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Abstract

The increasing availability of very-high-resolution

(VHR) aerial optical images as well as coregistered Li-

DAR data opens great opportunities for improving object-

level dense semantic labeling of airborne remote sensing

imagery. As a result, efficient and effective multisensor fu-

sion techniques are needed to fully exploit these comple-

mentary data modalities. Recent researches demonstrated

how to process remote sensing images using pre-trained

deep convolutional neural networks (DCNNs) at the fea-

ture level. In this paper, we propose a decision-level fu-

sion approach using a probabilistic graphical model for the

task of dense semantic labeling. Our proposed method first

obtains two initial probabilistic labeling predictions from

a fully-convolutional neural network and a linear classi-

fier, e.g. logistic regression, respectively. These two predic-

tions are then combined within a higher-order conditional

random field (CRF). We utilize graph cut inference to esti-

mate the final dense semantic labeling results. Higher-order

CRF modeling helps to resolve fusion ambiguities by explic-

itly using the spatial contextual information, which can be

learned from the training data. Experiments on the ISPRS

2D semantic labeling Potsdam dataset show that our pro-

posed approach compares favorably to the state-of-the-art

baseline methods.

1. Introduction

Dense semantic labeling for the aerial images of urban

regions with complex configurations has been a challenging

task for remote sensing applications. Two significant chal-

lenges prevented researchers from obtaining the accurate

and detailed semantic labeling results: 1) the spatial reso-

lution of the aerial imaging systems were not fine enough to

capture relatively small individual objects (e.g. vehicles) in

the urban environment. Besides coarser resolutions restrict

the use of more expressive image features and more sophis-

Figure 1. Our proposed decision-level fusion scheme: training

one fully-convolutional neural network on the color-infrared im-

age (CIR) and one logistic regression using hand-crafted features.

Two probabilistic results: PFCN and PLR are then combined in a

higher-order CRF framework.

ticated classification methods. 2) Aerial images typically

have a top side view of the scene, whose viewing perspec-

tives differ from the ones in other general computer vision

tasks. Without contextual information, objects that are easy

to differentiate on the ground can be much less distinguish-

able from the top side view as aerial imagery presents.

The first challenge has been well addressed recently,

thanks to the advances of the very-high-resolution (VHR)

aerial imagery, which now has the ground spatial resolu-

tion of around 10 cm. Under this spatial resolution, more

powerful spatial features and sophisticated structured pre-

diction methods can be utilized to generate a more accurate

semantic labeling. For instance, several Markov random

fields (MRFs) approaches were proposed to take advantage

of the increased spatial contextual information of VHR im-

ages to improve the performance of land cover mapping

and classification [39, 34, 28, 11]. Moreover, the remark-

able success of deep convolutional neural networks (DC-

NNs) on general image classification tasks intrigues more

and more remote sensing researchers to explore the use of

76



DCNNs on the VHR aerial images. However, training DC-

NNs requires large enough labeled datasets to avoid overfit-

ting. Unfortunately, labeling aerial images that cover large

ground regions can be a tedious and extensively labor cost

task. The available training data is thereby limited, although

the amount of labeled data is increasing dramatically re-

cently to meet such demand.

Recent works on applying DCNNs to remote sensing im-

agery tackles the training problem by adopting a pre-trained

neural network designed for other general image classifica-

tion tasks (e.g. ImageNet) and then fine-tuned one or sev-

eral convolutional layers on the limited remote sensing data

[33, 36, 4, 25]. Despite the differences of viewing perspec-

tives and object scales between general RGB images and

aerial imagery, this approach delivers the best classifica-

tion/semantic labeling results so far. Other remote sensing

applications such as vehicle detection [10], scene classifica-

tion [8] also benefit from the similar scheme.

The second challenge that objects have similar spectral

appearances cannot be addressed merely by using DCNNs.

There needs another imaging modality that can capture the

complementary information about the same observed re-

gion. Light detection and ranging (LiDAR) system is one of

such sensing technologies that can provide relevant height

information that can be used to discriminate ground objects

with similar spectral characteristics. On the one hand, the

joint use of aerial optical images and its coregistered Li-

DAR data provide a complete representation of the given

scene. On the other hand, the multisensor data poses new

challenges for the use of pre-trained DCNNs approaches,

since most of the pre-trained DCNNs are specifically de-

signed for RGB three-band images. However, how to use

the pre-trained networks for both spectral channels (e.g. R,

G, B and IR) and the LiDAR data remains an active research

topic. One intuitive way to address this issue is to train

two separate neural networks: one for optical imagery and

another one with artificially created three-band images by

using the LiDAR data, e.g. DSM, height variation, surface

norm, etc. The learned features from two neural networks

are then concatenated after certain convolutional layer. This

feature-level fusion method has been proved to be relatively

successful [33, 4]. But training two neural networks can be

computationally expensive. Also, the robustness of train-

ing the artificial three-band LiDAR images remains unan-

swered.

We propose an alternative approach for the joint use of

the optical imagery and its corresponding LiDAR data. We

first generate the probabilistic outputs for two modalities

separately: training a fully-convolutional network [23] on

optical imagery and a multinomial logistic regression using

hand-crafted LiDAR features. We then feed the weighted

outputs of these two classifiers as the unary potential in a

higher-order CRF, and we obtained the weights and CRF

parameters through the maximum likelihood training.

Main original contributions of our work are: 1) the use

of energy based CRFs for efficient decision-level multisen-

sor data fusion for the task of dense semantic labeling. 2)

the use of higher-order CRFs for generating labeling out-

puts with accurate object boundaries. 3) the proposed fusion

scheme has a simpler architecture than training two separate

neural networks, yet it still yields the state-of-the-art dense

semantic labeling results.

2. Related Work

There is a significant amount of works that have been

done on classification/semantic labeling of multimodal re-

mote sensing data. We refer readers to the detailed review

papers on this topic [14, 12]. Here, we are going to review

some of the previous works that are related to dense seman-

tic labeling of VHR aerial imagery and LiDAR data.

2.1. Deep convolutional neural networks (DCNNs)

Due to the increasing availability of VHR aerial imagery,

the use of DCNNs for classification/semantic labeling of

remote sensing images has become more and more popu-

lar. Recent researches have shown that the neural networks

that are trained on general image classification tasks can be

used as a universal feature extractor for aerial imagery as

well [25, 30], despite that the viewing perspectives of the

same class category in general images can be quite differ-

ent in the overhead images. Some works have been done on

patch/tile based classification tasks such as scene classifica-

tion of aerial images [8], vehicle detection [10], tree species

mapping [3] and road detection [27]. A deep convolutional

neural network requires a down-sampling operation, (e.g.

max pooling) after convolutional layers to further capture

longer range contextual information and extract more ab-

stract features. However, this usually results in a lower spa-

tial resolution of output label map.

Numerous fully-convolutional neural networks (FCNNs)

have been proposed to overcome this downsampling effect

so that the end-to-end dense prediction can be achieved.

Jonathan et al. [23] proposed a skip architecture that com-

bines semantic information from a deep, coarse layer with

appearance information from a shallow, fine layer to pro-

duce accurate and dense semantic segmentation. Badri-

narayanan et al. [5] proposed a semantic pixel-wise seg-

mentation method using a fully-convolutional neural net-

work (SegNet), which uses decoder/deconvolutional layers

to map the low-resolution encoder feature maps to the full

input resolution feature maps. Chen et al. [9] utilized an

atrous method to expand the support of the filter and re-

duce the down-sampling for input feature map to achieve

dense labeling. These approaches have been successfully

adopted for dense semantic labeling of remote sensing im-

ages [33, 36, 32] and outperformed the traditional pixel-
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Figure 2. An illustration of FCN-8s architecture. The training process includes two stages. Stage 1: we initialized the weights for

convolutional layer 1 to 5, and fully-connected layer 6 and 7 with pre-trained weights and keep them constant during the first learning

phase. We then train the rest layers with randomly initialized weights. Stage 2: We set the parameters using the learned weights from the

previous stage. We then fine-tune all layers with a slower learning rate.

level classification methods using hand-crafted feature de-

scriptors, such as SVMs [37]. In our paper, we applied

the FCN-8s network in [23] to train the VHR optical im-

agery with a two-stage training scheme and used its per

pixel probability output as one of the probabilistic decisions

in our fusion framework.

2.2. Random field method

Energy based random field methods (e.g. MRFs, CRFs)

have been widely used for exploiting contextual informa-

tion for both general and remote sensing images [39, 34,

28, 38, 21, 15, 26]. The full potential of the random field

methods has not been reached due to the limitation of in-

ference methods for higher-order node connections, par-

ticularly on the large scale data. Until recently, a lot of

excellent works have been proposed to explore the use of

higher-order random fields with efficient inference meth-

ods [16, 20, 7, 19, 18]. Among them, the one that used

the robust higher-order potential and graph cut inference

method [16, 20] has stood out due to its efficiency on the

relatively large scale dataset and the state-of-the-art seman-

tic segmentation performance. It has been applied to the

remote sensing applications such as road and rooftop ex-

traction [38, 21]. The need of higher-order random fields

in our work is mainly for 1) resolving decision ambiguity

between two probabilistic outputs by enforcing label con-

sistency within one segment. 2) preserving realistic object

boundaries with the help of gradient based segmentation

(GSEG) algorithm [35].

2.3. Multisensor fusion

In the context of semantic labeling, multisensor fusion

typically has two distinct procedures: a) Feature extraction

for all data modality followed by fusion at the feature level,

this process can include feature concatenation and selection.

The fused features later will be fed into a supervised train-

ing scheme for classification purpose [24]. b) Another fu-

sion procedure is to use different processing paths for each

modality and combine the individual decisions of the set

of trained classifiers to obtain the optimal output, which is

referred as the decision-level fusion [22, 31, 6]. Both meth-

ods have been explored in recent multisensor fusion works.

J. Sherrah [33] proposed to train two separate neural net-

works for each modality and concatenate the learned fea-

tures at the last convolutional layer. N. Audebert et al. [4]

compared both fusion procedures. They proposed an aver-

aging strategy for the decision-level fusion and feature cor-

rection for feature level fusion. Their results showed that

the feature correction performed slightly better. P. Krahen-

buhl and V. Koltun [29] proposed a decision-level fusion

that has a similar structure as ours. But ours differs from

their method in three ways. First, they combined the prob-

ability outputs from two classifiers directly in a fixed way,

while we learned fusion weights through CRFs on the train-

ing data. Second, our method incorporates the higher-order

CRFs, and they did not. Last but not the least, we applied

fully-convolutional neural networks that learn to combine

coarse layer information with fine layer information while

they used a multi-resolution CNN as the feature extractor.
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3. Model learning

Before we start formulating our higher-order CRFs fu-

sion framework, we need to first obtain two initial proba-

bilistic per-class labeling predictions for each modality, i.e.

VHR optical imagery and LiDAR data in our case, sepa-

rately.

3.1. Leaning FCN for VHR optical imagery

VHR optical imagery contains rich low-level and high-

level features. To fully take advantage of such informa-

tion, we applied the fully-convolutional neural network that

uses a skip architecture to combine the coarse layer infor-

mation with finer layer information to yield high-resolution

per class probability prediction; this network is referred

as FCN-8s [23], whose architecture is shown in Figure 2.

FCN-8s contains five layers with multiple convolutions and

rectified linear activation functions. Each of these layers

is succeeded by a max pooling (downsampling) operation.

The sixth and seventh layers are two fully-connected con-

volutional layers. Eighth convolution (score) layer gener-

ates outputs corresponding to the number of classes in the

ground truth. Upsampled outputs from the eighth layer are

combined with the outputs from pool 4 layer. The result

is again upsampled and merged with pool 3 layer outputs.

Fusing the output of pool 3 and pool 4 layers (skip connec-

tion), assists in obtaining finer semantic labels.

We initialized the parameters of the FCN-8s neural net-

work with pre-trained weights[23], which were obtained by

training the network on the large dataset of color images and

corresponding labels. We then fine-tuned the network on

the aerial image training set with IR, R, and G three bands

and corresponding ground truth. Specifically, we gener-

ated 36,000 images and corresponding ground truth of size

224× 224 from the 21 training images by image tiling ran-

domly cropping, and choosing extra data for car category

for data balancing.

The training process includes two stages. Stage 1: we

initialized the weights for convolutional layer 1 to 5, and

fully-connected layer 6 and 7 with pre-trained weights and

keep them constant during the first learning phase. We

then train the rest layers (skip connection and score lay-

ers) with randomly initialized weights (train from scratch).

This training was done with a learning rate of 1e-3 for 35

epochs. The learning rate was decreased by 0.1 after 15

and 30 epochs. Stage 2: We set the parameters using the

learned weights from the previous stage. We then fine-

tune all layers with a reduced learning rate of 1e-5 for 35

epochs. Again, the learning rate was decreased by 0.1 af-

ter 15 and 30 epochs. Stochastic gradient descent algorithm

was utilized for the fine-tuning and was done using Caffe

[Caffe: Convolutional Architecture for Fast Feature Em-

bedding] toolbox. The fine-tuned network was then used

to generate per pixel probability maps, which are denoted

Figure 3. An illustration of the result of using the output of logistic

regression to compensate for the miss classification of FCN-8s due

to its lack of knowledge of object height. (In the two label maps at

the bottom, blue color indicates building class).

as PFCN . For the test images, to avoid blocky artifacts, we

chose tiles with a stride of 112, i.e. with an overlap rate of

50%. Thus, excluding the pixels at the borders, rest of the

image has two predictions. The predictions were averaged

to obtain the final probability map.

3.2. Logistic regression with handcrafted features

LiDAR data is given as the normalized digital surface

maps (nDSMs), which do not have as much contextual in-

formation as the VHR optical imagery contains. We, there-

fore, assumed that a baseline classifier should be enough to

take advantage of the LiDAR data. In this paper, we simply

chose the multinomial logistic regression with hand-crafted

features derived from LiDAR data and optical imagery. The

hand-crafted features include height, height variations, sur-

face norm, and the normalized difference vegetation index

(NDVI). Regarding the use of NDVI, it is typically used for

assessing whether the target being observed contains live

green vegetation or not. NDVI can be estimated by:

NDV I =
NIR− V IS

NIR+ V IS
(1)

where NIR and VIS stand for spectral reflectance measure-

ments in the near-infrared and visible red regions, respec-

tively. For the training process, we randomly chose 10,000

points per class, with a total of 60,000 points for training.

The trained multinomial logistic regression model is later

used to predict pixel-wise probability map for the test im-

ages. The probabilistic output is denoted as PLR.
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Figure 4. Illustrations of GSEG segmentations with different initial

seed sizes: τ = 15, 100, 150.

4. Higher-order CRFs

After we obtained two individual probabilistic outputs:

PFCN and PLR, we believe that two such different classi-

fiers must contribute differently to the optimal labeling of a

certain class. Therefore we introduce the higher-order CRFs

to learn and predict the optimal labels.

4.1. Formulating higherorder CRFs

The pairwise CRFs consist of the unary and pairwise po-

tential, which has the form as:

Ep(x) =
∑

i∈v

ψi(xi) +
∑

i∈v,j∈Ni

ψij(xi, xj) (2)

where x = [x1, x2, x3, . . . , xn] represents one realization

of the label assignment for n pixels: v = {1, 2, , n}. Ni

is the 4-way connected first order neighborhood of pixel i.

This connection encodes the shortest range of local context.

xi takes the label from M object classes: xi ∈ LM . The

unary potential ψi(xi) here takes the form of:

ψ(xi) = −θuln(σfPFCN (xi) + σlPLR(xi)) (3)

Where σf and σl are the fusion weights for estimating how

much does fully-convolutional neural network and logistic

regression contribute to the unary potential, respectively.

The pairwise potential ψij(xi, xj) takes the form of

color contrast sensitivity Potts model, which is expressed

as:

ψij(xi, xj) = (θα + θβexp(−θγ‖Ii − Ij‖
2)) ·∆(xi 6= xj)

(4)

where ∆(·) is an indicator function and ‖Ii − Ij‖ is the Eu-

clidean distance between the spectral bands of the pair of

pixels (i.e. IR, R, G in this paper). In our case, Ii will also

include the height component obtained from the normal-

ized digital surface maps (nDSMs). This model makes the

assumption that neighboring pixels with similar color ap-

pearance and height shall share the same class label. How-

ever, the pairwise CRF framework can hardly capture the

meaningful spatial context due to its short range connec-

tions. Also, it is known that the pairwise potential tends to

over-smooth the image boundaries, which is undesired for

our dense semantic labeling task.

Higher-order CRF, therefore, is needed to exploit longer

range context. Higher-order potentials were added to fur-

ther enforce the label consistency for the pixels in the same

segment. A common higher-order CRF is formed as:

Ec(x) = Ep(x) +
∑

c∈S

ψc(xc) (5)

where S is the set of cliques/segments that are usually gen-

erated by an unsupervised segmentation algorithm [2, 35].

ψc(xc) is the higher-order potential defined over the seg-

ments. The robust PN Potts potential proposed by [16] has

been proved to be particularly useful. It takes the form of:

ψc(xc) =

{

Ni(xc)
1

Q
γmax
c , if Ni(xc) < Q

γmax
c , otherwise

(6)

where Ni(xc) denotes the number of pixels that take differ-

ent labels from the dominant label of the segment. γmax
c =

θc|c|, |c| counts the number of pixels in the segment c. Un-

like the standard PN Potts potential, which strictly forces

the pixels in the same segment to take the same label, the

robust version of it, however, allows Ni(xc) pixels in the

same segment to take different labels from the dominant la-

bel. The heterogeneity of the labeling is controlled by the

parameters θc and Q. More specifically, the larger Q is, the

more heterogeneous one segment can be.

4.2. Gradientbased segmentation (GSEG)

It is critical to choose a robust segmentation algorithm

for yielding a dense semantic labeling with fine boundaries.

Gradient-based segmentation (GSEG) algorithm is such an

unsupervised color image segmentation algorithm that uti-

lizes the gradient histogram acquired from the color images

to iteratively cluster pixels from lower gradient to higher

gradient. It is followed by a region growing and merging

process based on the similarity of segments color and tex-

ture. The detailed description of the algorithm can be found

in [35]. Since GSEG uses the gradient histogram, which

helps to preserve the object boundaries. See one of the illus-

trations of GSEG segmentation results with different initial

seed sizes in Figure 4. GSEG particularly suits for aerial

image segmentation, because the size of the objects in the

VHR aerial images can vary from a several hundred pixels
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to tens of thousands. GSEG does not pose strict constraints

of the segment size, which is controlled by the initial seed

size τ and similarity ratio γ. It is, therefore, able to generate

heterogeneous segments for different scales of objects.

4.3. Learning CRF parameters

The optimal values for all the parameters of the higher-

order CRF were obtained in a manner of step by step train-

ing procedure. We first learn the unary potential only to

find the fusion weights σf and σl using the maximum like-

lihood estimation on the validation data sets. We then keep

the fusion weights constant and only train the pairwise CRF

parameters: θu, θα, θβ and θγ without the higher-order term

using the method proposed in [13], which takes into account

model miss-specification and inference approximation. Fi-

nally, the higher-order parameters: θc and Q will be learned

by performing a cross-validation within an empirical range.

The learning results of θc andQwill be discussed in Section

5.3.

4.4. Inference using move making graph cuts

Minimizing the proposed energy function (5), i.e.

argminxEc(x) is not trivial. Fortunately, the number of

interesting objects in the urban area is limited to six in our

case: Impervious surfaces, building, low vegetation, tree,

car, and background. It makes possible for us to utilize the

move making graph cuts algorithm to infer the solution ef-

fectively.

Move making graph cuts inference algorithm (i.e., α-

expansion and αβ-swap) has been successfully used to infer

the higher-order CRFs as in [16, 20] We will review the α-

expansion graph cut and the trick of adding auxiliary nodes

to deal with the higher-order CRFs. We refer readers to

[16, 20, 7] for a more detailed explanation.

Move making algorithm usually starts from an initial set

of labels and then iteratively updates the labels to find the

solution that has the lowest energy. Since each move is

a binary operation (i.e. maintain the current label or not),

we will have to first convert the energy function in the la-

bel space into the move space and deduce its corresponding

move energy. The transformation function Tα(·) for the α-

expansion is:

Tα(xi, ti) =

{

α, ti = 0

xi, ti = 1
(7)

The energy of a move t is the amount of energy in-

duced by the labeling change during the move i.e. E(t) =
E(Tα(x, t)). Therefore the task of optimizing the CRF en-

ergy Ec(x) is transformed into the problem of optimizing

the move energy, i.e., argmintE(Tα(x, t)), where E(t)
is a pseudo-boolean function. This optimization can be

achieved in polynomial time by solving a st-mincut as

Figure 5. Learning the optimal parameters θc and Q for the higher-

order term in the three validation images. In practice, instead of

tuning Q, we tuned 1

Q
to represent the percentages of the number

of pixels in one segment can take none dominant label.

long as E(t) is submodular [17]. For the higher-order

term: ψc(xc), it is known that auxiliary binary variables

are needed for transforming it into a second order clique.

For robust PN Potts potential, two auxiliary variables are

added for each higher-order term. Also, there is an ad-

ditional label is introduced to form an extended label set:

LE = LM∪{LF }, whereLF represents a free label. A seg-

ment takes the free label when there is no dominant variable

found in it.

5. Experiments

5.1. Dataset

The dataset we used in this paper is the 2D semantic la-

beling contest, Potsdam dataset released by ISPRS Com-

mission II/4 [1]. This dataset includes 38 image patches

(each consists of an orthophoto and an nDSM), where 24

images with ground truth labels are used for training, and

the rest 14 images are for testing. We then further divided

the 24 images with ground truth labels into 21 training im-

ages and left out three images for validation, where we

trained our CRFs parameters and optimized the GSEG ini-

tial seed size.

5.2. Onestage vs. twostage training of FCN8s

Except for the training procedure introduced in Section

3.1, we trained the FCN-8s neural network with another

one-stage training strategy to test the impact of different

training strategies on the labeling performance. For this

one-stage training strategy, we initialized the parameters

of convolutional layer 1 to 5, and fully-connected layer 6

and 7 with pre-trained weights in [23] and assigned ran-
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Table 1. Dense semantic labeling results on three validation images with different training strategies. FCN-8s CIR: results using fully-

convolutional neural network on CIR; TS 2: the two-stage training strategy; nDSM: multisensor fusion with LiDAR data; PCRF: pairwise

CRF; HCRF x: higher-order CRF using segments with initial seed size of x.

Method Average F1-score per class on three validation images Avg. F1-score Overall Acc.

Imp. surf. Building Low veg. Tree Car

FCN-8s CIR + TS 2 (FT 2) 0.8844 0.9479 0.8650 0.8280 0.9388 0.8928 88.32%

FT 2 + nDSM + PCRF 0.8914 0.9530 0.8658 0.8290 0.9354 0.8949 88.61%

FT 2 + nDSM + HCRF 15 0.8985 0.9604 0.8712 0.8311 0.9010 0.8924 89.15%

FT 2 + nDSM + HCRF 50 0.9012 0.9612 0.8712 0.8315 0.9394 0.9009 89.37%

FT 2 + nDSM + HCRF 100 0.9036 0.9634 0.8720 0.8317 0.9424 0.9026 89.43%

FT 2 + nDSM + HCRF 150 0.9031 0.9632 0.8719 0.8314 0.9424 0.9023 89.41%

Table 2. Dense semantic labeling results on 14 test images of ISPRS labeling contest Potsdam dataset. FCN-8s CIR: results using fully-

convolutional neural network on CIR; TS 1: one-stage training strategy for FCN-8s; TS 2: the two-stage training strategy for FCN-8s;

nDSM: multisensor fusion with LiDAR data; HCRF x: higher-order CRF using GSEG segments with initial seed size of x.

Method Average F1-score per class on 14 test images Avg. F1-score Overall Acc.

Imp. surf. Building Low veg. Tree Car

FCN-8s CIR+TS 1 (FT 1) 0.887 0.915 0.822 0.822 0.908 0.8708 85.5%

FT 1 + nDSM + PCRF 0.896 0.933 0.830 0.826 0.914 0.8798 86.6%

FT 1 + nDSM + HCRF 15 0.898 0.941 0.830 0.823 0.904 0.8792 86.8%

FT 1 + nDSM + HCRF 100 0.902 0.939 0.830 0.825 0.918 0.8828 86.9%

FT 2 0.907 0.939 0.848 0.851 0.924 0.8938 87.8%

FT 2 + nDSM + HCRF 100 0.912 0.946 0.851 0.851 0.928 0.8976 88.4%

dom weights for the rest layers. We kept the parameters of

convolutional layers 1 to 5 as constant during the training

and fine-tuned other layers weights with a learning rate at

1e-3, 35 epochs, multiplying learning rate at 15 and 30 ep

by 0.1. We refer this one-stage training strategy as TS 1

and the two-stage training strategy discussed in Section 3.1

as TS 2. We evaluated these two training strategies on the

Potsdam test data set and found that the two-stage train-

ing strategy outperformed the one-stage training strategy in

terms of overall classification accuracy by 2.3% as shown

in Table 2.

5.3. Parameters learning for higherorder term

After we had obtained our pairwise CRF parameters, we

learned the optimal parameters of the higher-order term by

searching for the values that produce the best overall accu-

racy of three validation images. To be noticed, we trained 1

Q

instead ofQ for a practical reason. 1

Q
can be interpreted as a

truncation term that determines the percentages of the num-

ber of pixels in one segment are allowed to take a different

label from the dominant label for the segment. As Figure 5

shows that when 1

Q
> 0.2 and θc > 1.5, the higher-order

CRF produces reasonably good results.

5.4. Higherorder CRF with different segments

The labeling results of the higher-order CRF can be af-

fected by the quality of the segments [16, 33]. For this work,

we have no means and attempts to test all kinds of different

segmentation algorithms in the literature. Instead, we inves-

tigated the performances of our proposed higher-order CRF

fusion with various choices of initial seed size τ on both

leave out validation data sets and test data sets.

We found that initial seed size does affect the labeling

performance of our higher-order CRF fusion method. At

the initial seed size of 15 pixels, the vehicle F1-score is even

lower than the one without using CRF and fusion of LiDAR

on both validation and test data sets. See the comparisons

in Table 1. With the increase of the initial seed size, the

vehicle F1-score improves a noticeable amount, and every

other categorys F1-score kept increasing and peaked at the

initial seed size of 100. Although the performance of our

proposed fusion work fluctuates with the variations of seg-

ments, we would argue that by choosing a suitable segmen-

tation algorithm with its appropriate parameters, applying

higher-order CRF tends to improve the final dense semantic

labeling.

5.5. Higherorder CRFs vs. pairwise CRFs

As the continuation of Section 5.4, the experiments be-

tween using pairwise CRF and higher-order CRF was also

performed on both validation and test datasets. Based on

the results in Table 1 and 2, with the appropriate segmenta-

tion parameters, the higher-order CRF consistently outper-

forms the pairwise CRF. Quantitatively, the improvements
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Figure 6. Qualitative results of dense semantic labeling of cropped patches. FCN-8s CIR labeling is the result of using only the fully-

convolutional neural network with CIR. Pairwise CRF fusion shows the result of fusing LiDAR data with FCN-8s CIR in a pairwise CRF.

Higher order CRF fusion is the result of fusing LiDAR data with FCN-8s CIR in a higher-order CRF, whose segments are generated by

GSEG with the initial seed size of 100. The qualitative results show that higher-order CRF tends to preserve better building rooftop.

of using higher-order CRF is not significant enough in some

cases. However, the qualitative improvements are quite no-

ticeable especially for building rooftop. See the demonstra-

tions in Figure 6.

6. Discussion

As our experiments showed, different training strategies

for learning fully-convolutional neural networks parameters

have a significant impact on the overall accuracy of seman-

tic labeling. We think that the second step of fine-tuning

all the layers in the two-stage training strategy is attributed

to the performance improvement. Because the pre-trained

neural networks are usually trained based on general view-

ing perspective of objects, therefore the shallow convolu-

tional layers also need to be fine-tuned to compensate for

overhead images.

The need of higher-order CRF is discussed in [29], in

which the authors argued that higher-order CRF sometimes

had an adverse impact on classification accuracy. We agree

on the point that the performance of higher-order CRFs is

somehow sensitive to the quality of segments, which are

scene dependent. As Table 1 shows, the vehicle F1-score

drops when higher order CRF takes a small initial seed size,

which can over segment cars. But as we showed in our

experiments, as long as we choose a proper segmentation

algorithm and find its appropriate parameters, using higher-

order CRF gains an overall quantitative and qualitative im-

provement for dense semantic labeling compared to only us-

ing pairwise CRF. Furthermore, incorporating higher-order

CRF provides potential opportunities for further improve-

ment by utilizing object-level contextual information in a

hierarchical random field as proposed in [20, 7, 19]. We are

going to explore this in our future work.

7. Conclusion

In this paper, we proposed a decision-level multisensor

fusion method for semantic labeling of VHR aerial imagery

and its coregistered LiDAR data. A fully-convolutional

neural network and logistic regression classifier are trained

for generating individual predictions for the optical imagery

and LiDAR data respectively. Two probabilistic classifica-

tion results are later fused in a higher-order CRF. Based

on the experiments on the Potsdam dataset, the proposed

higher-order CRF fusion method can yield state-of-the-art

semantic labeling results.
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tation of earth observation data using multimodal and multi-

scale deep networks. arXiv preprint arXiv:1609.06846,

2016.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015.

[6] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy. Neural

network approaches versus statistical methods in classifica-

tion of multisource remote sensing data. IEEE Trans. Geosci.

Remote Sens., 28(4):540–552, 1990.

[7] X. Boix, J. M. Gonfaus, J. Van de Weijer, A. D. Bagdanov,
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