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Abstract—We propose long-haul space-division-multiplexing
(SDM) transmission systems employing parallel multiple-input
multiple-output (MIMO) frequency-domain equalization (FDE)
and transmission fiber with low differential mode delay (DMD). We
first discuss the advantages of parallel MIMO FDE technique in
long-haul SDM transmission systems in terms of the computational
complexity, and then, compare the complexity required for paral-
lel MIMO FDE as well as the conventional time-domain equal-
ization techniques. Proposed parallel MIMO FDE that employs
low baud rate multicarrier signal transmission with a receiver-side
FDE enables us to compensate for 33.2-ns DMD with consider-
ably low-computational complexity. Next, we describe in detail
the newly developed fiber and devices we used in the conducted
experiments. A graded-index (GI) multicore few-mode fiber (MC-
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FMF) suppressed the accumulation of DMD as well as intercore
crosstalk. Mode dependent loss/gain effect was also mitigated by
employing both a ring-core FM erbium-doped fiber amplifier and
a free-space optics type gain equalizer. By combining these ad-
vanced techniques together, we finally demonstrate 12-core × 3-
mode dense SDM transmission over 527-km GI MC-FMF without
optical DMD management.

Index Terms—Differential mode delay (DMD), few-mode fiber
(FMF), frequency-domain processing, multicore fiber (MCF),
space division multiplexing.

I. INTRODUCTION

S PACE division multiplexing (SDM) techniques have con-
tributed to the substantial enhancement of transmission

capacity per optical fiber by utilizing multi-core fiber (MCF)
and/or few-mode fiber (FMF) [1]–[12]. Spatial multiplicity has
risen to MMCF = 36 using MCF [10] and MFMF = 15 using
FMF [12], where MMCF and MFMF are respectively the number
of cores and spatial modes. We have previously demonstrated
unrepeated 40.4 km dense SDM (DSDM) transmission with spa-
tial multiplicity of 36 (12-core × 3-mode) by computationally-
efficient parallel multiple-input multiple-output (MIMO) equal-
ization using low baud rate multi-carriers [6].

Increasing the transmission reach for DSDM signals is essen-
tial for the practical application of DSDM systems. The most
important issues for realizing such long-haul DSDM MC-FMF
transmission include how to accommodate the accumulation of
inter-core crosstalk for MCF transmission, and that of differ-
ential mode delay (DMD) for FMF transmission. As already
demonstrated in [13] and [14], the inter-core crosstalk is ef-
fectively suppressed by employing propagation-direction inter-
leaved transmission that alternates propagation direction be-
tween adjacent cores. To combat the DMD accumulation, most
previous studies on long-haul FMF transmission have taken
a DMD management approach. In [7], 900-km FMF trans-
mission was achieved by canceling DMD with concatenated
multiple opposite-signs-DMD fiber segments. In [8], it was

0733-8724 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. SDM WDM transmission distance versus spatial multiplicity.

reported that 1000-km transmission with low-DMD FMF had
been achieved without optical DMD compensation. These re-
quired high-complexity digital DMD time-domain equalization
(TDE), because optical approaches perform non-perfect DMD
compensation/reduction. In a weakly-coupled regime, it was
demonstrated in [11] that dividing a single MIMO equalizer
into “partial MIMO” equalizers in which TDE processing was
carried out for lower- and higher-order mode signals indepen-
dently enabled to reduce the equalizer complexity with the op-
tical signal-to-noise ratio penalty of 1 dB. As another approach,
the use of frequency-domain equalization (FDE) techniques is
promising to mitigate the equalizer complexity [9], [15], [16].

In this paper, we propose to apply a novel low-complexity
DMD compensation technique using low baud rate multicar-
rier signal with parallel MIMO equalization. Digital compen-
sation for DMD of over 30 ns was achieved by employing
the low-complexity parallel MIMO and FDE, in combination
with the newly-developed graded-index (GI) MC-FMF with low
DMD, and a low mode-dependent gain FM erbium-doped fiber
amplifier (EDFA). Using these technologies, we demonstrate
527-km MC-FMF DSDM inline-repeated transmission without
DMD management with spatial multiplicity of 36 (12-core ×
3-mode), resulting in an achieved spectral efficiency of 2.62
b/s/Hz/core/mode. The rest of the paper is organized as follows.
Section II discusses the significance of equalization for DMD in
long-haul DSDM transmission, and its complexity reduction by
parallel MIMO TDE and FDE. Section III provides a description
of equalization algorithms for DMD and their required complex-
ity. In Section IV, we describe the experimental setup we used,
including the optical devices and signal processing technique
used in the experiment. The experiment results are shown in
Section V, and Section VI concludes the paper with a summary.

II. PARALLEL MIMO FDE FOR LONG-HAUL DSDM
TRANSMISSION WITHOUT DMD MANAGEMENT

We first discuss how we have developed an equalization al-
gorithm to achieve long-haul DSDM transmission and clarify
its significance in DSDM transmission. Fig. 1 shows the results
achieved in recent SDM WDM transmission experiment. In this
work, we successfully transmitted DSDM signals with the spa-
tial multiplicity of 36 over 500 km, which was more than ten
times the distance relative to our previous work. We addressed
the increase of DMD by implementing parallel MIMO FDE.
As transmission reach increases or signal baud rate becomes

Fig. 2. Required complexity for DMD compensation in recent FMF.

higher, the required computational complexity for digital DMD
compensation increases. One of the promising solutions to this is
employing low baud rate multi-carrier signals with receiver-side
parallel MIMO TDE [6]. However, as we will see in Section III,
the complexity scales linearly with increased DMD when a TDE
technique is used. Adaptive FDE algorithms for fiber-optic com-
munication systems were proposed in [15] and [16]. They used
the well-known feature of FDE; it effectively reduces the com-
putational complexity since computation of a convolution in the
time domain is replaced by FFT-based scalar multiplication [17].

We implemented FDE in conjunction with low baud rate
multi-carrier signals, which we call here “parallel MIMO FDE”,
to further decrease the complexity of DMD compensation. Fig. 2
depicts the required computational complexity per carrier per
mode which was defined by complex multiplications for calcu-
lating output/equalizer-updating and FFT/IFFT as a function of
total DMD (or equivalent equalizer memory length). We divided
the area in the Fig. 2 into three regions for digital DMD com-
pensation: single-carrier (SC) TDE region, parallel MIMO TDE
region [6], and parallel MIMO FDE region. The borders were set
under the assumption that 10-Gbaud-SC or 10-FDM 1-Gbaud
multi-carrier signals are transmitted through FMF with DMD.
Fig. 2 is helpful to approximately estimate the required com-
plexity of each equalization scheme for signals with arbitrary
symbol rate. Whereas the total DMD of 33.2 ns in our experi-
ments was the largest among recent SDM experiments, the use
of parallel MIMO FDE significantly suppressed the complexity
and enabled us to achieve transmission with considerably lower-
complexity than was achieved with other methods. Switching
SC-TDE to parallel MIMO FDE is expected to reduce the com-
plexity by a factor of around 33.

III. ADAPTIVE ALGORITHMS FOR DMD EQUALIZATION

In this section, we briefly describe three adaptive equaliza-
tion algorithms: SC-TDE, parallel MIMO TDE [6], and parallel
MIMO FDE. We also derive and compare the required computa-
tional complexity for three schemes. The complexity is defined
as the number of complex multiplications per symbol per mode
in each scheme in this section [15], [16].

A. Single-Carrier TDE

We start with the definition of Δτ,Nt,Nm ,Ro, and Rs which
respectively denote total DMD, the number of equalizer taps for
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SC-TDE, the number of spatial and polarization modes, the
oversampling rate, and the symbol rate. Note that only inte-
ger value for Ro is considered in this paper. If positive and
negative DMD effects are taken into account, Nt is equal to
2ΔτRoRs If the kth received signal for ith mode is denoted as
yi,k , the kth received signal vector for the ith mode is expressed
as yi,k = [yi,k−�Nt /2� yi,k−�Nt /2�+1 . . . yi,k+�Nt /2�−1 ]T, where
T, �·�, and �·� respectively denote the transpose operation, the
floor function, and the ceiling function. The complex-valued
NtNm × Nm equalizer matrix W is defined as

W = [wij ] (1)

where wij denotes the (i, j)-th column vector of W. The kth
symbol of the equalizer output for the ith mode xi,k is obtained
as

xi,k =
Nm∑

j=1

wij
Tyj,k . (2)

Note that yi,k and wij are vectors of length Nt . We em-
ploy a data-aided or decision-directed least mean square (LMS)
method for equalizer update. Thus, using the kth desired output
symbol for ith mode di,k , the error signal ei,k becomes

ei,k = di,k − xi,k . (3)

The corresponding equalizer updating equation with the step-
size parameter μ is derived as

wij ← wij + μei,kyj,k
∗. (4)

From (1)–(4), we find that NtNm multiplications are needed for
one symbol output per mode and (NtNm + 1) multiplications
are needed for equalizer updating. Thus the complexity for SC-
TDE is calculated as

CSC-TDE = 2NtNm + 1

= 4ΔτRoRsNm + 1. (5)

B. Parallel MIMO TDE

If we divide an optical carrier into P subcarriers, each sub-
carrier has to be driven at a symbol rate of Rs/P to keep the
data rate unchanged. Thus the equalizer length for multicarrier
equalization algorithm N ′

t becomes

N ′
t =

Nt

P
=

2ΔτRoRs

P
. (6)

The adaptation algorithm for the parallel MIMO TDE is basi-
cally identical to that for SC-TDE.

While the number of symbols contained in a unit time for
one subcarrier is decreased by a factor of P due to the lower
symbol rate, the number of subcarriers increases by a factor of
P . Consequently, the complexity for parallel MIMO TDE is
calculated as

CP-TDE =
(

2N ′
tNm + 1

)(
1
P

)
P

=
4ΔτRoRsNm

P
+ 1. (7)

Fig. 3. The schematic processing flow of our FDE scheme.

C. Parallel MIMO FDE

We here consider parallel MIMO FDE that applies the
overlap-and-save method with a 50% overlap ratio for sim-
plicity [18]. The schematic processing flow of our FDE scheme
is illustrated in Fig. 3. Note that an equalizer is split into Ro

sub-equalizers wr
ij with equalizer length of N ′

t/Ro where su-
perscript r represents an oversampling index (1 ≤ r ≤ Ro ), and
that the block processing with the block size of 2N ′

t/Ro out-
puts the N ′

t/Ro symbols. The first step is the converting the re-
ceived serial sequence for each mode into Ro parallel sequences.
Then the Kth block input U r

i,K is constructed by using N ′
t/Ro

samples from the current block and N ′
t/Ro samples from the

previous block.

U r
i,K = diag[F (yr

i,K N ′
t −N ′

t
yr

i,K N ′
t −N ′

t +1 . . . yr
i,K N ′

t +N ′
t −1)]

(8)
where diag(·) makes a diagonal matrix with a vector input and
F (·) denotes FFT operation. A sub-equalizer in the frequency
domain W r

ij is derived from the corresponding time-domain
quantities as

W r
ij = F [wr

ij 0N ′
t /Ro

] (9)

where 0N ′
t /Ro

is a column vector with N ′
t/Ro -length zeros. The

Kth block equalizer output for the ith mode xi,K is obtained as

xi,K = last N ′
t/Ro components of F−1

[ Ro∑

r=1

Nm∑

j=1

U r
j,K W r

ij

]

(10)
where F−1(·) denotes IFFT operation. Note that U r

j,K and W r
ij

have respectively size of 2N ′
t/Ro × 2N ′

t/Ro and 2N ′
t/Ro × 1.

By expanding (3) to the vector form, the error signal vector for
the Kth block Ei,K is calculated in the frequency domain as

Ei,K = F [0N ′
t /Ro

(di,K − xi,K )] (11)

where di,K and xi,K are respectively the Kth desired output
vector and the Kth output vector for ith mode. The block gra-
dient estimate ∇r

ij becomes

∇r
ij = first N ′

t/Ro components of F−1 [U r
j,K

H Ei,K ] (12)
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Fig. 4. Comparison of the required complexity in each step for three equal-
ization schemes.

where H denotes the complex conjugate transpose operation.
Thus we finally get the equalizer updating equation as

W r
ij ← W r

ij + μF [∇r
ij 0N ′

t /Ro
]. (13)

Equations (8)–(13) indicate that we need 2N ′
tNm multipli-

cations for output calculation and 4N ′
tNm for equalizer up-

dating. The total number of FFT/IFFT operations becomes
(2 + Ro + 2RoNm ) including Ro FFT in the input sequence
transform, 2 FFT/IFFT in the processing to derive Ei,K , and
2RoNm FFT/IFFT in the gradient estimation and the equal-
izer updating. Assuming the implementation of FFT/IFFT with
FFT-size of L by the radix-2 algorithm that needs (L/2) log2 L
complex multiplications, and recalling that FFT-size is equal to
2N ′

t/Ro , we can calculate the complexity for parallel MIMO
FDE as

CP-FDE = (2 + Ro + 2RoNm ) log2

(
2N ′

t

Ro

)
+ 6Nm Ro

= (2 + Ro + 2RoNm ) log2

(
4ΔτRs

P

)
+ 6Nm Ro.

(14)

Fig. 4 compares the required complexity in each step for
adaptive equalization schemes. In the figure, we respectively
set Nt,Nm ,Ro and P to 1280, 6, 2, and 10. The figure shows
that the complexity in the parallel MIMO FDE scheme is re-
duced mainly due to simplification of the output and equalizer-
updating calculations. We also found that a computationally-
effective FFT/IFFT algorithm would contribute to further re-
duction of the complexity [19], although we do not discuss this
here since it is out of the scope of this work.

IV. EXPERIMENTAL SETUP

Next, we conducted a DSDM transmission experiment. The
experimental setup is depicted in Fig. 5(a). At the transmitter,
a test and 19 dummy channels were respectively generated by
a tunable external-cavity laser with a 25-kHz linewidth and by
DFB lasers with a 2-MHz linewidth. The 12.5- GHz-spaced
CW carriers (1556.0–1557.9 nm) were separately multiplexed
into even/odd channels. The 1.04-GHz-spaced 10-FDM multi-
carrier QPSK signals were digitally generated, each of them was
driven at 1-Gbaud and reshaped by a root-raised-cosine filter
with a roll-off factor of 0.01. Each mode signal was modulated

independently by different binary patterns using pieces of the
PRBS of length 223–1. The frame of 31250 symbol-length com-
prised 1.63% overhead for the training sequence, 20% overhead
for forward error correction (FEC), and a payload. The trans-
mitter frequency response was pre-equalized in a zero-forcing
manner. The even/odd channels were combined by 12.5/25 GHz
interleave filters and then fed into a PDM-emulator with 275 ns
delay to create the PDM channels. This yielded 20-ch 12.5-
GHz-spaced 40 Gb/s PDM-QPSK signals, resulting in a net
data rate of 32.79 Gb/s and SE of 2.62 b/s/Hz/core/mode. An
optical spectrum with 20 MHz resolution is shown in Fig. 5(b).
The independently-modulated PDM signals were each split into
three ports, delayed, preamplified, and input to LP01 , LP11a ,
and LP11b input ports of three silica planar lightwave circuit
(PLC) mode multiplexers (MUXs). The mode-multiplexed sig-
nals were each split by a 1 × 4 FM splitter, delayed, and input to
12 recirculating loops operated synchronously. All 36 DSDM
tributaries at the fan-in (FI) input of the MC-FMF had their
power set at −9 dBm/wavelength/core/mode.

The transmission line consisted of a newly developed GI
low-DMD MC-FMF with 52.7-km length. The DMD was var-
ied core-to-core in the range from −41 to 63 ps/km for the
C-band where positive (negative) DMD corresponds to the case
in which LP01 (LP11) mode signals propagate earlier. The phys-
ical parameters of the fiber are summarized in Table I. The
FM cores were designed with two types of trench-assisted GI
profiles having different propagation constants placed next to
each other in a square lattice arrangement with a view to min-
imizing core-to-core crosstalk (see Fig. 5(c)). The core pitch,
the cladding diameter, and the worst core-to-core crosstalk after
500-km transmission were 43, 230 μm, and −48.4 dB between
LP11 modes, respectively, and the dispersion of the LP01 mode
was 19.8 ps/nm/km at 1550 nm. The attenuation loss at 1550
nm was 0.218 and 0.228 dB/km for the LP01 and LP11 modes,
respectively, and the effective area at 1550 nm was 110 μm2

for the LP01 mode. The total span loss at 1550 nm of the trans-
mission fiber with physical contact type fan-in/fan-out (FI/FO)
devices was 12.0–13.4 dB for the LP01 mode and 11.9–14.9 dB
for the LP11 mode. Each loop included a ring-core FM-EDFA
and a free-space optics type mode dependent loss (MDL) equal-
izer. A FM-EDFA has a gain of > 18 dB, a typical differential
modal gain of < 1.4 dB , and the noise figure of < 5.2 dB for
LP01 mode and of < 5.8 dB for LP11 mode [20]. The total input
and output power of a FM-EDFA were −4.4 and 16.7 dBm/core
on average, respectively. A MDL equalizer that compensates for
the loss difference of 3 dB between LP01 and LP11 modes within
a loop consists of a collimator pair and a small dot shaped neutral
density (ND) filter. The LP01 mode signals are attenuated heav-
ily, because its modal intensity profile is strongly overlapped
with the ND filter. On the other hand, the LP11 mode signal’s
loss becomes small due to its small overlap-integral. Note that
we fabricated and employed twelve parallel FM-EDFAs in the
transmission experiment. These optical devices allowed us to
suppress MDL to as low as 0.2 dB per loop on average.

At the receiver, the core under test was selected for each
measurement through spatial demultiplexing by the FO device
and then mode-demultiplexed by the PLC mode DEMUX. The
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Fig. 5. (a) Experimental setup, (b) low baud rate multi-carrier signal, and (c) cross section of 12-core × 3-mode low-DMD MC-FMF transmission fiber.

TABLE I
CHARACTERISTICS OF THE MC-FMF

Parameters Spatial mode Value

Attenuation LP0 1 0.218 dB/km
LP1 1 0.228 dB/km

Effective area LP0 1 110 μm2

Inter-core crosstalk with FI/FO devices LP1 1 <−48.4 dBa

DMD in the C-band Maximum 63 ps/km
Minimum −41 ps/km
Average 29 ps/km

Length – 52.7 km
Cladding diameter – 230 μm
Core pitch – 43 μm

aAfter 500-km transmission.

signals were injected to the optical tunable filters one by one for
wavelength demultiplexing and input together to a PLC 3-array
integrated dual polarization optical hybrid module designed for
6 × 6 MIMO signal processing. The received signals were dig-
itized at 40 GS/s using a 12-ch digital storage oscilloscope, and
stored in sets of 8M samples. Fig. 6 explains the offline parallel
MIMO processing flow we employed in our experiments. After
frontend error correction and chromatic dispersion compensa-
tion, out-of-band noise was removed by the first low-pass digital
filter. The combined processing of frequency shift and second
low-pass filtering worked as a band-pass filter to extract the tar-
get subcarrier. Then equalization and DMD compensation were
carried out in a parallel processing for 10-FDM multi-carriers
by using adaptive 6 × 6-MIMO FDE with half-symbol-spaced

Fig. 6. Offline parallel MIMO processing flow.

taps and frequency/phase recovery. In the 6 × 6-MIMO FDE
process, fast convergence was achieved by using a data-aided
normalized-LMS-based equalizer update. The adaptation algo-
rithm was then switched to decision-directed mode. Note that
no cyclic prefix was added in our FDE scheme since we used
the overlap-and-save method [18], and that the equalizer tap
length for FDE was varied depending on the transmission dis-
tance to appropriately compensate DMD (e.g., 128 taps were
used in 527 km transmission for the total DMD of 33.2 ns). We
used 2.5 M bits to count bit-error ratio (BER) per carrier per
mode by means of differential decoding. Finally, the Q-factor
was calculated from the measured BER.
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Fig. 7. Q-factor transition as a function of transmission distance for core #6
(top panel) and #10 (bottom panel).

Fig. 8. (a) Q-factors after 527-km transmission. The number of SDM tribu-
taries is defined as (n − 1) × 3 + m, where n and m is the core number and
the mode number respectively (m = 1 for LP01 , m = 2 for LP11a , and m = 3
for LP11b ), (b) typical constellations for all spatial and polarization modes.

V. TRANSMISSION RESULTS

We examined the transmission characteristics of core #6 and
#10, which, respectively, have the largest and average DMD
among all cores. Fig. 7 shows the Q-factors as a function of
transmission distance for core #6 and #10 of λ11 of the WDM
channels. The achievable transmission distance of core #10 was
shorter than that of core #6 which, as mentioned above, has the
largest DMD. The residual MDL of the core #10 recirculating
loop was 0.35 dB/loop, whereas the average for all the cores
was 0.2 dB/loop. This larger MDL could be the main factor that
limited the transmission distance of core #10. Fig. 8(a) shows
the measured Q-factor performance for all channels after 527-
km transmission. We confirmed that the measured Q-factors for
all 36 SDM tributaries for the 20 wavelengths exceeded the Q-
limit of 5.7 dB of LDPC convolutional codes using a layered
decoding algorithm with 20% FEC overhead [21]. Fig. 8(b)
shows the constellations of core #11, λ10, and subcarrier #4.

VI. CONCLUSION

We have successfully achieved the 12-core × 3-mode DSDM
527-km transmission with 33.2-ns DMD. In order to compen-

sate for the large DMD without optical DMD management, we
implemented low complexity parallel MIMO FDE into the low
baud rate multi-carrier transmission. We also employed the GI
MC-FMF with DMD of 63 ps/km we had newly developed. It
was found that the use of an FM-EDFA with improved differ-
ential modal gain and a mode dependent loss equalizer reduced
mode-dependent gain/loss to as low as 0.2 dB on average. Ex-
periment results showed that the combination of parallel MIMO
FDE and GI MC-FMF is a promising solution for achieving
long-distance DSDM transmission.
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