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Dense Monocular Reconstruction using Surface Normals

Chamara Saroj Weerasekera, Yasir Latif, Ravi Garg, Ian Reid

Abstract— This paper presents an efficient framework for
dense 3D scene reconstruction using input from a moving
monocular camera. Visual SLAM (Simultaneous Localisation
and Mapping) approaches based solely on geometric methods
have proven to be quite capable of accurately tracking the
pose of a moving camera and simultaneously building a map
of the environment in real-time. However, most of them suffer
from the 3D map being too sparse for practical use. The
missing points in the generated map correspond mainly to areas
lacking texture in the input images, and dense mapping systems
often rely on hand-crafted priors like piecewise-planarity or
piecewise-smooth depth. These priors do not always provide the
required level of scene understanding to accurately fill the map.
On the other hand, Convolutional Neural Networks (CNNs)
have had great success in extracting high-level information from
images and regressing pixel-wise surface normals, semantics,
and even depth. In this work we leverage this high-level scene
context learned by a deep CNN in the form of a surface
normal prior. We show, in particular, that using the surface
normal prior leads to better reconstructions than the weaker
smoothness prior.

I. INTRODUCTION

The ability to carry out dense and accurate 3D mapping

of the environment is desirable in applications such as

autonomous navigation, robotic manipulation, augmented re-

ality, etc. Doing so merely using input from a moving monoc-

ular/stereo camera is attractive as cameras are ubiquitous,

compact, power efficient, and not limited by range. Visual

SLAM (Simultaneous Localisation and Mapping) systems

have evolved to the point where they are capable of many

feats such as accurate and real-time camera tracking and 3D

mapping [1], [2], [3], with some capable of fully dense live

3D reconstruction [4], [5].

Less attention has been paid to the application of high-

level scene understanding to aid the mapping process. Some

work has introduced constraints such as Manhattan world

assumptions, or piecewise planar priors [6], [7], [8]. Other

stronger priors have also been leveraged, such as known

objects [9], [10], while other works have made use of

smoothness assumptions to “fill in” regions where there is

insufficient photometric variation [4], [11]. For example, [4]

requires hand crafted priors on depth (piecewise constant

disparity) to fill in the regions of low texture. High-level

scene context (e.g. offices having a desk, on top of which a

monitor, keyboard, etc. often lie in a specific configuration)

is usually ignored in pure-geometry based SLAM systems.

In our work we recognise that recent advances in deep

learning techniques mean that priors about surface orien-

tation can be captured within a multi-layer Convolutional

All authors are with the School of Computer Science, at the University
of Adelaide, and Australian Centre for Robotic Vision.

Fig. 1. Reconstruction using smoothness regularizer (top left) and normal
prior (top right), an RGB image in the sequence (bottom left), and corre-
sponding predicted normals (bottom right). Note the more accurate high-
fidelity reconstruction obtained using the normal prior. A live comparison
video is available at https://youtu.be/atq1EhX-75k.

Neural Network (CNN) which regresses image patches to

local surface normal values [12], [13]. The predictions are

likely to be backed by the capacity of neural networks to

grasp high-level concepts such as object type and scene

layout, and relative orientation to one another, in addition to

low-level cues such as shading [14]. The improvements they

can bring to traditional reconstruction techniques are also

demonstrated in recent work like [15]. Motivated by this,

we here present the first framework for real-time monocular

dense mapping that efficiently combines both the benefits of

deep CNNs and well-established geometry-based methods.

In particular, we use normal predictions from a learned

neural network [12] as a strong prior and aim to estimate

a map which (i) minimizes photometric cost and (ii) is

consistent with the single-view normal predictions. To that

end we incorporate a depth/normal consistency term in our

energy minimization framework which acts as a regularizer

to fill in the gaps in the map with very little texture. We

closely follow [4]’s energy minimization method for mapping

where our proposed regularizer replaces the inverse-depth

smoothness prior used in [4].

We extensively evaluate the proposed method quantita-

tively against the traditional hand-crafted smoothness regu-

larizer such as [4], and pure learning-based system like [12]

on a diverse range of indoor sequences in a large dataset

like raw NYU-D V2 [16]. Our benchmarking highlights



limitations of both pure learning-based and pure-geometry-

based systems, which are addressed by the proposed method.

II. BACKGROUND AND RELATED WORK

The problem of monocular SLAM is well studied and con-

sists of estimating the structure of the environment together

with the location of the camera at any given moment. The en-

vironment is generally represented as a collection of points,

whose density varies from sparse [3] to semi-dense [2] to

dense [4], [17]. Geometry-based methods rely on minimizing

multi-view photometric error/feature-correspondences under

the assumption that the environment is sufficiently textured.

Therefore, in featureless regions they are unable to reason

about the environment’s geometry sufficiently well. This is

particularly an issue for dense mapping. Several hand-crafted

priors have thus been proposed to address this. Some of

them include smoothness in disparity/depth priors [4], [11],

[17] or Manhatton/piewise-planar priors [6], [18], [7], [19],

[8]. Another line of work [20], [9], [21], [10], [22], [23]

used a limited set of detected object classes as a prior for

reconstruction.

Single-image surface normal estimation/prediction has

been a topic of interest over the years. Early work includes

estimating normals using shape from shading [14], and other

low-level image features [24]. More recently, learning based

approaches such as [25], [26], especially those using neural

nets [12], [27] have achieved state-of-the art performance

in normal prediction. In [12], an efficient multi-scale CNN

was proposed for estimation of depth, surface normals, and

semantic labels. In their neural network architecture, all three

tasks shared common weights for the course scale, and the

finer scales received additional input from the output of the

courser scales. A separate line of work aim to reconstruct

purely based on normal information [28].

More closely aligned with our work, in [29], a formula-

tion to integrate normals with photometric consistency for

reconstruction was proposed. The normals were computed

based on local-planar patch fitting that maximized photo-

consistency. In [30] surface normals from detected object

classes were used to formulate a regularizer to penalize re-

construction errors. More recently, in [15], in a direction very

similar to ours, a method was proposed for refining single-

image depth predictions, or stereo-based depth estimates

using surface normal predictions from a neural network.

Pixel-wise classification scores of a discrete set of surface

normals were used to construct a Wulff shape which served

as a regularization function to penalize incorrect pairwise

depth relationships. The experiments in [15] however were

limited to improving stereo reconstruction and single-view

depth predictions, and the formulation utilized discretized

normal predictions.

III. METHOD

Our proposed framework incrementally generates a fully

dense reconstruction of a scene from a video sequence given

pixel-wise surface normal maps of keyframes and photomet-

ric evidence from a series of overlapping images correspond-

ing to those keyframes. The following sub-sections elaborate

on the key components.

A. Notations

The following notations and conventions will be used in

this section. K is the camera intrinsic matrix. Ir ∈ R
3 is a

M × N keyframe image and In ∈ R
3 is a M × N image

in the set of images overlapping Ir. We assume images are

undistorted. up = (u, v)T is a pixel location in Ir, where

p = 1, ...,MN ∈ P is a pixel location-based index. u̇p =
(u, v, 1)T is up in homogeneous form, and x̃p := K−1u̇p.

For a pixel up, dp and ρp are the corresponding depth and

inverse-depth respectively, and d and ρ are MN ×1 vectors

of stacked dp and ρp values respectively. Tnr ∈ SE(3)
is a matrix describing the transformation of a point from

camera coordinates of Ir to that of In. π(.) and π−1(., .)
are the projection and back-projection operations, such that

π(K−1u̇p/ρp) = up and π−1(up, ρp) = K−1u̇p/ρp. The

predicted surface normal vectors n̂p ∈ R
3 are normalized in

Euclidean space and are in camera coordinates of Ir.

B. Energy Formulation for Mapping

We formulate depth estimation of a keyframe as an energy

minimization problem. Closely following [4] our energy

function consists of a dataterm and a regularization term as

follows and will be minimized with respect to ρ:

E(ρ) =
∑

p∈P

1

λ
Eφ(ρp) + En̂(ρp), (1)

where λ controls the regularization strength.

Eφ is the dataterm that computes the photometric error

for a keyframe Ir accumulated over N overlapping frames:

Eφ(ρp) =
1

N

N
∑

n=1

∥

∥

∥
I
′

r(up)− I
′

n(π(Tnrπ
−1(up, ρp)))

∥

∥

∥

1

(2)

For added robustness in the photometric matching, we

concatenate the RGB channels of Ir and In with an ad-

ditional image gradient-based channel, computed using eqn.

(6), forming I
′

r and I
′

n respectively. Using eqn. (2) a cost

volume [4] can be created that stores average photometric

error for a discrete set of inverse depth labels l ∈ L, for

each pixel up. Sections D and E contain more information

pertaining to cost volume creation.

Our proposed regularization term is based on the rela-

tionship between a pair of 3D points and its corresponding

normal (Fig. 2) in the camera coordinates of Ir:

〈n̂p, dqx̃q − dpx̃p〉 = 0, (3)

where 〈 , 〉 is the dot product operator and q ∈ N (p)
corresponds to a pixel location in the neighbourhood of that

of p. Equation (3) can be simplified as:

dq〈n̂p, x̃q〉 − dp〈n̂p, x̃p〉 = 0

dqcpq − dpcpp = 0

ρpcpq − ρqcpp = 0

(4)
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Fig. 2. A neighbouring 3D point pair and corresponding surface normal.

where cpq and cpp are constants equal to n̂p · x̃q and n̂p · x̃p

respectively. Thus we can minimize the following energy,

penalizing inconsistent inverse depth values:

En̂(ρp) = gp
∥

∥∇
ρ

p

∥

∥

ǫ
(5)

where ∇
ρ

p denotes a vector of operations as follows:

∇
ρ

p =

[

ρpcpi − ρicpp
ρpcpj − ρjcpp

]

.

The indices i and j correspond to pixel locations neighbour-

ing that of p in the positive x and y directions in the image

plane. Note that we have restricted the neighbourhood pair-

wise connectivity to the latter for computational efficiency.

The image-edge based weight gp = g(Ir,up) where

g(I,u) = e−α‖∇I(u)‖β
2 (6)

reduces regularization at image edges, under the assumption

that these regions align with depth discontinuities, and also

have higher data-term quality. α and β are tunable parame-

ters.

The Huber norm, defined as

‖x‖ǫ =











‖x‖22
2ǫ

if ‖x‖2 ≤ ǫ

‖x‖1 −
ǫ

2
otherwise

, (7)

also minimises penalties at surface discontinuities, and makes

the overall energy more robust to errors in normal predic-

tions.

In the special case when cpq = cpp = −1 which occurs

when n̂ = (0, 0,−1)T , i.e. the normal is pointed directly at

the camera, eqn. (5) reduces to the smoothness prior used

in [4]. Hence ours is a more general form that can enforce

inverse depth relationships for arbitrary surface orientations

visible to the camera. Adding more flexibility, we introduce

a tunable parameter γ which balances smoothness/normals

regularization:

cpq ⇐ (1− γ)cpq − γ

cpp ⇐ (1− γ)cpp − γ
(8)

where γ is a value between 0 and 1. The parameter γ
could also be a function of the normal prediction uncertainty

estimated using a technique such as in [31].

C. Optimisation of Keyframe Inverse Depths

The objective can be written as follows:

min
ρ

E(ρ) =
∑

p∈P

1

λ
Eφ(ρp) + gp

∥

∥∇
ρ

p

∥

∥

ǫ
(9)

Based on the Legendre-Fenchel transform, the convex

problem minρ
∑

p∈P gp
∥

∥∇
ρ

p

∥

∥

ǫ
is equivalent to [32]:

min
ρ

max
q

∑

p∈P

{

〈∇ρ

p ,qp〉 − δq(
qp

gp
)−

ǫ

2

‖qp‖
2
2

gp

}

, (10)

where qp = [qpx, qpy]
T is the dual variable and q =

[q1, ...,qMN ]T . δq(qp/gp) = 0 if ‖qp/gp‖2 ≤ 1 and ∞
otherwise.

Following [4] and [33], we introduce a linking term
1
2θ ‖ρp − ap‖

2
2 into (9) and replace Eφ(ρp) with Eφ(ap),

where ap is an auxiliary variable. We define a to be a vector

such that a = [a1, ..., aMN ]T .

The objective (9) can now be written as:

min
ρ,a

max
q

E(ρ,a,q) (11)

where

E(ρ,a,q) =
∑

p∈P

Ea(ap, ρp) + 〈∇ρ

p ,qp〉

− δq(
qp

gp
)−

ǫ

2

‖qp‖
2
2

gp

(12)

and

Ea(ap, ρp) =
1

λ
Eφ(ap) +

1

2θ
‖ρp − ap‖

2
2 . (13)

The energy in eqn. (12) can be optimised by performing

gradient ascent on dual variables qp, p ∈ P , followed by

gradient descent on primal variables ρp, p ∈ P , and an

exhaustive point-wise search in the discrete label space L
for finding ap that minimizes Ea(ap, ρp), p ∈ P [34][4].

This process is repeated iteratively while decreasing θ slowly.

The variable updates within the primal and dual steps and

the point-wise search can occur in parallel, and thus (12)

can be optimized efficiently in GPU hardware [34]. Using

a sparse pairwise graph structure for the regularization term

adds to the gradient computation efficiency.

Using the method in [4] we compute the upper and lower

bounds for the exhaustive search since the required search

space in L grows narrower as θ decreases, and also perform

a single Newton step on the optimal a at each time step for

achieving sub-label accuracy (using numerical derivatives of

Ea w.r.t a around its current discrete solution [4]). Algorithm

1 summarizes the steps for obtaining the solution.

In Algorithm 1, ∇q
p denotes the following operation:

∇q
p = (qpxcpi − qrxcrr) + (qpycpj − qsycss), (14)

where r and s correspond to pixel locations neighbouring that

of p in the negative x and y directions in the image plane.

Note that ∇ρ

p and ∇q
p can be considered a generalization of

the gradient and divergence operations. The dual and primal

step sizes are denoted by σq and σρ respectively.



Algorithm 1: Optimisation procedure for solving for

optimal inverse depth values ρp = ap, p ∈ P for a

keyframe Ir

1 Initialize qp = 0, p ∈ P ;

2 Initialize ap = ρp = argminap∈L Eφ(ap), p ∈ P ;

3 Initialize θ = θstart;
4 Compute gp, cpq , and cpp, p ∈ P, q ∈ N (p);
5 repeat

6 qp ⇐ (qp + σq∇
ρ

p)/(gp + σqǫ), p ∈ P ;

7 qp ⇐ gpqp/max(1, ‖qp‖2), p ∈ P ;

8 ρp ⇐ (ρp + σρ(−∇q
p +

1
θ
ap))/(1 +

σρ

θ
), p ∈ P ;

9 Compute bounds for point-wise search [4] ;

10 ap ⇐ argminap∈L Ea(ap, ρp), p ∈ P ;

11 Do Newton-step on ap (if step-size < bin size) [4] ;

12 Decrease θ ;

13 until convergence;

D. Camera Tracking and Frame selection

We use the framework in [3] for accurate feature-based

camera tracking, and providing the required transformation

Tnr for computing the photometric cost. The choice of Ir
and its overlapping frame set greatly influence the reliability

of the data term. We consider a pre-defined frame window

of size N = Np+Nf around Ir, where Np is the maximum

number of past overlapping keyframes (large-baseline) to

consider, and Nf is the maximum number of future overlap-

ping frames (small-baseline) to consider. The past keyframes

are selected with the help of [3]’s covisibility graph, and

they are stored in a fixed length rolling buffer in GPU

memory so that they need not be re-copied. Setting the future

frame count to 0 allows for “just-in-time” reconstruction

as demonstrated in the video accompanying Fig. 1, while

increasing it correspondingly increases the mapping latency.

Each keyframe change in the tracker [3] sets a flag that

indicates sufficient motion to initialize a new Ir. Once the

flag is set, and the previous keyframe’s cost volume update

and inverse depth optimisation is complete, the current image

in the sequence is set as Ir. Fig 3 illustrates the data flow and

steps undertaken during a single keyframe reconstruction.

E. Scaling Camera Translations

As an optional step we scale camera translations to a fixed

scale to facilitate the choice of a consistent set of inverse

depth labels L. This is due to the inherent scale ambiguity in

monocular SLAM which may require the inverse depth label

range to be manually tuned every time the system is re-run.

For automatically recovering the approximate scale we use

absolute depth predictions from [12] which are predicted in

parallel with surface normals and bear minimal overhead to

prediction time (sub-section F). These depth predictions are

able to provide a rough idea about the scene’s scale, having

learnt approximately the relationship between object features

and their typical size. Note that we use depth predictions only

for scale recovery and hence up-to-scale reconstructions are

possible without it.

We do a 1-point RANSAC based least-square fit to find

the approximate multiplicative scale factor that will align

[3]’s sparse 3D map with the corresponding CNN depth

predictions for the current keyframe. This scale is then used

to normalize the camera translations in Tnr, which in turn

enables the use of a fixed set of inverse depth labels (based

on metric units) for the cost volume. We perform a running

average of the scale factors recovered for each Ir to improve

the reliability of the scale factor estimate.

F. Surface Normals Prediction

For regressing surface normals directly from the keyframe

image, we utilize the multi-scale CNN model proposed in

[12]. We use their VGG model variant with VGG-16-based

convolutional layers in scale 1 followed by 2 fully connected

layers. The input RGB image to the network is first resized

to 320x240 and then centre cropped to 304x228. The crop-

ping is required as the network was trained with randomly

cropped images at that same crop resolution. Scale 1 mainly

operates on a courser image resolution and extracts more

global features. Scales 2 and 3 consist of fully convolutional

layers which operate on fine and finer image resolutions

respectively and extract more local features. Scales 2 and 3

receive upsampled output from the preceding courser scales

[12].

The network at scale 3 simultaneously regresses a surface

normal map and depth map for the input keyframe image

at 147x109 resolution. In spite of the low-resolution output

a major portion of the scene detail is still captured. We

bilinearly upsample the predictions by a factor of 2 to the

corresponding region in the 320x240 input image. The small

amount of missing information at the border of the resulting

normal/depth map is due to effects of cropping at the input

and intermediate layers in the network. We do not perform

inverse depth regularization in this border region.

We replicated [12]’s model in the efficient Caffe [36]

framework and transferred the learnt weights. Their model

has been trained on millions of indoor images (data augmen-

tation included) in the training set of the raw NYU-Depth

V2 dataset [16]. The combined prediction time for a surface

normal map and depth map in Caffe is ≈ 40ms in GPU

mode.

G. Volumetric Fusion

As a post-processing step, the depth maps resulting from

the optimisation are fused into a global volumetric model

based on truncated signed distance function, using the open-

source InfiniTAM system [37]. The overall framework is

summarized in Fig. 3.

IV. EVALUATION

Using the smoothness regularizer (γ = 1 in eqn. (8)) as the

baseline, we explore the improvements after using the surface

normals regularizer (γ = 0) on a large number of sequences

in several video datasets. All our experiments are conducted

on a standard desktop PC with an Intel i7 4790 CPU and a



Keyframe CNN 
Normal Prediction 

[GPU] ≈ 40 ms

Keyframe Cost Volume Update for Overlapping I1, …, IN [GPU] 
≈ 2N ms

Keyframe Inverse Depth 
Optimisation [GPU] ≈ T ms

Keyframe 
Depth 
Fusion 
[GPU]
≈ 2 ms

raw image raw image + pose cost volume normals regularized depths

Camera Tracking [CPU] ≈ 33 ms / image

Ir 

Fig. 3. Key components of the framework and data flow. The depicted steps are repeated for each keyframe Ir . Our GPU implementation is based on
CUDA [35]. Camera tracking [3] runs in the main CPU thread. Cost volume update and CNN normal prediction both run on GPU on two independent
CUDA streams, and are managed in parallel with the main thread. Optimisation and depth map fusion run subsequently on GPU and are also managed in
parallel with the main thread. Similar to [4] the optimisation time T is dependent on the optimisation parameters like step sizes and θ scheduling policy,
and is ≈ 50 ms/keyframe for fast but less accurate reconstructions, and ≈ 800 ms/keyframe for more accurate but higher latency reconstructions. Mapping
latency (time between successive keyframe reconstructions) is ≈ (33+max(40,max(33Nf , 2(N − 1))+ 2)+ T +2) ms where N = Np +Nf is the
total number of images overlapping Ir . If the number of future frames Nf is set to 0, minimum mapping latency for reasonable accuracy is ≈ 150 ms in
practice. Frequency of keyframe reconstruction also depends on amount of camera translation which determine when a keyframe change should occur.

Nvidia GTX 980 4GB GPU. We also compare against single-

view CNN depth predictions from [12] to observe how well

a pure-learning based approach compares with our combined

learning and photometric error-based approach.

In our experiments we bilinearly downsample input images

to 320x240 to ensure low-latency fusions and smooth oper-

ation for the entire pipeline. This is at a slight compromise

of data-term quality. The neural network also takes in input

at this resolution which made the choice more appropriate.

Given hardware speed and memory constraints, the reduced

resolution also allowed the use of a relatively large label set

L for the cost volume. We use a fixed inverse depth range

of 0 to 4 with 256 bins, sufficient for reconstructing small

to large scale environments. Note that no finetuning of the

network is done on any of the sequences used for evaluation.

This allows us to test the generalization capabilities of the

neural network.

We performed quantitative comparisons using the RGB-

D tracking feature in [3] as (i) it allowed for ease of

repeatability of experiments (more consistent camera pose

estimates and keyframes selected, no scale ambiguity) and

(ii) it leaves out errors in camera poses when comparing

the two regularization methods. The qualitative results were

generated using regular monocular tracking.

We first tune λ for the two regularizer types using test

scenes in the raw NYU-D V2 dataset, so that the optimal λ
can be chosen. Following [12] we split the raw NYU-Depth

dataset [16] into test and train scenes based on the official

dataset split, using scenes that don’t contain train images

for testing. This gives 247 different indoor test sequences

out of which we choose 25 by sampling every tenth test

sequence to roughly correspond to all the different types

of indoor scene categories present in the raw test set [16].

Fig. 4. Average keyframe RMS reconstruction error (m) w.r.t regularization
strength (λ) on the raw NYU-D V2 test sequences. Notice that the error for
the normal-based regularizer remain lower.

The plot of RMS error vs λ for the two regularizers are

provided in Fig. 4. It can be seen that as we vary λ, the

error compared to the ground-truth remains lower for the

normals-based regularization. This is because even though

the regularization strength is high, the normals guide the

depths to the right solution more accurately, while with the

smoothness regularizer, a higher strength causes piecewise

planar reconstructions that are fronto-parallel to the keyframe

image plane. This effect is more apparent in areas where

there is little texture as expected.

Quantitative results on these sequences for the following

error and accuracy measures are given in Table I. Note

that dp and dgtp denote regularized depth and groundtruth



Fig. 5. Qualitative results on NYU raw dataset ’bathroom 0003’ test sequence. Phong shaded fused reconstruction using smoothness prior (top left),
phong shaded fused reconstruction using normals prior (top middle), a rgb keyframe image in the sequence (top right), surface normal rendering of
fused smoothness-prior reconstruction (bottom left), surface normal rendering of fused normal-prior reconstruction (bottom middle), corresponding normal
predictions for rgb keyframe image (bottom right). Note the more accurate reconstruction of textureless regions like the inside of the round sink using the
normal-prior. A live comparison video is available at https://youtu.be/BRLN-1MTZtw.

Fig. 6. Qualitative results on NYU raw dataset ’bedroom 0048’ test sequence. Input rgb image (top left), reconstructed keyframe depth map with
smoothness regularizer (top middle), fused reconstruction using smoothness regularizer (top right), keyframe surface normal prediction (bottom left),
reconstructed keyframe depth map with normal-based regularizer (bottom middle), fused reconstruction using normal-based regularizer (bottom right). Note
the more accurate reconstruction of the wall and floor overall when using the normal prior.

Fig. 7. Qualitative results on TUM dataset ’fr2 desk’ sequence. From left-to-right are fused reconstruction using smoothness prior, fused reconstruction
using normals prior, a rgb keyframe image in the sequence, and corresponding normal predictions for rgb keyframe image.



Error (lower is better) Accuracy (higher is better)

rms (m) log abs.rel sq.rel δ < 1.25 δ < 1.252 δ < 1.253

NYU-D V2 Raw 25 Test Scenes
CNN Depth [12] 0.637 0.226 0.163 0.135 0.738 0.937 0.982

P.E. + Smoothness 0.522 0.206 0.123 0.111 0.834 0.949 0.979
P.E. + Normals 0.449 0.174 0.086 0.076 0.893 0.964 0.985

TUM dataset ’fr2 desk’
CNN Depth [12] 1.141 0.368 0.227 0.261 0.543 0.820 0.923

P.E. + Smoothness 0.678 0.254 0.132 0.127 0.788 0.889 0.963

P.E. + Normals 0.654 0.242 0.119 0.115 0.829 0.898 0.963

ICL-NUIM dataset ’lr kt0’
CNN Depth [12] 0.829 0.426 0.295 0.261 0.472 0.781 0.905

P.E. + Smoothness 0.322 0.175 0.123 0.058 0.828 0.966 0.998

P.E. + Normals 0.221 0.118 0.073 0.024 0.936 0.991 0.998

TABLE I

QUANTITATIVE RESULTS ON 25 RAW NYU-D V2 DATASET TEST SEQUENCES, TUM DATASET ’FR2 DESK’ SEQUENCE, AND ICL-NUIM DATASET ’LR

KT0’ SEQUENCE. P.E. = PHOTOMETRIC ERROR. THE AVERAGE ERRORS AND ACCURACY ARE FOR KEYFRAME RECONSTRUCTIONS AGAINST KINECT

DEPTH MAPS (WHERE VALID DEPTHS ARE AVAILABLE). THE RESULTS HERE ARE SHOWN FOR THE OPTIMAL LAMBDA VALUES FOR NORMALS AND

SMOOTHNESS REGULARIZER BASED ON FIG. 4, BUT WITH HIGHER NUMBER OF ITERATIONS WHICH ALLOWED FOR HIGHER ACCURACY IN THE

RECONSTRUCTIONS.

depth respectively of a pixel location corresponding to p.

rms:
√

1
|P |

∑

p∈P ‖dp − dgtp ‖2

log rms :
√

1
|P |

∑

p∈P ‖log(dp)− log(dgtp )‖2

abs. rel: 1
|P |

∑

p∈P

|dp−dgt
p |

d
gt
p

sq. rel: 1
|P |

∑

p∈P

‖dp−dgt
p ‖2

d
gt
p

Accuracies: % of dp s.t. max(
dp

d
gt
p
,
dgt
p

dp
) = δ < thr

The errors are computed at locations where both Kinect

raw depth data is available and where depth regularization

is performed (regions excluding the small border where

predictions are not made). The regularized depth maps and

CNN depth predictions are bilinearly upsampled to 640x480

resolution prior to evaluating against the raw Kinect depth

maps. Note that the same optimisation and cost-volume-

related parameters were used for comparing the two reg-

ularizer types. We follow the same θ scheduling policy

as [4] with similar choice of parameters. The table, in

particular the low threshold accuracy column, help validate

that the normal-prior helps in recovering the fine details in

the scene. Qualitative comparisons are shown for two NYU

raw test sequences in Figures 5 and 6. The improvements in

reconstruction in terms of both fine detail and global scene

structure are apparent, especially in textureless regions.

The same experiments were carried out on the TUM

dataset [38] and the living room sequence ’lr kt0’ in the ICL-

NUIM dataset [39]. Quantitative results for these sequences

are also shown in Table I, and qualitative results for the

TUM sequence is shown in Fig 7. Again a similar trend to

that observed before can be seen. It can also be seen that

CNN depth predictions do not generalize to new scene types

as well as the other two methods.

While our experiments were limited to reconstructing

indoor environments, the same framework in theory can be

used for building dense maps of outdoor scenes, given the

large depth range covered by the cost volume and large-

scale volumetric fusion capabilities of [37]. However, the

neural network (which is trained on indoor scenes) will likely

require finetuning to adapt – this is yet to be validated.

The main difficulty here is in acquiring densely labelled

outdoor depth maps (required for generating ground truth

normals) for training, although an unsupervised learning

scheme similar to [40] should help in this regard.

V. CONCLUSION

In this work we presented a simple yet efficient solution

that jointly exploits low-level geometry-based photometric

evidence and high-level scene information captured from a

multi-scale CNN architecture in the form of surface normals,

for improving the accuracy of dense reconstructions in cases

where otherwise there is very little photometric evidence.

It was seen that incorporating learnt surface orientations

enabled smooth and accurate reconstructions especially in

areas with little photometric evidence to guide the solution.

Deep learning has enabled prediction of geometry of objects

and scenes directly from a single image and this alleviates

the need for prior assumptions about scene structure, and

handcrafted scene priors that are otherwise required for

dense reconstruction. It was also seen that these networks

are capable of generalizing to new types of environments

well enough for practical use. We believe this work is a

step forward in unifying the two complementary tasks of 3D

reconstruction and scene understanding, aiding purely vision-

based autonomous robots.
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