
Dense Linear Algebra Solvers for Multicore with GPU Accelerators

Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra
Department of Electrical Engineering and Computer Science,

University of Tennessee, Knoxville
tomov, rnath1, ltaief, dongarra@eecs.utk.edu

Abstract—Solving dense linear systems of equations is a
fundamental problem in scientific computing. Numerical sim-
ulations involving complex systems represented in terms of
unknown variables and relations between them often lead to
linear systems of equations that must be solved as fast as
possible. We describe current efforts toward the development
of these critical solvers in the area of dense linear algebra
(DLA) for multicore with GPU accelerators. We describe how
to code/develop solvers to effectively use the high computing
power available in these new and emerging hybrid architec-
tures. The approach taken is based on hybridization techniques
in the context of Cholesky, LU, and QR factorizations. We use
a high-level parallel programming model and leverage existing
software infrastructure, e.g. optimized BLAS for CPU and
GPU, and LAPACK for sequential CPU processing. Included
also are architecture and algorithm-specific optimizations for
standard solvers as well as mixed-precision iterative refinement
solvers. The new algorithms, depending on the hardware
configuration and routine parameters, can lead to orders of
magnitude acceleration when compared to the same algorithms
on standard multicore architectures that do not contain GPU
accelerators. The newly developed DLA solvers are integrated
and freely available through the MAGMA library.

Keywords-Dense Linear Algebra Solvers, GPU Accelerators,
Multicore, MAGMA, Hybrid Algorithms.

I. INTRODUCTION

Since the introduction of multicore architectures, hard-
ware designs are going through a renaissance due to the need
for new approaches to manage the exponentially increasing:

1) Appetite for power, and
2) Huge gap between compute and communication

speeds.

Hybrid GPU-based multicore platforms, composed of both
homogeneous multicores and GPUs, stand out among a
confluence of current hardware trends as they provide an
effective solution to these two challenges. Indeed, as power
consumption is typically proportional to the cube of the
frequency, GPUs have a clear advantage against current ho-
mogeneous multicores, as GPUs’ compute power is derived
from many cores that are of low frequency. Furthermore,
initial GPU experiences across academia, industry, and na-
tional research laboratories have provided a long list of
success stories for specific applications and algorithms, often
reporting speedups of order 10 to 100× compared to current
x86-based homogeneous multicore systems [1], [2].

A. Dense Linear Algebra – Enabling New Architectures

Despite the current success stories involving hybrid GPU-
based systems, the large scale enabling of those architectures
for computational science would still depend on the success-
ful integration and deployment of fundamental numerical li-
braries. Major issues in terms of developing new algorithms,
programmability, reliability, and user productivity must be
addressed. This paper describes some of the current efforts
on the development of these fundamental libraries, and in
particular, libraries in the area of dense linear algebra (DLA).

Historically, DLA has been in the vanguard of efforts
to enable new architectures for computational science for
good strategic reasons. First, a very wide range of science
and engineering applications depend on linear algebra; these
applications will not perform well unless DLA libraries
perform well. Second, dense linear algebra has a rich and
well understood structure for software developers, so these
libraries represent a critical starting point for the effort to
bridge the yawning software gap that has opened up today
within the HPC community.

B. MAGMA – DLA Libraries for Hybrid Architectures

The Matrix Algebra on GPU and Multicore Architectures
(MAGMA) project as well as the libraries [3] stemming from
it, are used to demonstrate the algorithmic techniques and
their effect on performance and portability across hardware
systems. Designed to be similar to LAPACK in functionality,
data storage, and interface, the MAGMA libraries will allow
scientists to effortlessly port their LAPACK-relying software
components and to take advantage of each component of the
new hybrid architectures. Current work targets GPU-based
systems, and the efforts are supported by both government
and private industry, including NVIDIA, who recently rec-
ognized the University of Tennessee, Knoxville’s (UTKs)
Innovative Computing Laboratory (ICL) as a CUDA Center
of Excellence. This is to further promote, expand, and sup-
port ICL’s commitment toward developing DLA Libraries
for Hybrid Architectures.

Against this background, the main focus of this paper
will be to provide some high-level insight on how to
code/develop DLA for multicore with GPU accelerators.
The approach described here is based on the idea that
in order to deal with the complex challenges stemming
from the heterogeneity of the current GPU-based systems,

optimal software solutions will themselves have to hybridize,
combining the strengths of the system’s hybrid components.
In other words, hybrid algorithms that match algorithmic
requirements to the architectural strengths of the system’s
hybrid components must be developed. It has been shown
that properly designed numerical algorithms for hybrid
GPU-based multicore platforms lead to orders of magnitude
acceleration.

The paper is organized as follows. Section II describes
our approach to make the standard one-sided factorizations,
i.e., Cholesky, QR and LU, efficiently run on systems
of multicores with GPU accelerators. Section III presents
DLA solvers based on correspondingly each of these three
factorizations and using efficient triangular solvers as well as
mixed-precision iterative refinement techniques. Section IV
illustrates the performance results of the different solvers
and Section V concludes this paper.

II. HYBRID DLA ALGORITHMS

The development of high performance DLA algorithms
for homogeneous multicores has been successful in some
cases, like the one-sided factorizations [4], and difficult for
others, like the two-sided factorizations [5]. The situation
is similar for GPUs - some algorithms map well, others
are more challenging. Developing algorithms for a com-
bination of these two architectures (to use both multicore
and GPUs) can be potentially beneficial and should be
exploited, especially since in many situations, the computa-
tional bottlenecks for one of the components (of this hybrid
system) may not be the case for the other. Thus, developing
hybrid algorithms that properly split and schedule the
computation over different hardware components may lead
to very efficient algorithms. The goal is to develop these
new hybrid DLA algorithms that

• Leverage prior DLA developments, and
• Overcome bottlenecks that would not be possible oth-

erwise by just using one of the hybrid component, i.e.,
homogeneous multicores or GPU accelerators.

A. How to Code DLA for GPUs?

The question of how to code for any architecture, in-
cluding GPUs, is complex in the sense that issues such as
choosing a language, programming model, developing new
kernels, programmability, reliability, and user productivity
are involved. Nevertheless, it is possible to identify a solid
roadmap that has already shown promising results:

1) Use CUDA / OpenCL: CUDA is currently the
language of choice for programming GPUs. It facili-
tates a data-based parallel programming model that has
turned out to be a remarkable fit for many applications.
Moreover, current results show its programming model
allows applications to scale on many cores [1]. DLA is
no exception as algorithms can be represented in terms
of Level 2 and 3 BLAS – essentially a data parallel

set of operations that are scaling on current GPUs.
The approach described here also shows how the
BLAS scalability is in fact translated into scalability
on higher level routines (LAPACK). Similar to CUDA,
OpenCL takes its roots in the data-based parallelism
(now both moving to support task-based parallelism).
OpenCL is still yet to be established, but the fact that
it is based on a programming model with already rec-
ognized potential and the idea of providing portability
– across heterogeneous platforms consisting of CPUs,
GPUs, and other processors – makes it an excellent
candidate for coding hybrid algorithms.

2) Use GPU BLAS: Performance of DLA critically
depends on the availability of fast BLAS, especially
on the most compute intensive kernel, i.e., the Level
3 BLAS matrix-matrix multiplication. Older genera-
tion GPUs did not have memory hierarchy and their
performance exclusively relied on high bandwidth.
Therefore, although there has been some work in the
field, the use of older GPUs has not led to significantly
accelerated DLA algorithms. For example, Fatahalian
et al. studied SGEMM and their conclusion was that
CPU implementations outperform most GPU imple-
mentations. Similar results were produced by Galoppo
et al. on LU factorization. However, the introduction
of memory hierarchy in current GPUs has drastically
changed the situation. Indeed, by having memory hi-
erarchy, GPUs can be programmed for memory reuse
and hence not rely exclusively on their high band-
width. An illustration of this fact is given in Figure 1,
showing the performance of a compute-bound (matrix-
matrix multiplication on the top) and a memory-bound
kernel (matrix-vector multiplication on the bottom).
Implementing fast BLAS is a paramount key because
algorithms for GPUs can now leverage prior DLA
developments, which have traditionally relied on fast
BLAS. Of course there are GPU specific optimiza-
tions, like trading extra-operations for performance, or
interleaving BLAS calls, etc, but the important fact is,
high performance algorithms can be coded at a high
level, just using BLAS, often abstracting the developer
from the need of low-level GPU specific codes.

3) Use Hybrid Algorithms: Current GPUs feature
massive parallelism but serial kernel execution. For ex-
ample, the NVIDIA’s GTX280 has 30 multiprocessors,
each multiprocessor having eight SIMD functional
units, each unit capable of executing up to three
(single floating point) operations per cycle. At the
same time, kernels are executed serially; only one
kernel is allowed to run at a time using the entire
GPU. This means that only large, highly parallelizable
kernels can run efficiently on GPUs. The idea of
using hybrid algorithms presents an opportunity to
remedy this situation and therefore enable the efficient

1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300

350

400

GPU vs CPU GEMM

GPU SGEMM
GPU DGEMM
CPU SGEMM
CPU DGEMM

Matrix size

G
Fl

op
/s

1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

GPU vs CPU GEMV

GPU SGEMV
GPU DGEMV
CPU SGEMV
CPU DGEMV

Matrix size

G
Fl

op
/s

Figure 1. BLAS on GPU (GTX 280) vs CPU (8× Intel Xeon 2.33GHz).

use of GPUs well beyond the case of data-parallel
applications. Namely, the solution and advice to de-
velopers is to use a hybrid coding approach, where
small, non-parallelizable kernels would be executed on
the CPU, and only large, data-parallel kernels on the
GPU. Although GPUs move towards supporting task-
based parallelism as well (e.g., advertised for the next
generation NVIDIA GPUs, code named “Fermi” [6]),
small tasks that arise in DLA would still make sense
to be executed on the CPU, reusing existing software
infrastructure (in particular LAPACK).

B. The Approach – Hybridization of DLA Algorithms

The above considerations are incorporated in the follow-
ing Hybridization of DLA Algorithms approach:

• Represent DLA algorithms as a collection of BLAS-
based tasks and dependencies among them (see the
illustration in Figure 2):

– Use parametrized task granularity to facilitate auto-
tuning frameworks;

– Use performance models to facilitate the task split-
ting/mapping.

• Schedule the execution of the BLAS-based tasks over
the multicore and the GPU:

– Schedule small, non-parallelizable task on the CPU
and large, parallelizable on the GPU;

– Define the algorithm’s critical path and prioritize
its execution/scheduling.

The splitting of the algorithms into tasks is in general
easy, as it is based on the splitting of large BLAS into

Figure 2. Algorithms as a collection of BLAS-based tasks and dependen-
cies among them (DAGs) for hybrid GPU-based computing

smaller ones. More challenging is choosing the granularity
and shape of the splitting and the subsequent scheduling
of the sub-tasks. There are two main guiding directions on
how to design the splitting and scheduling of tasks. First,
the splitting and scheduling should allow for asynchronous
execution and load balance among the hybrid components.
Second, it should harness the strengths of the components
of a hybrid architecture by properly matching them to al-
gorithmic/task requirements. Examples demonstrating these
general directions are given in the next two sections.

Next, choosing the task granularity, can be done by
parametrizing the tasks’ sizes in the implementations and
tuning them empirically [7]. The process can be automated,
often referred to as auto-tuning. Auto-tuning is crucial for
the performance and the maintenance of modern numerical
libraries, especially for algorithms designed for hybrid archi-
tectures. Figuratively speaking, it can be regarded as both
the Beauty and the Beast behind hybrid DLA libraries (e.g.,
MAGMA) as it is an elegant and very practical solution for
easy maintenance and performance portability, while often
being a brute force, empirically-based exhaustive search
that would find and set automatically the best performing
algorithms/kernels for a specific hardware configuration. The
“exhaustive” search is often relaxed by applying various
performance models.

Finally, the problem of scheduling is of crucial importance
for the efficient execution of an algorithm. In general,
the execution of the critical path of an algorithm should
be scheduled as soon as possible. This often remedies
the problem of synchronizations introduced by small, non-
parallelizable tasks (often on the critical path; scheduled on
the CPU) by overlapping their execution with the execution
of larger more parallelizable ones (often Level 3 BLAS;
scheduled on the GPU).

These principles are general enough to be applied in
areas well beyond DLA. Usually they come with specifics,
induced by the architecture and the algorithms considered.
The following two sections present some of these specifics
for the LU, QR, and Cholesky factorizations, and the direct
as well as mixed-precision iterative refinement solvers based
on them.

C. One-sided Factorizations

This section describes the hybridization of LAPACK’s
one-sided factorizations – LU, QR, and Cholesky – on dense
matrices. LAPACK uses block-partitioned algorithms, and
the corresponding hybrid algorithms are based on them. The
one-sided factorizations are the first of two steps in solving
a dense linear system of equations. It represents the bulk
of the computation (O(N3) floating point operations in the
first step vs O(N2) in the second step) and therefore has
to be highly optimized. The second step involves triangular
solvers (or multiplication with orthogonal matrices, e.g., in
the least squares solvers based on the QR/LQ factorizations)
and is described in Section III-A.

The opportunity for acceleration using hybrid approaches
(CPU and GPU) has been noticed before in the context
of one-sided factorizations. In particular, while developing
algorithms for GPUs, several groups observed that panel
factorizations are often faster on the CPU than on the GPU,
which led to the development of highly efficient, one-sided
hybrid factorizations for a single CPU core and a GPU [8],
[9], multiple GPUs [9], [10], and multicore+GPU systems
[11]. M. Fatica [12] developed hybrid DGEMM and DTRSM
for GPU-enhanced clusters and used them to accelerate the
Linpack benchmark. This approach, mostly based on BLAS
level parallelism, results only in minor or no modifications
to the original source code.

The performance results showed in this section have all
been performed using the NVIDIAs GeForce GTX 280 GPU
and its multicore host, a dual socket quad-core Intel Xeon
running at 2.33 GHz.
Cholesky Factorization MAGMA uses the left-looking
version of the Cholesky factorization. Figure 3 shows how
the standard Cholesky algorithm in MATLAB style can
be written in LAPACK style and can easily be translated
to hybrid implementation. Indeed, note the simplicity and
the similarity of the hybrid code with the LAPACK code.
The only difference is the two CUDA calls needed to
offload data back and forth from the CPU to the GPU.
Also, note that steps (2) and (3) are independent and can
be overlapped – (2) is scheduled on the CPU and (3) on
the GPU, yet another illustration of the general guidelines
mentioned in the previous two sections. The performance of
this algorithm is given on Figure 4. The hybrid MAGMA
Cholesky factorization runs asymptotically at 300 Gflop/s in
single and almost 70 Gflop/s in double precision arithmetic.

(1) B = B – A*A'

(2) B = chol(B, 'lower')
(3) D = D – C*A'

(4) D = D\B

MATLAB code

ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0), ...)

spotrf_(“L”, &nb, hA(j, j), lda, info)
sgemm_(“N”, “T”, &j, ...)

strsm_(“R”, “L”, “T”, “N”, &j, ...)

LAPACK code

cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ...)

cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb)
cublasSgemm('N', 'T', j, ...)
spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)

cublasStrsm('R', 'L', 'T', 'N', j, ...)

Hybrid code

A

C D

B

Figure 3. Pseudo-code implementation of the hybrid Cholesky. hA and
dA are pointer to the matrix to be factored correspondingly on the host
(CPU) and the device (GPU).

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

0

10

20

30

40

50

60

70

80

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

Figure 4. Performance of MAGMA’s hybrid Cholesky in single (top) and
double precision (bottom) on GTX 280 vs MKL 10.1 and LAPACK (with
multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz.

QR Factorization Currently, we use static scheduling and
a right looking version of the block QR factorization. The
panel factorizations are scheduled on the CPU using calls
to LAPACK, and the Level 3 BLAS updates on the trailing
sub-matrices are scheduled on the GPU. The trailing matrix
updates are split into two parts - one that updates just the
next panel and a second one updating the rest. The next

panel update is done first, sent to the CPU, and the panel
factorization on the CPU is overlapped with the second
part of the trailing matrix. This technique is known as
look-ahead, e.g., used before in the Linpack benchmark.
The performance of this algorithm is given on Figure 5.
The hybrid MAGMA QR factorization runs asymptotically
almost at 290 Gflop/s in single and almost 68 Gflop/s in
double precision arithmetic.

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

0

10

20

30

40

50

60

70

80

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

Figure 5. Performance of MAGMA’s hybrid QR in single (top) and double
precision (bottom) arithmetic on GTX 280 vs MKL 10.1 and LAPACK
(with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz

LU Factorization Similarly to QR, MAGMA uses a right-
looking version of the LU factorization. The scheduling is
static using the look-ahead technique. Interchanging rows of
a matrix stored in column major format, needed in the piv-
oting process, can not be done efficiently on current GPUs.
We use the LU factorization algorithm by V. Volkov and J.
Demmel [9] that removes the above mentioned bottleneck.
The idea behind it is to transpose the matrix in the GPU
memory (once at the beginning of the factorization) so that
row elements are contiguous in memory, i.e. equivalent to
changing the storage format to row major. Row interchanges
now can be done efficiently using coalescent memory ac-
cesses on the GPU (vs strided memory accesses for a matrix
in column major format). The panels are being transposed

before being sent to the CPU for factorization, i.e., moved
back to the standard for LAPACK column major format.
Compared to the non-transposed version, this algorithm
runs approximately 50% faster on current NVIDIA GPUs,
e.g., GTX 280. The performance of the LU factorization in
MAGMA is shown in Figure 6. The hybrid MAGMA LU
factorization runs asymptotically almost at 320 Gflop/s in
single and almost 70 Gflop/s in double precision arithmetic.

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680 9216
G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

0

10

20

30

40

50

60

70

80

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

MAGMA
LAPACK

MKL-10.1

Figure 6. Performance of MAGMA’s hybrid LU in single (top) and double
precision (bottom) arithmetic on GTX 280 vs MKL 10.1 and LAPACK
(with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz

D. Extension to multiple GPUs

As mentioned earlier, the challenges in developing scal-
able high performance algorithms for multicore with GPU
accelerators systems stem from their heterogeneity, massive
parallelism, and the huge gap between the GPUs’ compute
power vs the CPU-GPU communication speed. We show an
approach that is largely based on software infrastructures
that have already been developed – namely, the Paral-
lel Linear Algebra for Scalable Multicore Architectures
(PLASMA) [13] and MAGMA libraries. On one hand, the
tile algorithm concepts from PLASMA allow the compu-
tation to be split into tiles along with a static scheduling
mechanism to efficiently balance the work-load between

GPUs. On the other hand, MAGMA kernels are used to
efficiently handle heterogeneity and parallelism on a single
tile. Thus, the new algorithm features two levels of nested
parallelism. A coarse-grained parallelism is provided by
splitting the computation into tiles for concurrent execution
between GPUs (following PLASMA’s framework). A fine-
grained parallelism is further provided by splitting the work-
load within a tile for high efficiency computing on GPUs but
also, in certain cases, to benefit from hybrid computations by
using both GPUs and CPUs (following MAGMA’s frame-
work). Furthermore, to address the challenges related to the
huge gap between the GPUs’ compute power vs the CPU-
GPU communication speed, we developed a mechanism to
minimize the communications overhead by trading off the
amount of memory allocated on GPUs. This is crucial for
obtaining high performance and scalability on multicore with
GPU accelerators systems.

The experiments shown in Figure 7 have been performed
on a dual-socket dual-core host machine based on an AMD
Opteron processor operating at 1.8 GHz. The NVIDIA
S1070 graphical card is connected to the host via PCI
Express 16x adapter cards (3.1 GB/s of CPU-to-GPU and
2.8 GB/s GPU-to-CPU bandwidth). It is composed of four
GPUs C1060 with two PCI Express connectors driving two
GPUs each. Each GPU has 1.5 GB GDDR-3 of memory
and 30 processing cores each, operating at 1.44 GHz. As a
result, by reusing the core concepts of our existing software
infrastructures along with data persistence optimizations,
the new hybrid Cholesky factorization not only achieves
unprecedented high performance but also, scales while the
number of GPUs increases. The performance reaches up to
1.163 TFlop/s in single and up to 275 GFlop/s in double
precision arithmetic. Compared with the performance of the
embarrassingly parallel xGEMM over four GPUs, where no
communication between GPUs are involved, our algorithm
still runs at 73% and 84% for single and double precision
arithmetic respectively.

As shown in [14], the static scheduler is very efficient to
handle the distribution of tasks on multicore architectures.
It still conveniently performs in hybrid environments as
presented in Figure 8 with four GPUs. Each task row corre-
sponds to a particular GPU trace execution. The different
kernels are clearly identified by their colors. There are
almost no gaps between the scheduling of the four different
kernels. There is a slight load imbalance phenomenon at the
end of the trace mainly because GPUs naturally run out of
work as they approach the end of the factorization.

III. DENSE LINEAR SYSTEM SOLVERS

We have implemented in MAGMA solvers in real arith-
metic, both single and double precision, based on the LU,
QR, and Cholesky factorizations. To solve

Ax = b

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

Gfl
op

/s

Matrix Size

4 CPUs - 4GPUs

3 CPUs - 3GPUs

2 CPUs - 2 GPUs

1CPUs - 1GPUs

4 CPUs - 4GPUs

3 CPUs - 3GPUs

2 CPUs - 2 GPUs

1CPUs - 1GPUs

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Gfl
op

/s

Matrix Size

Figure 7. Speed up of the tile hybrid Cholesky factorization in single (top)
and double precision (bottom) arithmetic on four NVIDIA C1060 GPUs.

Figure 8. Execution trace of the hybrid tile Cholesky on four GPUs. Dark
blue denotes POTRF, light blue SYRK, purple TRSM, and green GEMM.

the matrix A is first factored, and second, the resulting
factors are used in solving the original problem. A general
recommendation is to use LU for general n × n matrices,
Cholesky for symmetric and positive definite n×n matrices,
and QR for solving least squares problems

min ||Ax− b||

for general m×n, m ≥ n matrices. The first step was already
discussed in the previous section. Here we comment on the
second step, namely the triangular solvers (next).

In addition to having the standard solvers, where both
the factorization and the subsequent triangular solves are
done in the working precision, we have implemented mixed
precision solvers, where a factorization is done in single
precision, followed by iterative steps in double precision to
increase the accuracy (see Section III-B).

A. Triangular Solvers

Although the solution step has O(n)× less floating point
operations than the factorization, it is still very important to
optimize the triangular solver step. Indeed, solving a triangu-
lar system of equations can be very slow.Various approaches
have been proposed in the past. We use an approach where
diagonal blocks of A are explicitly inverted and used in a
block algorithm. This results in a numerically stable algo-
rithm, especially when used with triangular matrices coming
from numerically stable factorization algorithms (e.g. as in
LAPACK and as implemented here in MAGMA), of high
performance, e.g., often exceeding 50× the performance of
the corresponding CUBLAS implementations (depending on
matrix size, number of right-hand-sides and hardware).

B. Mixed-precision Iterative Refinement Solvers

To take advantage of the fact that GPU’s single pre-
cision is currently of much higher performance than the
double precision (theoretically ≈ 10×), MAGMA version
0.2 provides a second set of solvers, based on the mixed
precision iterative refinement technique. The solvers are
based again on correspondingly the LU, QR, and Cholesky
factorizations, and are designed to solve linear problems in
double precision accuracy but at a speed that is characteristic
for the much faster single precision computations. The idea
is to use single precision for the bulk of the computation,
namely the factorization step, and then use that factorization
as a preconditioner in a simple iterative refinement process in
double precision arithmetic. This often results in the desired
high performance and high accuracy solvers (the limiting
factor is the conditioning of the linear system).

IV. PERFORMANCE RESULTS

This section shows the performance of the linear solvers
developed using single and multiple GPUs (up to four).
The number of right hand sides has been set to one.The
characteristics of the single GPU are described in II-C and
the ones for the multiGPU card are mentioned in II-D.

Figure 9 presents the performance of the triangular solvers
in single and double precision arithmetic. The speed up is
considerable compared to the CUBLAS library.

The performance of the standard linear solvers (factor-
ization and triangular solves in working precision) and the
mixed precision iterative refinement solvers is presented in
Figure 10. The performance is for a single GPU and is
given for the solvers based on each of the three one-sided
factorizations, i.e., Cholesky, QR and LU. The experiment
is for randomly generated matrices (with adjustment for the
symmetric case to be positive definite). The iterative refine-
ment solutions have double precision norm-wise backward
error. The results illustrate the high benefit to be expected
from these type of solvers, namely, to get a solution in
double precision accuracy while running close to the single
precision execution rate.

0

1

2

3

4

5

0 1024 2048 3072 4096 5120

G
F
l
o
p
/
s

Matrix size

MAGMABLAS
cublas-2.3

0

1

2

3

4

5

0 1024 2048 3072 4096 5120

G
F
l
o
p
/
s

Matrix size

MAGMABLAS
cublas-2.3

Figure 9. Triangular solvers with one right-hand side in single (top) and
double precision (bottom) arithmetic on one NVIDIA GTX 280 GPU.

Figure 11 gives the performance and strong scalability of
a mixed precision iterative refinement solver using up to four
CPU-GPU couples. The solver is for symmetric and positive
definite matrices, using the multiGPU Cholesky factorization
from Section II-D. The factorization is done across up to four
GPUs and then, the iterations to converge to the solution
with enhanced accuracy is performed on a single GPU. We
note that the performance curves of the Cholesky solver
are close to the Cholesky factorization in single precision,
and fairly scales while the number of GPUs increases. The
performance with four CPU cores with four GPUs is up to
100× higher than the performance with just the four CPU
cores of the host (dual-socket dual-core AMD Opteron 1.8
GHz, solving in double precision arithmetic at 9 GFlop/s).

V. CONCLUSION

We described a set of techniques on how to develop
algorithms that efficiently use hybrid systems of multicores
with GPU accelerators to solve dense linear systems. The
techniques described are incorporated into the MAGMA
library. MAGMA is designed to be similar to LAPACK in
functionality, data storage, and interface, to allow scientists
to effortlessly port their LAPACK-relying software compo-
nents and to take advantage of each component of the new
hybrid architectures. Current results show the approach is
scalable. We used a high-level parallel programming model
and leveraged prior advances in the field to develop a

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680

G
F
l
o
p
/
s

Matrix size

Mixed Precision
Double Precision
Single Precision

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680

G
F
l
o
p
/
s

Matrix size

Mixed Precision
Double Precision
Single Precision

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680

G
F
l
o
p
/
s

Matrix size

Mixed Precision
Double Precision
Single Precision

Figure 10. Performance of solvers using Cholesky (top), LU (middle),
and QR (bottom) on one NVIDIA GTX 280 GPU.

scientific computing software tool enabling the efficient use
of hybrid GPU accelerated multicore systems.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Foundation, Microsoft Research, and NVIDIA for support-
ing this research effort.

REFERENCES

[1] NVIDIA CUDA ZONE.
http://www.nvidia.com/object/cuda home.html.

[2] General-purpose computation using graphics hardware.
http://www.gpgpu.org.

[3] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version
0.2 User Guide. http://icl.cs.utk.edu/magma, 11/2009.

0

100

200

300

400

500

600

700

800

900

3072 6144 9216 12288 15360

G
F
l
o
p
/
s

Matrix size

4CPUs-4GPUs
3CPUs-3GPUs
2CPUs-2GPUs

1CPU -1GPU

Figure 11. Performance of double precision solvers using the mixed
precision iterative refinement technique on multiple GPUs. Shown is
the performance of solvers using single precision Cholesky factorization
and two double precision iterative refinement steps on up to four NVIDIA
C1060 1.44GHz GPUs and four Opteron 1.8GHz CPUs.

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A
class of parallel tiled linear algebra algorithms for multicore
architectures. Parallel Computing, 35(1):38–53, 2009.

[5] H. Ltaief, J. Kurzak, and J. Dongarra. Parallel band two-sided
matrix bidiagonalization for multicore architectures. Accepted
for publication at TPDS, 2009.

[6] NVIDIA. NVIDIA’s Next Genera-
tion CUDA Compute Architecture: Fermi.
http://www.nvidia.com/object/fermi architecture.html, 2009.

[7] Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning
GEMM for GPUs. In ICCS ’09, pages 884–892, Berlin,
Heidelberg, 2009. Springer-Verlag.

[8] M. Baboulin, J. Dongarra, and S. Tomov. Some issues
in dense linear algebra for multicore and special purpose
architectures. Lapack working note 200, May 2008.

[9] V. Volkov and J. Demmel. Benchmarking gpus to tune dense
linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–11, Piscataway, NJ,
USA, 2008. IEEE Press.

[10] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra. A
scalable high performant Cholesky factorization for multicore
with GPU accelerators. Lawn 223, November 2009.

[11] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense
linear algebra for hybrid GPU accelerated manycore systems.
Lawn 210, October 2008.

[12] M. Fatica. Accelerating Linpack with CUDA on heterogenous
clusters. In GPGPU-2, pages 46–51, New York, NY, USA,
2009. ACM.

[13] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
J. Langou, H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA
version 2.0 user guide. http://icl.cs.utk.edu/plasma, 2009.

[14] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. Compara-
tive study of one-sided factorizations with multiple software
packages on multi-core hardware. In SC ’09, 2009.

