � � � y0

0 : (27)

Combining the three cases in equations (25), (26), and (27) completes the proof.

Thus, we have the following theorem.

Theorem 4 Correctness of the formula for generating a mixed-radix dense Gray code
The method given by equation (22) to generate the i th digit of the mixed-radix dense Gray code of x D

0; 1; : : : ; n � 1 produces a permutation of h0; 1; : : : ; n � 1i such that each pair of consecutive numbers in
the permutation differs in just one digit, and the values of these digits differ by exactly 1.

Proof: Immediate from Lemmas 1–3.

We have now proven that our method for each digit of the mixed-radix dense Gray code works for any
positive integern.

8 Special cases for the non-cyclic mixed-radix dense Gray code

Now, we show how to simplify equation (22) for thei th digit of eachxth integer of the mixed-radix dense
Gray code to cover two special cases: when the radix is fixed for all digit positions (all radicesri are equal)
and for binary Gray codes (when that fixed radix equals2). We show that in the binary case, we can equate
the simplified equation (22) to the previous set of formulas (5) and (7) we discovered and published in our
2016 paper [3].

In the fixed-radix case, the denominatorpi in the conditional expression of equation (22) gives
Qi

j D0 ri ,
or r iC1 for the fixed radixr . Therefore, the following formula generates thei th digit di in thexth integer
of the fixed-radix dense Gray code:

di D

�
xi if

�
x=r iC1

˘
mod2 D

�
n=r iC1

˘
mod2 ;

r � 1 � xi otherwise:
(28)

Like the method for the mixed-radix dense Gray code, if we assume that thek valuesr; r2; : : : ; rk have
been precomputed, then we can compute each digit of each number of the fixed-radix dense Gray code in
constant time.

Observe in Table 7 how we use equation (28) to generate the non-cyclic mixed-radix dense Gray code
for r D 3, n D 16, andk D bn=rc D 3. We’ve denoted thexth element of the non-cyclic mixed-radix dense

21



mixed-radix reflected mixed-radix dense decimal
ordinalx Gray codeg Gray coded counterpart

0 000 022 8
1 001 021 9
2 002 020 6
3 012 010 3
4 011 011 4
5 010 012 5
6 020 002 2
7 021 001 1
8 022 000 0
9 122 100 9

10 121 101 10
11 120 102 11
12 110 112 14
13 111 111 13
14 112 110 12
15 102 120 15

Table 7: Applying equation (22) for each digit of the first16 numbers of the ternary reflected Gray code outputs the
non-cyclic ternary reflected Gray code forn D 16.

Gray code asd and displayed the firstn elements of the fixed-radix reflected Gray code for comparison. A
close examination of the two least-significant digits in thereflected Gray code shows that both digits are in
descending patterns at the cut-off. Our dense Gray code forn D 16 reflects digits0 and1 of the fixed-radix
reflected Gray code to form only ascending patterns at the point where the sequence is cut. We see from
the decimal counterparts that the resulting sequence is indeed dense: it is a permutation of the sequence
h0; 1; : : : ; n � 1i.

We now consider when the radixr is fixed at2—that is, when we want to generate a binary dense Gray
code. In this special case, equation (28) simplifies even further to equation (7). To confirm this claim,
we first notice that

�
x=2iC1

˘
gives us the binary numberxk�1xk�2 � � � xiC1. When we take this integer

modulo2, we are simply determining its parity, which is given by justthe single bitxiC1. Similarly, we
have

�
n=2iC1

˘
mod2 D niC1. Therefore, equation (28) reduces to just

x0

i D

�
xi if niC1 D xiC1 ;

2 � 1 � xi D xi otherwise;
(29)

wherexi denotes the logical negation of bitxi . We can easily see that formulas (7) and (29) are equivalent
by examining two cases for each biti D 0; 1; : : : ; k � 1:

� Case1: niC1 D xiC1. By equation (7), we have

x0

i D xi ˚ xiC1 ˚ niC1

D xi ˚ xiC1 ˚ xiC1

D xi ;

which matches the first case in equation (29).

22



� Case2: niC1 ¤ xiC1. Here, we have

x0

i D xi ˚ xiC1 ˚ niC1

D xi ˚ xiC1 ˚ xiC1

D xi ;

which matches the second case in equation (29).

Thus, we see that our earlier method for finding non-cyclic binary dense Gray codes is really just a special
case of the method in Section 7 for finding non-cyclic mixed-radix dense Gray codes.

23



Part III
Cyclic Gray codes in fixed and mixed radices
In this final part, we present methods to generate cyclic mixed-radix Gray codes for anyk-tuple of radices
r D .rk�1; rk�2; : : : ; r0/ and any positive integern � pk�1, where as before,pi D

Qi
j D0 rj , so that the

Gray code produced is a permutation of the sequenceh0; 1; : : : ; n � 1i. The task of computing a cyclic
mixed-radix Gray code is quite hard, so we will weaken our Gray-code property from strict tomodular,
where each integer in the Gray code differs from the preceding integer in only one digit positioni , and the
values of those digits are either0 andri � 1, or they differ by exactly1. For the remainder of this part, we
will use this definition of the Gray-code property to discussmixed-radix sequences.

Section 9 examines existing literature on cyclic mixed-radix Gray codes. Previously, all known methods
for producing a mixed-radix Gray code with the modular Gray-code and cyclic properties were constrained
in two ways: first, they produce onlyfull Gray codes, wheren D pk�1; and second, in order to guarantee
the full Gray code, they further restrict the radix tuple to only certain values and forms. In Section 10, we
will obviate the latter restriction and provide a recursivemethod to generate a full Gray code for any tuple
of mixed radices. Although we are unable to do so for the former restriction, we do provide in Section 11
a graph-theoretic approach to thinking about cyclic mixed-radix non-full Gray codes or, equivalently, cyclic
mixed-radix dense Gray codes wheren can be any positive integer less than or equal topk�1. Following
this new line of thinking, we then build a list of cases for which we prove it is impossible to generate a cyclic
mixed-radix dense Gray code for a particular set of radices and a positive integern.

9 Previous work for cyclic mixed-radix full Gray codes

Here, we compare previous attempts to generate cyclic mixed-radix full Gray codes. As we mentioned in the
introduction to this part, all three methods listed in this section place restrictions upon the mixed-radix tuple
r D .rk�1; rk�2; : : : ; r0/ in order to guarantee the cyclic property for the resulting Gray code. We have
already seen the first of the three: Er’s reflected mixed-radix Gray code [4]. We will use the pattern (18) that
digit k�1 takes and the pattern (19) that digits0; 1; : : : ; k�2 take in Er’s mixed-radix sequence to show that
Er’s method generates a cyclic mixed-radix full Gray code ifand only ifrk�1 is even. The second algorithm
we will describe is Cohn’s method for a modular fixed-radix Gray code [2], which, when generalized to
mixed radices, produces a cyclic full Gray code if and only ifeach radixriC1 is a multiple of the radixri for
i D 0; 1; : : : ; k � 2. Finally, we compare Er’s and Cohn’s sequences to Anantha and AlBdaiwi’s modular
Gray code [1], which combines both Er’s and Cohn’s methods togenerate a cyclic mixed-radix full Gray
code if and only if each radix has an equal or larger value thanthe less significant radices and all radices in
the tuple share the same parity.

Er’s mixed-radix full Gray code

Using the patterns (18) and (19) that we derived for Er’s mixed-radix full Gray code in Section 6, we now
prove the single case in which Er’s method generates a modular cyclic full Gray code.

Theorem 5 Modular cyclicity of Er’s mixed-radix full Gray code
Given the radix tuple .rk�1; rk�2; : : : ; r0/, the pattern (18) that digit k � 1 takes and the pattern (19) that

24



digits 0; 1; : : : ; k � 2 take in Er’s mixed-radix full Gray code produce a sequence with the modular cyclic
property if and only if rk�1 is even.

Proof: To get the modular cyclic property, we must show that the0th and last integers generated by
pattern (18) for digitk � 1 and pattern (19) for digiti , wherei D 0; 1; : : : ; k � 2, differ in only one digit
positionj , and the values of those digits are either0 andrj � 1, or they differ by only1. To do so, we will
examine the digit positionk � 1 and the digit positions0; 1; : : : ; k � 2 separately.

For digit positionk � 1, which follows the length-pk�1 pattern (18), the0th digit is0, and the last digit
is rk�1 � 1. Therefore, digitk � 1 is the digit that differs, and as a result, we can have the modular cyclic
property only if, for the remaining digit positionsi D 0; 1; : : : ; k � 2, the0th and last values of digiti do
not differ.

We now examine those digit positionsi D 0; 1; : : : ; k � 2, each of which follows the length-2pi digit
pattern (19) until the constructed sequence has lengthpk�1. Clearly by pattern (19), the0th value of each
digit i is 0. If the modular cyclic property is to hold, then the last value of each digit must also be0. This
attribute occurs only whenpk�1, which is an integer multiple ofpi , is also an integer multiple of2pi so
that the length-pk�1 sequence being constructed cuts off exactly when pattern (19) finishes and does not cut
off after the first half of pattern (19). Thus, we have thatpk�1 must be an integer multiple of2pk�2, and so
pk�1=pk�2 D rk�1 must be even. Thus, an even radixrk�1 is necessary to show that Er’s Gray code has
the modular cyclic property.

To prove that evenrk�1 is also sufficient to show that Er’s Gray code has the modular cyclic property,
consider again the digit positions0; 1; : : : ; k � 2. Here, we must show that ifrk�1 is even, thenpk�1 is an
integer multiple of2pi for i D 0; 1; : : : ; k � 2, and therefore, the last value of each digiti is 0. We first
notice that becausepk�1 is an integerrk�1 multiple of pk�2, the radixrk�1 is even, andrk�1 is greater
than or equal to2 by nature of being a radix, thenpk�1 is also an integer multiple of2pk�2. Sincepk�1 is
an integer multiple of2pk�2, then because

pk�2 D rk�2 � rk�3 � : : : � ri � ri�1 � : : : � r0

D rk�2 � rk�3 � : : : � ri � pi

D pi

Qk�2
j DiC1 rj ;

(30)

we must also have thatpk�1 is an integer multiple of2pi for i D 0; 1; : : : ; k � 3. Thus, having thatrk�1 is
even is both necessary and sufficient to show modular cyclicity in Er’s Gray code.

Cohn’s mixed-radix full Gray code

Here, we start with Cohn’s method for a fixed-radix full Gray code [2], which guarantees a full sequence with
the modular Gray-code and cyclic properties for any fixed radix r , and later, we will generalize his method
to build a mixed-radix full Gray code that is cyclic for radixtuples of a specific form. Letr be the fixed
radix, and letk be the number of digits we will compute for Cohn’s fixed-radixGray code, so thatn D rk .
Then, like the digit positions in the ordinal sequence forr andn, each digit positioni D 0; 1; : : : ; k � 1 in
Cohn’s Gray code follows.riC1/-length patterns, except instead of being simple ascendingsequences, the

25



ordinal ordinal Cohn’s
(decimal) (fixed-radix) Gray code

0 000 000
1 001 001
2 002 002
3 010 012
4 011 010
5 012 011
6 020 021
7 021 022
8 022 020
9 100 120

10 101 121
11 102 122
12 110 102
13 111 100
14 112 101
15 120 111
16 121 112
17 122 110
18 200 210
19 201 211
20 202 212
21 210 222
22 211 220
23 212 221
24 220 201
25 221 202
26 222 200

Table 8: Cohn’s fixed-radix full Gray code for radixr D 3. The sequence has the modular Gray-code and cyclic
properties.

digit patterns in Cohn’s sequence are of the form

.m modr/ri

..1 C m/ modr/ri

..2 C m/ modr/ri

:::

..r � 1 C m/ modr/ri

;

wherem is an integer offset used in conjunction with the modulus operator to cyclically rotate the standard
ascending pattern (14) bymr i positions. We can observe this pattern in Table 8, which shows Cohn’s
fixed-radix full Gray code forr D 3 andk D 3, so thatn D rk D 27.

Cohn [2] shows how to compute each integer of his Gray code from just its ordinal index in the sequence
using matrix-vector multiplication, where the ordinal index is ak-digit vector that is multiplied with ak � k

transformation matrix to compute the corresponding integer in Cohn’s code. Alternatively, Sharma and
Khanna [9] provide a set of formulas that generate each digitof the xth numberx0 of Cohn’s fixed-radix

26



sequence. Letx have the digit representationxk�1xk�2 � � � x0, and letx0 have the digit representation
x0

k�1
x0

k�2
� � � x0

0. Then, the formulas are as follows:

x0

k�1 D xk�1 ; (31)

x0

i D .xi � xiC1/ modr for i D 0; 1; : : : ; k � 2 ; (32)

and each digit ofx0 can be calculated in constant time.
We can easily use equations (31) and (32) of Cohn’s fixed-radix full Gray code to produce analogous

formulas for Cohn’s mixed-radix full Gray code for thek-tuple of radices.rk�1; rk�2; : : : ; r0/. If x0 is the
xth number of Cohn’s mixed-radix full Gray code, then keepingequation (31) as before, so thatx0

k�1
D

xk�1, then we can modify equation (32) to get

x0

i D .xi � xiC1/ modri for i D 0; 1; : : : ; k � 2 : (33)

Table 9 shows Cohn’s mixed-radix full Gray code when we use equations (31) and (33) to generate all digits
in the sequence. Notice that not only is the resulting sequence modularly cyclic, but also the radix tuple
.4; 4; 2/ has the property that each radix is an integer multiple of theradix that is immediately less significant.
The following theorem shows that this condition on the radixtuple is both necessary and sufficient for
equations (31) and (33) to generate a mixed-radix full sequence with the modular cyclic property.

Theorem 6 Modular cyclicity of Cohn’s mixed-radix full Gray code
Given the radix tuple .rk�1; rk�2; : : : ; r0/, Cohn’s mixed-radix full Gray code, produced by equations (31)
and (33) when applied to each integer in the ordinal sequence h0; 1; : : : ; pk�1 � 1i, has the modular cyclic
property if and only if, for each digit position i D 0; 1; : : : ; k � 2, the radix riC1 is an integer multiple of ri .

Proof: Let x0 be the solution to equations (31) and (33) whenx D 0, so thatx0 is the0th integer generated
in Cohn’s mixed-radix sequence. Lety0 be the solution to equations (31) and (33) when we usey D pk�1�1

in place ofx, so thaty0 is the last integer generated in Cohn’s mixed-radix sequence. Then, to get the
modular cyclic property, we must show thatx0 andy0 differ in only one digit positionj , and those digits are
either0 andrj � 1, or they differ by only1.

First, let us examine the digit representationx0

k�1
x0

k�2
� � � x0

0 of x0 whenx D 0. From equation (31),
we havex0

k�1
D xk�1 D 0. Then, fori D k � 2; k � 3; : : : ; 0, we have

x0

i D .xi � xiC1/ modri (by equation (33))

D .0 � 0/ modri (by x D 0)

D 0 ;

giving 0 as the value of all the digits ofx0.
Now, we examine the digit representationy0

k�1
y0

k�2
� � � y0

0 of y0, which is a harder problem. To calculate
each digit ofy0, we evaluate equations (31) and (33), but we replacex with y D pk�1 � 1, which has the
digit representation

y D yk�1 yk�2 � � � y0

D rk�1 � 1 rk�2 � 1 � � � r0 � 1 :
(34)

By equations (31) and (34), we havey0

k�1
D yk�1 D rk�1 � 1. Thus, digitk � 1 is the digit that differs,

and as a result, we can have the modular cyclic property only if, for the remaining digitsi D 0; 1; : : : ; k � 2,
the values ofx0

i andy0

i do not differ.

27



ordinal ordinal Cohn’s
(decimal) (mixed-radix) Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 020 020
5 021 021
6 030 031
7 031 030
8 100 130
9 101 131

10 110 101
11 111 100
12 120 110
13 121 111
14 130 121
15 131 120
16 200 220
17 201 221
18 210 231
19 211 230
20 220 200
21 221 201
22 230 211
23 231 210
24 300 310
25 301 311
26 310 321
27 311 320
28 320 330
29 321 331
30 330 301
31 331 300

Table 9: Cohn’s mixed-radix full Gray code for the3-tuple of radices.4; 4; 2/. Because every radixri , wherei D 1; 2,
is an integer multiple of radixri�1, this sequence has the modular cyclic property.

28



Anantha and
Er Cohn AlBdaiwi ours

Gray-code strict modular modular strict
property

modular yes, if yes, if for yes, if for yes
cyclic rk�1 is even i D 0; 1; : : : ; k � 2, i D 0; 1; : : : ; k � 2,

property ri dividesriC1 riC1 � ri and
riC1 mod2 D ri mod2

formula for yes, yes, yes, no
each digit equation (22) equations (31) and (33) not shown

Table 10: Comparison of four different methods for a cyclic mixed-radix full Gray code: Er’s [4], Cohn’s [2], Anantha
and AlBdaiwi’s [1], and ours (Section 10).

We now examine the values of digity0

i for i D 0; 1; : : : ; k�2, which are given by the following equation:

y0

i D .yi � yiC1/ modri (by equation (33))

D ..ri � 1/ � .riC1 � 1// modri (by equation (34))

D .ri � riC1/ modri

D �riC1 modri : (35)

Recall that in order for Cohn’s mixed-radix sequence to be cyclic, we must have thaty0

i D x0

i D 0 for
i D 0; 1; : : : ; k � 2. Therefore, by equation (35), we must have�riC1 modri D 0, which occurs if and
only if there exists an integer̀such that̀ ri � riC1 D 0. Thus, we must haveriC1 D `ri , and therefore,
riC1 must be an integer multiple ofri for i D 0; 1; : : : ; k � 2, which we have now proven is necessary and
sufficient to show that equations (31) and (33) produce a sequence with the modular cyclic property.

Anantha and AlBdaiwi’s mixed-radix full Gray code

Now that we’ve seen both Er’s and Cohn’s mixed-radix Gray codes, we briefly mention Anantha and
AlBdaiwi’s method [1] for a mixed-radix full Gray code, which combines both Er’s and Cohn’s meth-
ods to produce a formula that computes each digit of their sequence. Anantha and AlBdaiwi show that their
method can guarantee cyclicity if and only if each radix in the radix tuple has an equal or larger value than
its less significant radices and all radices have the same parity [1].

Table 10 compares each method for a cyclic mixed-radix full Gray code discussed in this section, sum-
marizing their restrictions on the radix tuple.rk�1; rk�2; : : : ; r0/. In the table, we also include our own
recursive method for a cyclic mixed-radix full Gray code, which we describe and prove correct in the fol-
lowing section.

10 A recursive method for a cyclic mixed-radix full Gray code

Now that we have seen previous attempts to generate a cyclic mixed-radix full Gray code, along with
the cases in which they do and do not work, we present a novel recursive algorithm that computes this

29



target sequence for anyk-tuple of mixed radices. Our algorithm, which we list below as the procedure
RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE, takes three arguments:.1/ the radix tupler D .rk�1;

rk�2; : : : ; r0/; .2/ the precomputedk-tuple of valuesp D .pk�1; pk�2; : : : ; p0/, which is easy to calcu-
late in‚.k/ time; and.3/ a most significant digit positionj that the procedure will recurse on to generate
and return the final sequence ofj -digit integers. In order to simplify the discussion of our algorithm’s
correctness, we now use the integerpj instead ofn to refer to the length of the sequence generated by
RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/, since this term lends itself more easily to the
logic of our proofs.

Notice that becausej represents the most significant bit position that will be generated in the output Gray
code, calling the procedure withj D k � 1 effectively produces the cyclic mixed-radix full Gray codefor
lengthpk�1. In the following algorithm, we define the operatork to be the prepend or concatenation operator
between a digita and a mixed-radix integerb, so that ifb has the digit representationbj �1bj �2 � � � b0, then
a k b has the digit representationa bj �1bj �2 � � � b0. Finally, although we constructresult by appending to
it, we assume that once we’ve returned the completeresult array, we can then index into it in the usual way
for arrays (i.e.,resultŒi � denotes thei th integer inresult).

RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/

1 initialize result to an empty list
2 if j == 0

3 // base case: compute thep0-length Gray code
4 for i D 0 to r0 � 1

5 appendi to result
6 else// recursively compute thepj �1-length mixed-radix Gray code
7 prev D RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j � 1; r; p/

8 // prev has lengthpj �1. Fill in the firstpj �1 values ofresult with the values inprev
9 for i D 0 to pj �1 � 1

10 append0 k prevŒi � to result
11 // for each value in the previous Gray code, going back to front,append to it a new
12 // most significant digit, alternating between the digit ascending and descending,
13 // going between 1 andrj � 1

14 ascending D TRUE

15 for i D pj �1 � 1 downto 0

16 if ascending
17 for ` D 1 to rj � 1

18 append̀ k prevŒi � to result
19 else for` D rj � 1 downto 1

20 append̀ k prevŒi � to result
21 ascending D not ascending
22 return result

Table 11 shows the outputresult when the procedure is called on the integerj D 2, the mixed-radix
tuple r D .3; 2; 5/, and the product-of-radices tuplep D .30; 10; 5/. If concatenating a single digit to
a .j � 1/-digit number takes constant time for any positive integerj , then the algorithm requires only
‚.n/ time to generate and return the cyclic mixed-radix full Graycode forn and r . In another case, if
concatenating a single digit to a.j � 1/-digit integer takes time linear to the total number of digits j , then

30



ordinal ordinal our
(decimal) (mixed-radix) Gray code

0 000 000
1 001 001
2 002 002
3 003 003
4 004 004
5 010 014
6 011 013
7 012 012
8 013 011
9 014 010

10 100 110
11 101 210
12 102 211
13 103 111
14 104 112
15 110 212
16 111 213
17 112 113
18 113 114
19 114 214
20 200 204
21 201 104
22 202 103
23 203 203
24 204 202
25 210 102
26 211 101
27 212 201
28 213 200
29 214 100

Table 11: RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.2; .3; 2; 5/; .30; 10; 5// produces our cyclic mixed-
radix full Gray code for the3-tuple of radices.3; 2; 5/.

31



it requires‚.nk/ time to produce the cyclic mixed-radix full Gray code forn and thek-tupler .

Proof of our method for a cyclic mixed-radix full Gray code

We will now prove that the above algorithm correctly generates the cyclic mixed-radix full Gray code for
the radix tupler D .rk�1; rk�2; : : : ; r0/ and the most significant bit positionj . To do so, we need to prove
several properties of the sequence returned by the procedure, which we will do in the following order:

� The sequence has lengthpj .

� Each integer in the sequence hasj C 1 digits.

� Each integer in the sequence is in the range0 to pj � 1.

� Each integer in the sequence is unique.

� The sequence obeys the strict Gray-code property, so that each number in the sequence differs from
the preceding number in exactly one digit positioni , and the values of those digits differ by exactly1.

� The sequence obeys the modular cyclic property, so that the last and first numbers in the sequence
differ in exactly one digit, and the values of those digits are either0 and ri � 1, or they differ by
exactly1.

We start with the basics. At the very least, RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/

should return a sequence of the length that we expect, and each integer in that sequence should be represented
using the number of digits that we expect. Lemmas 7 and 8 belowprove that our procedure fulfills these two
properties necessary for developing a cyclic mixed-radix dense Gray code.

Lemma 7 RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ produces a sequence of pj integers.

Proof: There are only two cases to consider. The first case occurs when j D 0, so we execute lines 4–5,
which simply store store the values0 to r0 � 1 as ther0 D p0 D pj integers ofresult. In the other case, we
first execute lines 9–10, which fillresult with the firstpj �1 integers. Then, we enter a for-loop in line 15,
which contributes a factor ofpj �1, and within this for-loop, we execute exactly one of the inner for-loops
in lines 17–18 or 19–20. Each execution of an inner for-loop appendsrj � 1 integers toresult. Therefore,
the length ofresult is given by

pj �1 C pj �1.rj � 1/ D pj �1.1 C rj � 1/

D pj �1 � rj

D pj :

In both cases, the call RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ generates a length-pj se-
quence.

Lemma 8 Each integer that RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ produces is repre-
sented with j C 1 digits.

32



Proof: This proof is by induction onj . For j D 0; 1; : : : ; k � 1, the inductive hypothesis is that
RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ produces a sequence of integers that are all rep-
resented withj C 1 digits. In the base case, wherej D 0, we execute lines 4–5, which simply create
result as a list of1- or .j C 1/-digit integers. Otherwise, in the inductive step, we execute lines 7–21. By
the inductive hypothesis, the recursive call in line 7 returnedprev with ..j � 1/ C 1/- or j -digit integers.
After the execution of line 7, whenever we build a number to append toresult, we concatenate one digit to
a number inprev, forming integers withj C 1 digits and proving the inductive step.

Now that we’ve shown that RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ generates a se-
quence of proper length, with each integer of proper digit length, we can move on to prove the harder
requirements of a cyclic mixed-radix full Gray code. In the following lemmas, we use ordinal numbersx

andy to index into the sequence produced by RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/,
and we letx0 andy0 be the output valuesresultŒx� andresultŒy�, respectively.

Lemma 9 Let x be an ordinal index such that 0 � x < pj , and let x0 be resultŒx�, where result is generated
by RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/. Then 0 � x0 < pj .

Proof: By Lemma 8, we have thatx0 is a .j C 1/-digit integer. Therefore, we let the.j C 1/-digit
representations ofx0 andpj � 1 be the following:

x0 D x0

j x0

j �1 � � � x0

0 ;

pj � 1 D rj � 1 rj �1 � 1 � � � r0 � 1 ;
(36)

so thatx0 D
Pj

iD0 x0

i pi�1 andpj � 1 D
Pj

iD0.ri � 1/pi�1. We will use induction onj , where0 �

j � k � 1, to show0 � x0

i � ri � 1 for i D 0; 1; : : : ; j . This quality will then be sufficient to prove
0 � x0 � pj � 1 < pj .

For j D 0; 1; : : : ; k � 1, the inductive hypothesis is that0 � x0

i � ri � 1 for i D 0; 1; : : : ; j . In
the base case, wherej D 0, we execute lines 4–5, which append the1-digit integersx0 to result such that
0 � x0

0 � r0 � 1. Otherwise, in the inductive step, we execute lines 7–21. ByLemma 8, each integer inprev
returned by the recursive call in line 7 hasj digits. Therefore, whenever we build a numberx0 to append
to result, we concatenate thej th digit x0

j to a number inprev, where0 � x0

j � rj �1 by lines 10 and 17–20.
By the inductive hypothesis, we also have0 � x0

i � ri � 1 for i D 0; 1; : : : ; j � 1. When we put the two
equations together, we get0 � x0

i � ri � 1 for i D 0; 1; : : : ; j , which proves the inductive step.

Lemma 10 Let x and y be ordinal indices such that 0 � x; y < pj and x ¤ y. Let x0 and y0 be
resultŒx� and resultŒy�, respectively, where RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ gen-
erates result. Then x0 ¤ y0.

Proof: This proof is by induction onj . For j D 0; 1; : : : ; k � 1, the inductive hypothesis is that
RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ produces integersx0 andy0 such that ifx ¤ y,
thenx0 ¤ y 0. In the base case, wherej D 0, we execute lines 4–5, which append the integers0 to r0 � 1

just once each to our output sequenceresult, and therefore, given any two ordinal positionsx andy such
thatx ¤ y, we must also havex0 ¤ y0.

33



In the inductive step, we execute lines 7–21. By the inductive hypothesis, the recursive call returned the
arrayprev with all values distinct. We will show that if the same digit is prepended to two values fromprev,
then these two values fromprev must be unequal. If0 is prepended, then it must have been prepended in the
for-loop of lines 9–10, and therefore, each value ofprevŒi � must be distinct. Otherwise, if two equal values
of ` � 1 are prepended in the for-loop of lines 15–21, then they must have been prepended in different
iterations of this for-loop, so that the value ofi differs and, hence, the values ofprevŒi � differ.

In all cases where we are givenx ¤ y, we havex0 ¤ y0. Therefore, we have the inductive step.

Lemma 11 Let x and y be ordinal indices such that 0 � x; y < pj and y D x � 1. Let x0 and y0

be resultŒx� and resultŒy�, respectively, where RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/

generates result. Then x0 and y0 differ in only one digit, and the values of those digits differ by only 1.

Proof: This proof is by induction onj . For j D 0; 1; : : : ; k � 1, the inductive hypothesis is that
RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/ produces integersx0 andy 0 such that ify D

x � 1, thenx0 andy0 differ in only one digit, and the values of those digits differ by only1. To aid our argu-
ment, we define anappend operation to be the exact instruction within the sequential algorithmat which a
new integer is appended toresult, so that giveny D x�1, we have that the append operation that appendsy0

is the one that occurs immediately before the append operation that appendsx0 to result.
In the base case, wherej D 0, we execute lines 4–5. Here, for every ordinal positionx such that

y D x � 1 is also an ordinal position, the append operation forx0 adds the1-digit integeri to result, and
the append operation fory0, which occurs immediately before, adds the1-digit integer,i � 1. Therefore,x0

andy0 differ in only one digit, and those digits differ by only1.
Otherwise, in the inductive step, we execute lines 7–21. Now, there are many different variables we have

to consider to prove the inductive step. We must first analyzewhat section of the procedure we are in when
we appendx0 andy0 to result. Are we in lines 9–10, are we in lines 14–21, or are we in lines 9–10 when we
appendy0 and lines 14–21 when we appendx0? Then, within these cases, we must consider either the value
of the local variablei if we are in lines 9–10, or the values of local variablesi , `, andascending if we are in
lines 14–21. In the following paragraphs, we examine these variables and prove the inductive step through
case exhaustion.

We start with the case where both the append operations forx0 andy0 come from lines 9–10. Line 9
shows thati increments by1 every time we append toresult, so that the value ofi during the append
operation forx0 must be exactly1 more than the value ofi during the preceding append operation fory0.
Let us definebi to be the value ofi during the append operation ofx0. Then,bi � 1 is the value ofi during the
append operation ofy0 and, by the inductive hypothesis, we have thatprevŒbi � andprevŒbi � 1� differ in only
one digit, and the values of those digits differ by only1. Thus,x0 D 0 k prevŒbi � andy0 D 0 k prevŒbi � 1� also
differ in only one digit, and the values of those digits also differ by only 1.

Next, we analyze the case where the append operation fory 0 comes from lines 9–10 and where the
append operation forx0 comes from lines 14–21. In this case, we must have thaty0 is the last integer
appended toresult from lines 9–10, andx0 is the first integer appended toresult from lines 14–21. By
lines 9–10, we havey0 D 0 k prevŒpj �1 � 1�, and by lines 14–21, we have thati D pj �1 � 1, ascending D

TRUE, and consequently,̀ D 1 during the append operation forx0. Putting these facts together, we get
x0 D 1 k prevŒpj �1 � 1�. Thus,x0 andy0 differ only in their most significant digit, and the values ofthose
digits differ by1.

34



The last case is the most complex: the append operations forx0 andy0 both come from lines 14–21.
Within this section of the procedure, if the append operations forx0 andy0 come from the same inner for-
loop—that is, they both come from either lines 17–18 or lines19–20—then because the append operation
for y0 directly precedes the one forx0, we must have thati andascending are the same for both operations,
while ` differs by1. Therefore,prevŒi � is the same integer for both append operations, and prepending ` to
prevŒi � to computex0 andy0 gives two integers that differ in only their most significantdigit, with the values
of those digits differing by only1. In the other subcase, the append operations forx0 andy0 come from
different inner for-loops—that is, one comes from lines 17–18 and the other comes from lines 19–20. Here,
because one append operation directly precedes the other, we must have thati andascending differ for both
operations, and furthermore, the value ofi in the two append operations differs by only1. Letbi be the value
of i during the append operation forx0. Thenbi � 1 is the value ofi during the append operation fory 0, and
by the inductive hypothesis, we have thatprevŒbi � andprevŒbi � 1� differ in only one digit, and the values of
those digits differ by1. Now, we must show that when we form the integersx0 andy0, the most significant
digits that we append to the integersprevŒbi � andprevŒbi � 1� do not differ. We have two cases for this most
significant digit`. The first is if the append operation fory0 is the last operation executed in its instance
of the for-loop in lines 17–18, so thatascending switches fromTRUE to FALSE, and the append operation
for x0 becomes the first operation executed in the following for-loop at lines 19–20. In this case,` is rj � 1

for y0 and remains the same forx0. The second case is if the append operation fory0 is the last operation
executed in its instance of the for-loop in lines 19–20, so that ascending switches fromFALSE to TRUE, and
the append operation forx0 becomes the first operation executed in the following for-loop at lines 17–18.
Here,` is 1 for y0 and remains the same forx0. Thus, in both cases we append the same value of` to the
integersprevŒbi � andprevŒbi � 1� to form x0 andy0, respectively. As we noticed forprevŒbi � andprevŒbi � 1�,
the integersx0 andy0 must also differ in one digit, and the values of the digits that differ must also be1.

In all cases where we are giveny D x � 1, we have thatx0 andy0 differ in one digit, and the values of
the digits that differ is1. Therefore, we have the inductive step.

Lemma 12 Let result be the array returned by RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; r; p/.
Then the 0th integer resultŒ0� and the last integer resultŒpj � 1� differ in only one digit position i , and the
values of those digits are either 0 and rj � 1, or they differ by only 1.

Proof: There are only two cases to consider. The first case occurs when j D 0, so we execute lines 4–5,
which append the1-digit values0 andrj � 1 asresultŒ0� andresultŒrj � 1� D resultŒpj � 1�, respectively.
In the other case, we execute lines 7–21. Clearly, we haveresultŒ0� D 0 k prevŒ0� by lines 9–10, and we
haveresultŒpj � 1� D ` k prevŒ0� by lines 14–21. Letb̀ be the value of̀ that we concatenate toprevŒ0� to

form resultŒpj � 1�. By lines 17 and 19, we have eitherb̀ D 1 orb̀ D rj � 1. If we have the former, then
resultŒ0� andresultŒpj � 1� differ in only the most significant digit, and those digits differ by 1. Otherwise,
we have the latter, andresultŒ0� andresultŒpj � 1� again differ in the most significant digit, with the most
significant digit ofresultŒ0� equal to0 and the most significant digit ofresultŒpj � 1� equal torj � 1.

Theorem 13 Correctness of the procedure RECURSIVE-CYCLIC -MIXED -RADIX -GRAY-CODE

The procedure RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.j; .rk�1; : : : ; r0/; .pk�1; : : : ; p0// gen-
erates a cyclic mixed-radix full Gray code for the radices .rk�1; rk�2; : : : ; r0/.

35



Proof: Lemmas 7–10 show that the procedure generates a full sequence, and Lemmas 11–12 show that
the output sequence also has the strict Gray-code and modular cyclic properties.

To complement our recursive method of generating the cyclicmixed-radix full Gray code, we provide an
iterative algorithm that computes the same output sequenceas the recursive one does when, for the former
procedure, we usek as the first argument in place ofj . This iterative method iterates onj instead of
recursing on it. It also fillsresult with the completedpj -length sequence for each iteration ofj instead
of returning the previous solution from a function call and then copying over the list elements, just as the
recursive procedure does. In this way, the iterative procedure listed below is more space-efficient than its
recursive counterpart, requiring only‚.pk�1/ space for the single instance ofresult.

ITERATIVE-CYCLIC-MIXED -RADIX -GRAY-CODE.k; r; p/

1 initialize result to an empty list
2 // compute thep0-length Gray code
3 for i D 0 to p0 � 1

4 appendi to result
5 // iteratively compute thepj -length mixed-radix Gray code forj D 1; : : : ; k � 1

6 for j D 1 to k � 1

7 // for each value in the previous Gray code, going back to front,append to it a new
8 // most significant digit, alternating between the digit ascending and descending,
9 // going between 1 andrj � 1

10 ascending D TRUE

11 for i D pj �1 � 1 downto 0

12 if ascending
13 for ` D 1 to rj � 1

14 append̀ k resultŒi � to result
15 else for` D rj � 1 downto 1

16 append̀ k resultŒi � to result
17 ascending D not ascending
18 return result

Like the recursive version of this method, this iterative algorithm requires‚.n/ time to generate a cyclic
mixed-radix full Gray code forn andr if concatenating a single digit to the digit representationof another
integer takes constant time regardless of the total number of digits. Otherwise, if concatenating a digit to the
digit representation of an integer takes time linear to the total number of digits in the output, then the above
algorithm requires‚.nk/ time to complete a cyclic mixed-radix full Gray code forn and thek-tupler .

Having provided both a recursive and an iterative procedureto generate cyclic mixed-radix full Gray
codes for any tuple of mixed radices, we now move on to consider cyclic dense Gray codes.

11 Cyclic mixed-radix dense Gray codes as Hamiltonian cycles

Unlike what we did in Section 9 for the cyclic mixed-radix full Gray code, we are unable to provide
a polynomial-time solution for a cyclic mixed-radix dense Gray code, where, given a radix tupler D

.rk�1; rk�2; : : : ; r0/ and a positive integern < pk�1, a cyclic dense Gray code is a permutation of the

36



sequenceh0; 1; : : : ; n � 1i that holds the modular Gray-code and cyclic properties. Thus, instead of pro-
viding a solution, this section discusses a graph-theoretical approach we can use to model the cyclic dense
Gray code. The following section will use this new approach to prove several cases ofr andn for which
generating a cyclic mixed-radix dense Gray code is impossible.

We start by defining our model. Amodular Gray graph for the radix tupler and the positive inte-
gern � pk�1 is an undirected graphG D .V; E/, wherejV j D n, such that each vertexv 2 V is a unique
integer from the setf0; 1; : : : ; n�1g, andE is the set of edges.u; v/ for all u; v 2 V , such thatu andv hold
the modular Gray-code property—that is,u andv differ in only one digit positioni , and the values of those
digits are either0 andri � 1, or they differ by only1. With such a graphical representation of the integers0

to n � 1 and the modular Gray-code property, we can equate the problem of generating a cyclic mixed-radix
dense Gray code to the task of producing a Hamiltonian cycle—a cycle that traverses each vertexv 2 V

exactly once—in the modular Gray graph for the corresponding radicesr and integern. Unfortunately, the
Hamiltonian cycle problem is NP-complete [7], and even withthe special attributes of our modular Gray
graph, we are unable to find an algorithm that takes polynomial time in the worst case. Thus, the search for a
Hamiltonian cycle, and therefore a cyclic mixed-radix dense Gray code, is infeasible for most cases ofn. As
we mentioned, however, there are some special attributes that we can observe about modular Gray graphs,
especially for cyclic mixed-radix full Gray codes, whenn D pk�1. This section lists those observations,
and Section 12 will relate them to modular Gray graphs for cyclic mixed-radix dense Gray codes, where
n < pk�1.

Modular Gray graphs for cyclic mixed-radix full Gray codes

We first examine the modular Gray graphs for cyclic mixed-radix full Gray codes, since they are easy to
generate and exhibit notable patterns of symmetry. Ananthaand AlBdaiwi [1] already introduced modular
Gray graphs, which they named “multidimensional mixed-radix tori,” when they showed how to generate
their cyclic mixed-radix full Gray code, but they did not describe the graphs in detail. Here, we expand
upon the graphs where Anantha and AlBdaiwi left off. We draw modular Gray graphs for different sets ofr

andn D pk�1, and then we use our recursive method for a cyclic mixed-radix full Gray code to visualize a
Hamiltonian cycle in that graph.

First, we consider how to construct the modular Gray graph for a cyclic mixed-radix full Gray code.
Given the radix tupler D .rk�1; rk�2; : : : ; r0/ and the integern D pk�1, we can easily determine the
degree of each vertexv 2 V in the corresponding modular Gray graph by examining each radix in the tuple.
The following lemma shows how.

Lemma 14 Given the radix tuple r D .rk�1; rk�2; : : : ; r0/, let G D .V; E/ be the modular Gray graph
for r and n D pk�1. Then, each vertex v 2 V has the same degree ı, and each digit position i D

0; 1; : : : ; k � 1 can be mapped to a set of ıi edges incident on v such that

ıi D

�
2 if ri ¤ 2 ;

1 otherwise ;
(37)

and

ı D

k�1X

iD0

ıi : (38)

37



Proof: Let v be a vertex inV , and let the digit representation ofv be vk�1vk�2 � � � v0. We will map
each digitvi in v to a set of edgesE.vi / � E such thatjE.vi /j D ıi , whereıi is given by equation (37).
Furthermore, we will show that the setsE.v0/; E.v1/; : : : ; E.vk�1/ are pairwise disjoint, which will suffice
to show equation (38).

For each digitvi in the digit representation ofv, let E.vi / � E contain all edges.u; v/ 2 E such that
verticesu andv differ in only thei th digit. By how the modular Gray graph is constructed, thereare two
possible values for this vertexu: the integersu0 andu00, and their digit representations are

u0 D vk�1 vk�2 � � � viC1 .vi C 1/ modri vi�1 � � � v0 ;

u00 D vk�1 vk�2 � � � viC1 .vi � 1/ modri vi�1 � � � v0 :

Now, we examine the radixri to determine whether the verticesu0 andu00 are equivalent. Ifri is not2, then
we have.vi C 1/ modri ¤ .vi � 1/ modri , and the verticesu0 andu00 must be distinct. Otherwise, we
haveri D 2, so thatvi is either0 or 1, and we get.vi C 1/ mod2 D .vi � 1/ mod2 for both values ofvi ,
implying that the verticesu0 andu00 are the same. Thus, we have shown thatE.vi / has sizeıi D 2 if ri ¤ 2

and sizeıi D 1 otherwise—that is, we have shown equation (37). Moreover, sinceE.vi / comprises only
the edges.u; v/ 2 E whereu andv differ in digit i , it is obvious that the setsE.v0/; E.v1/; : : : ; E.vk�1/

are pairwise disjoint. This statement proves equation (38).

Graph theory defines a graph where all vertices have the same degreeı as aı-regular graph. The
following corollary uses Lemma 14 to claim that modular Graygraphs for cyclic full Gray codes—where
the number of verticesn is inherently equal to the productpk�1 of the radicesr—are regular.

Corollary 15 Modular Gray graphs for cyclic mixed-radix full Gray codes are regular
Given the radix tuple r D .rk�1; rk�2; : : : ; r0/, let b be the number of radices in r that equal 2. Then, the
modular Gray graph for the cyclic mixed-radix full Gray code for r is a .2k � b/-regular graph.

Figure 2 shows the modular Gray graph for the radix tupler D .3; 4/ and the integern D 12, along with
the Hamiltonian cycle generated by our algorithm for a cyclic mixed-radix full Gray code. Notice that the
graph is4-regular, as stated in Corollary 15. As another example, Figure 3 shows the modular Gray graph
for the3-tupler D .2; 2; 3/ and the integern D 12, which is4-regular by Corollary 15. Again, we highlight
the Hamiltonian cycle that our algorithm generates in this graph.

12 When is it impossible to generate a cyclic mixed-radix dense Gray code?

We now consider modular Gray graphs of cyclic mixed-radix dense Gray codes, where, given the radix tuple
r D .rk�1; rk�2; : : : ; r0/, we haven < pk�1. We can think of such a graph as an induced subgraph of the
modular Gray graph for the same radicesr , where the subgraph is made by discarding the highest-numbered
pk�1�n vertices of the larger graph, along with their incident edges. Once we start discarding these vertices,
it might become impossible to compute a Hamiltonian cycle with the remaining vertices. Here, we identify
two such cases where finding a Hamiltonian cycle, or equivalently, generating a cyclic mixed-radix dense
Gray code for a set of valuesr andn, cannot be done. Theorems 16–17 describe those cases, and inorder
to simplify the proofs, we assume in all three theorems thatk is the minimum number of digits required to
represent alln vertices of the graph in the radicesr D .rk�1; rk�2; : : : ; r0/, so that the.k � 1/st digit of
n � 1 is always positive.

38



00

03

12

21

01

02

11

10

23

22

13

20

our
Gray code

00
01
02
03
13
23
22
12
11
21
20
10

Figure 2: The modular Gray graph for a cyclic mixed-radix full Gray code for .3; 4/. The edges are visibly coded:
dotted edges represent the modular Gray-code property between two verticesu and v that differ in digit 0; solid
edges represent the modular Gray-code property between twoverticesu andv that differ in digit1; and shaded edges
represent edges included in the Hamiltonian cycle producedby our algorithm for a cyclic mixed-radix full Gray code.

000

010

001

002

012

011

100

110

101

102

112

111

our
Gray code

000
001
002
012
011
010
110
111
112
102
101
100

Figure 3: The modular Gray graph for a cyclic mixed-radix full Gray code for .2; 2; 3/. The edges are visibly coded:
dotted edges represent the modular Gray-code property between two verticesu andv that differ in digit0; solid edges
represent the modular Gray-code property between two verticesu andv that differ in either digit1 or 2; and shaded
edges represent edges included in the Hamiltonian cycle produced by our algorithm for a cyclic mixed-radix full Gray
code.

39



Theorem 16 Graphs with vertices of degree 1 are non-Hamiltonian
Let n be a positive integer such that n > 2, and let k be the number of digits required to represent bn D n � 1

using the radix tuple r D .rk�1; rk�2; : : : ; r0/, so that the digit representation of bn is bnk�1bnk�2 � � �bn0,
where bnk�1 > 0. Let G be the modular Gray graph for r and n. If n has the digit representation

n D q 0 0 � � � 0 1 ; (39)

where either q D 1 or q < rk�1 � 1, then G has no Hamiltonian cycle.

Proof: There are two cases to consider. The first case occurs whenn has the form given by equation (39),
and we havek D 1. The second case occurs whenn is of the same form andk > 1. We will show for each
case that there exists a vertexv 2 V with degree1, which will suffice to prove that no Hamiltonian cycle
exists inG for these forms ofn.

� Case1: k D 1.
Suppose thatn has the form given by equation (39). Then, because we are given thatn > 2, the1-digit
integern must be in the range3 � n < r0 � 1. Let vertexv be the1-digit integer0. By the modular
Gray graph,v can have edges to only the vertices1 andr0 � 1, provided that those vertices also exist
in V . Becausen � 3, we know that1 2 V , and therefore,v has an edge to vertex1. Sincen < r0 � 1,
however, we know thatr0 � 1 62 V . Thus, vertexv has degree1, andG has no Hamiltonian cycle.

� Case2: k > 1.
Suppose thatn has the form given by equation (39). Let vertexv be n � 1, which has the digit
representationq 0 � � � 0. We will show that there is only one edge.u; v/ 2 E that is incident onv,
and the vertexu differs from vertexv in digit k � 1.

First, we must show that for digit positionsi D 0; 1; : : : ; k � 2, there are no verticesu 2 V such
that .u; v/ 2 E and verticesu andv differ in digit position i . By how we construct the modular
Gray graph, we have that for each digit positioni D 0; 1; : : : ; k � 2, vertexv can have edges to the
verticesu0 andu00, whereu0 andu00 have the digit representations

u0 D vk�1 vk�2 � � � viC1 .vi C 1/ modri vi�1 � � � v0

D q 0 � � � 0 1 0 � � � 0 ;

u00 D vk�1 vk�2 � � � viC1 .vi � 1/ modri vi�1 � � � v0

D q 0 � � � 0 ri � 1 0 � � � 0 ;

provided thatu0 andu00 also exist inV . Sincen � 1 has the digit representationq 0 � � � 0, however,
the verticesu0 andu00 are larger thann � 1, and sou0 andu00 cannot exist inV for i D 0; 1; : : : ; k � 2.
Therefore, there are no verticesu 2 V such that we have both.u; v/ 2 E andu andv differ in a digit
position other thank � 1.

Now, we consider the edges.u; v/ incident onv such thatu andv differ in digit k � 1. By how we
construct the modular Gray graph, vertexv can have edges to the verticesu0 andu00, whereu0 andu00

have the digit representations

u0 D .q C 1/ modrk�1 0 � � � 0 ;

u00 D .q � 1/ modrk�1 0 � � � 0 ;

40



00

01

02

10

00

01

02

10

11

12

20

(a) (b)

Figure 4: Modular Gray graphs with vertices of degree1, and therefore, no Hamiltonian cycle. The edges are visibly
coded: dotted edges represent the modular Gray-code property between two verticesu andv that differ in digit 0;
and solid edges represent the modular Gray-code property between two verticesu andv that differ in digit1. (a) The
modular Gray graph forr D .2; 3/ andn D 4, which has the digit representation1 1 in r ; and(b) The modular Gray
graph forr D .4; 3/ andn D 7, which has the digit representation2 1 in r .

provided thatu0 andu00 also exist inV . We now prove thatu00 2 V , but u0 62 V unlessrk�1 D 2,
in which case verticesu0 andu00 are equivalent. By the definition ofk, we have thatq � 1. Thus,
we haveq � 1 � 0, which givesu00 the digit representation.q � 1/ 0 � � � 0 so thatu00 < n � 1 and
consequently,u00 2 V .

Showing the properties of vertexu0 is harder. Whenrk�1 > 2, then because eitherq D 1 or q <

rk�1 � 1, we haveq C 1 < rk�1 in both cases. Thus, the vertexu0 has the digit representation
.q C 1/ 0 � � � 0, so thatu0 > n � 1 and consequently,u0 62 V . Otherwise, when we haverk�1 D 2, we
must haveq D 1, and so the value.q C 1/ modrk�1 is 0. In this case, we have thatu0 andu00 have
the digit representation..q ˙ 1/ mod2/ 0 � � � 0 D 0 0 � � � 0 and are equivalent.

We have proven that whenn has the form given by equation (39), then there is only one edge incident on
either vertex0 or vertexn � 1 in the modular Gray graph forr andn; therefore,G has no Hamiltonian
cycle.

Figure 4 illustrates two graphs, each with a vertex of degree1, that Theorem 16 describes as non-
Hamiltonian. In Figure 4(a), the numbern of vertices has the form given by equation (39) withq D 1, and
in Figure 4(b),n has the same form but withq < rk�1 � 1, instead.

The following theorem lists another case where a Hamiltonian cycle cannot be found.

Theorem 17 Impossibility of both cyclicity and density for some values of r and n
Let n be a positive integer, and let k be the number of digits required to represent bn D n � 1 using the radix
tuple r D .rk�1; rk�2; : : : ; r0/, so that the digit representation of bn is bnk�1bnk�2 � � �bn0, where bnk�1 > 0.
Let G be the modular Gray graph for r and n. If n is odd and ri is even for each digit position i D

0; 1; : : : ; k � 2, and either rk�1 is even or nk�1 < rk�1 � 1, then G has no Hamiltonian cycle.

Proof: There are only two cases to consider, and we will use contradiction to prove that neither of these
cases can produce a Hamiltonian cycle. To do this, we will need to use the following claim:

If ri is even for any digit positioni D 0; 1; : : : ; k � 1, then the number of digit changes made
in digit i as we take one trip around the Hamiltonian cycle must be even.

41



0

ri – 1 1

2ri – 2

Figure 5: The ri cycle shows all possible values of digiti , or equivalently, the set of integersf0; 1; : : : ; ri � 1g, in
a circle.

To prove the above claim, let us first isolate digiti . Figure 5 shows theri cycle representing all the possi-
bilities of digit i in a circle.

Assuming that we start from vertex0, let ´i be the net number of trips we make around theri cycle
as we take one trip around our Hamiltonian cycle. We define´i > 0 to mean that we madej´i j net trips
clockwise, and́ i < 0 to mean that we madej´i j net trips counterclockwise. These´i net trips around the
ri cycle account for a total ofjri´i j digit changes, and sinceri is even, the net trips overall account for an
even number of digit changes. Now that we’ve accounted for all the net trips around theri cycle, the other
changes we made in digiti must represent trips where we ventured along one direction from a starting point
in theri cycle, and then came back along the opposite direction to thesame point. Each of these “detours”
must have accounted for an even number of digit changes, so that in total, all of the detours accounted for an
even number of digit changes. Therefore, all of the digit changes that occur in digiti during one trip around
the Hamiltonian cycle account for an even number of digit changes in total. Hence, we have the claim.

Now, we return to the proof for the theorem. In the following two cases, we assume thatn is odd andri

is even for each digit positioni D 0; 1; : : : ; k � 2.

� Case1: rk�1 is even.
Let us assume to the contrary that a Hamiltonian cycle existsin G. By the Gray-code property, we
must maken digit changes in total during one trip around the Hamiltonian cycle. We are given,
however, thatn is odd, and sinceri is even for digit positionsi D 0; 1; : : : ; k � 1, we know by the
claim that each digit contributes an even number of digit changes Therefore, it is impossible to come
back to the starting vertex0 in n digit changes, and we cannot have a Hamiltonian cycle inG.

� Case2: nk�1 < rk�1 � 1.
Let us assume to the contrary that a Hamiltonian cycle existsin G. By the claim, we have that each
digit i D 0; 1; : : : ; k � 2 contributes an even number of digit changes. Sincenk�1 < rk�1 � 1, we
cannot form the fullrk�1 cycle. The highest digit value that digitk �1 may take on is eithernk�1 � 1

whenn D nk�100 � � � 0, or nk�1 in any other case, and since both these values are less thanrk�1 � 1,
neither would hold the modular Gray-code property if it wereto change to0. Thus,´k�1 must be0,
and each digit change that occurs in digitk�1 must be part of a detour that returns to the starting point
in therk�1 cycle, accounting for an even number of digit changes for each detour. By the Gray-code
property, and becausen is odd, there must be an odd number of digit changes in total during one trip
around the Hamiltonian cycle. We can only account, however,for an even number of digit changes in

42



each digiti D 0; 1; : : : ; k � 1. Therefore, it is impossible to come back to the starting vertex 0 in n

digit changes, and we cannot have a Hamiltonian cycle inG.

We have proven through contradiction in all cases that it is impossible to have a Hamiltonian cycle
in G if n is odd andri is even for each digit positioni D 0; 1; : : : ; k � 2, and eitherrk�1 is even or
nk�1 < rk�1 � 1.

Importantly, although Theorems 16–17 prove several valuesof r andn for which a Hamiltonian cycle
cannot be found, it is not an exhaustive list of these cases. In fact, we know of at least one other such case,
which we do not explain here. There is much more still to learnabout the modular Gray graphs for cyclic
mixed-radix dense Gray codes, and we should think of the theorems in this section as cases that we’ve found
and explained rather than a broader statement about the attributes of modular Gray graphs.

43



13 Conclusions

We have now shown the five major contributions of this thesis:

� A formula for each digit of the non-cyclic binary dense Gray code for any positive integern, as given
in our earlier paper [3]. With this formula, we can generate each number in the non-cyclic binary
dense Gray code in constant time.

� An algorithm that generates a cyclic binary dense Gray code for any even number of integers. The
algorithm computes each number in constant time.

� A formula for each digit of the non-cyclic mixed-radix denseGray code for any mixed-radix tupler
and positive integern less than or equal to the product of the radices inr .

� A recursive algorithm that generates each integer in the cyclic mixed-radix full Gray code for a mixed-
radix tupler and positive integern equal to the product of the radices inr .

� A list of cases where it is impossible to compute a cyclic mixed-radix dense Gray code for a mixed-
radix tupler and positive integern strictly less than the product of the radices inr .

We have yet to determine a digitwise formula for cyclic mixed-radix dense Gray codes, as we were able
to do for non-cyclic binary, cyclic binary, and non-cyclic mixed-radix dense Gray codes. In our future work,
we will refocus on this goal and potentially find more cases ofradix tuplesr and integersn for which it is
impossible to compute a cyclic mixed-radix dense Gray code.We also hope to study the applications for
the dense Gray codes we have developed, as the standard binary reflected Gray code and cyclic mixed-radix
dense Gray code have already proven themselves useful in a number of computing [5, 6, 8, 10] and network
design [1] problems.

14 Acknowledgments

I would like to thank my thesis advisor and good friend, Professor Thomas H. Cormen of the Dartmouth
College Computer Science Department, for his incredible guidance and support throughout my years here
as an undergraduate. Tom taught me my very first computer science course— Introduction to Programming
and Computation—and has since become my most treasured teacher, colleague, and mentor. When we first
started working together in 2015, I could never have imagined all the wonderful work he would help me
accomplish: from writing my first technical paper to presenting at my first technical conference at Allerton.
Tom has taught me so much in the ways of writing and research, and I am honored to have both started and
ended my career as a Dartmouth student with him as my advisor.

I would also like to thank the members of my thesis committee,Professor Prasad Jayanti of the Dart-
mouth College Computer Science Department and Professor Peter Winkler of the Mathematics and Com-
puter Science Departments, for their encouragement and their expertise. Without their generous support, the
work in this thesis would not have been possible.

Thank you,
Jessica C. Fan

44



References

[1] M. Anantha and B. AlBdaiwi. Mixed radix Gray codes in Lee metric. IEEE Transactions On Comput-
ers, 56, October 2007.

[2] Martin Cohn. Affinem-ary Gray codes.Information and Control, 6:70–78, 1963.

[3] Thomas H. Cormen and Jessica C. Fan. Dense Gray codes, or easy ways to generate cyclic and
non-cyclic Gray codes for the firstn whole numbers. In54th Annual Allerton Conference on Commu-
nication, Control, and Computing, October 2016.

[4] M. C. Er. On Generating theN -ary reflected Gray codes.IEEE Transactions on Computers, C-
33(8):739–741, August 1984.

[5] Frank Gray. Pulse code communication. U. S. Patent 2,632,058, March 1953.

[6] S. Lennart Johnsson and Ching-Tien Ho. On the conversionbetween binary code and binary-reflected
Gray code on boolean cubes. Technical Report TR-20-91, Center for Research in Computing Technol-
ogy, Harvard University, July 1991.

[7] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
Thatcher, editors,Complexity of Computer Computations, page 94. Plenum Press, 1972.

[8] Donald E. Knuth.The Art of Computer Programming, volume 4A, Combinatorial Algorithms, Part 1.
Addison-Wesley, 2011.

[9] B. D. Sharma and R. K. Khanna. Onm-ary Gray codes.Information Sciences, 15:31–43, September
1977.

[10] Vincent Vajnovski and Timothy Walsh. A loop-free two-close Gray-code algorithm for listingk-ary
Dyck words.Journal of Discrete Algorithms, August 2005.

45


	Dense Gray Codes in Mixed Radices
	Recommended Citation

	Untitled

