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Abstract

We present a method for shape reconstruction from sev-
eral images of a moving object. The reconstruction is dense
(up to image resolution). The method assumes that the
motion is known, e.g., by tracking a small number of fea-
ture points on the object. The object is assumed Lamber-
tian (completely matte), light sources should not be very
close to the object but otherwise arbitrary, and no knowl-
edge of lighting conditions is required. An object changes
its appearance significantly when it changes its orientation
relative to light sources, causing violation of the common
brightness constancy assumption. While a lot of effort is
devoted to deal with this violation, we demonstrate how
to exploit it to recover 3D structure from 2D images. We
propose a new correspondence measure that enables point
matching across views of a moving object. The method has
been tested both on computer simulated examples and on a
real object.

1. Introduction

This paper addresses the problem of shape reconstruc-
tion from multiple views of a moving object. We work
directly with image intensities and produce a dense recon-
struction. The illumination of the scene can be arbitrary
but the same for all views, and our method does not rely
on any information about light distribution. We do require
prior knowledge of object motion (which is our primary
source of information), along with either epipolar geometry
(for matching) or camera calibration (for shape recovery).
The object is assumed to be (mainly) matte and piecewise
smooth, and the camera(s) to be orthographic.

�Research was supported in part by the Israeli Science Foundation,
Grant No. 266/02 and by the European Commission Project IST-2000-
26001 VIBES. The vision group at the Weizmann Inst. is supported in
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We concentrate here on developing a method for dense
shape reconstruction with known motion and camera cali-
bration. The last assumption is not very restrictive, since
a few point correspondences are enough to estimate the
required parameters. These small number of correspon-
dences can be obtained either manually or by tracking a few
prominent features that remain distinguishable even under
changes of object orientation. We use this technique to per-
form an experiment with a real object (Section 6).

The main difficulty in our approach is to find a reliable
way to match image intensities of the same object point in
different views. Commonly, these intensity values are as-
sumed constant. (This is referred to as the brightness con-
stancy assumption). However, when the object changes its
orientation with respect to the light sources, this assumption
certainly does not hold, even in the simple case of com-
pletely diffuse (Lambertian) object. A major contribution
of this work is the new correspondence measure we devel-
oped, which allows to find corresponding points when the
brightness constancy assumption is violated. In fact, we
show how to exploit this violation for our needs.

We propose to match points relying on a source of in-
formation about the object that is not exploited by the usual
stereo matching techniques. Common stereo methods that
exploit brightness constancy need different points on the
object to look different, so that they can be distinguished.
Therefore they need the surface of the object to be textured.
Moreover, if different object points look the same, no matter
how many views are available, they cannot be distinguished.
We instead rely on the way the intensity of points changes
as the object moves. Thus, our approach benefits from rich
shape variations, not from texture variations. Every addi-
tional view provides extra information about the orientation
of a surface element, thus making reconstruction more ro-
bust. It is interesting to compare this last observation with
the previously noted complementarity of stereo and shading
[3, 8]: the former performs well in textured regions, while
the latter is better in smooth regions.
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The paper is divided as follows. Section 2 describes
some relevant previous work. Our shape reconstruction
method is described in Sections 3, 4, and 5. Experiments
demonstrating the applicability of our method are presented
in Section 6.

2. Previous Work

Brightness constancy is a common underlying assump-
tion in methods of finding correspondence between views,
and much attention has been devoted to relaxing it. We
mention several works that deal with this problem.

A common approach in optical flow estimation is to
find a reasonable generalization of the brightness constancy
constraint [16, 10, 2]. Black and Fleet [2] concentrate
on building a robust statistical framework that can incor-
porate brightness variations. Negahdaripour [16] consid-
ers a general (linear) brightness variation model with addi-
tional constraints on its parameters (usually, smoothness).
Haussecker and Fleet [10] consider specific physical mod-
els of changes in image appearance that occur due to, among
others, object motion. All these methods consider infinites-
imal changes and tend to end up with linearized models.

In the field of tracking several papers attempt to deal
with brightness changes of tracked features, for example
[9, 11]. Similar to the optical flow papers cited above, Jin
et al. [11] model reflectance by invoking a physical model
and then treating parameters as arbitrary changing, loosing
their physical meaning. Hager and Belhumeur [9] cope with
brightness changes by using a model of the object, which
consists of a set of basis images computed offline from a set
training images in which the object is stationary and illumi-
nation varies. Like them, we model the appearance of ob-
jects using low-dimensional linear representation, but work
with the theoretically derived basis ([1, 17]) whose changes
due to object motion we can predict.

[13, 8, 6] show important similarities with our approach.
We shortly describe them below. In contrast to our work,
these papers assume known lighting.

Lu and Little [13] recover shape and reflection properties
of an object using its rotation. They have however much
more constrained experimental setup than we do: they work
with the light source in the direction of the camera, assume
uniform reflection of the object and rely on the ability to
control object motion.

Fua and Leclerc [8] present a surface reconstruction
method that works in the common stereo setup (station-
ary object), but use a reflectance model to recover shape
in non-textured regions (where usual stereo matching fails).
Brightness is treated as a shading cue: spatial intensity vari-
ations impose constraints on shape variations along the ob-
ject surface. We instead extract shape information from the
way the object changes its appearance due to motion. The

lighting model that they use (ambient light and single direc-
tional source) gives a good approximation for an arbitrary
light ([1, 17]), although the authors were obviously unaware
of this fact. This light model coincides with ours in a par-
ticular case.

Carceroni and Kutulakos [6] consider motion coupled
with a reflectance model, similar to our approach. The
entity they work with is dynamic surfel (surf ace element)
which incorporates all relevant information about a small
surface patch: shape, reflectance parameters and instanta-
neous motion. Surfel parameters are recovered by an opti-
mization procedure that is quite involved and computation-
ally heavy. They work with continuous motion, assumption
that we do not require.

Finally, we want to mention a few papers that also exploit
object motion to recover its shape under unknown light-
ing. Mukawa [15] models reflectance to explain brightness
change due to motion, taking into account the influence of
temporal variations on surface orientation (in common with
our work), while ignoring the influence of spatial variations
(surface orientation should vary slowly). Zhang et al. [19]
recover the shape of a moving object explicitly using a re-
flectance model (by incorporating it into the optical flow
subspace constraints). They utilize additional information
present in object motion to recover shape even in untextured
regions. The motion between views is assumed to be small.

The “geotensity” work of Maki, Watanabe and Wiles
[14] is especially close to ours. They also address the prob-
lem of shape reconstruction of an object undergoing arbi-
trary motion under unknown lighting. Assuming that the
rotating object is illuminated by a single point light source,
they argue that the space of images is low dimensional, and
use precomputed coefficients of expansion to constrain in-
tensity values for every tentative 3D point.

3. Outline of Our Approach

We implement the following general approach to shape
reconstruction. We work in a 3D space of possible points,
and seek to extract a 2D surface that represents the solution.
In the case of Euclidean shape reconstruction this 3D space
can be the space of world points, and the extracted surface
is the object surface. In the case when the calibration pa-
rameters are unknown (but the epipolar geometry is known)
two dimensions represent the �� � coordinates of the point
in the reference image plane, and the 3rd dimension is used
to specify the corresponding point along the epipolar line,
which is one-dimensional. The main requirement is that we
should know how to project any point from this workspace
onto all images.

We need to separate points in the workspace into two
classes: points that belong to the object surface and points
that do not. This is done by measuring consistency of points
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with available input data. We define a correspondence mea-
sure, a function on the workspace that should be small for
points on the object surface and large for points that are far
from the surface. Under the brightness constancy assump-
tion a natural correspondence measure is the variation of
intensity values of the projections of the point. We seek to
replace this measure by a measure that takes into account
brightness changes due to motion.

To model reflectance we use results due to Basri and Ja-
cobs [1] and Ramamoorthi and Hanrahan [17]. They justify
previous empirical observations that the set of images of a
Lambertian object under arbitrary, distant lighting is accu-
rately approximated by a low-dimensional subspace. What
is of crucial importance to us, is that they also provide an
explicit expression for computing a basis for this subspace.
We show that a correspondence measure based on this re-
flectance model indeed facilitates reliable reconstruction.

Once we define our correspondence measure we use the
method developed by Boykov, Veksler and Zabih [5] to ex-
tract the sought surface. The problem is posed as an energy
minimization problem: find a surface with minimal total
energy. The energy functional incorporates constraints im-
posed by the input data, as well as prior information about
the surface (usually some form of smoothness). Boykov,
Veksler and Zabih achieve a good compromise between
computational tractability and quality of solution: their al-
gorithm is fast and, while it is not guaranteed to find the
global optimum, successfully computes a generalized local
optimum that is within a proved bound from the global op-
timum. They use a graph cut technique to obtain computa-
tionally efficient procedure. The algorithm accepts fairly
general smoothness priors including ones that are robust
and allow discontinuities in the surface. It also shows very
good performance in practice, a fact that we also witness.

To summarize, this work uses a way of modelling ob-
ject reflectance under general lighting conditions introduced
in [1, 17] together with efficient energy minimization tech-
niques [5] to solve a shape reconstruction problem using the
motion of the object.

We provide details of our method below. Section 4 de-
scribes how we build a correspondence measure that allows
matching of different projections of surface points. Sec-
tion 5 gives a brief description of the algorithm that utilizes
the information provided by the correspondence measure to
find the most likely object surface given the input data. For
simplicity, we consider the case of Euclidean shape recon-
struction. All the derivations below can easily be adjusted
to handle the case of an uncalibrated camera.

4. Correspondence measure

A correspondence measure is some function �� �� � de-
fined on the (3D) workspace that for every point assigns a

numerical value. This value is expected to be low for points
on the true object surface and high for all other points.
We consider a model that describes how image intensity
changes with surface orientation. To build our measure we
will put the available geometric information (how the object
moves) and image data into this model. We will expect our
data to fit the model quite accurately for real world points
that are on the surface of the object.

4.1. Preliminaries

Reflectance model
We use here results due to Basri and Jacobs [1] and Ra-

mamoorthi and Hanrahan [17], which found and justified
a way of modeling the imaging of Lambertian objects un-
der arbitrary distant lighting. They showed that one can ob-
tain accurate approximations to the images by decomposing
them into a small number of spherical harmonics, evaluated
on the surface normals.

For approximation of order � we use harmonics of or-
ders � � �� �� � � � ��. There are �� � � harmonics for each
�, so overall we have �� � ��� basis vectors1. Let �	 be a
�� � ���-dimensional vector that represents light configu-
ration (�	 consists of the spherical harmonic coefficients of
the light function.) Then, the image intensity of a surface
point �� with normal �
 and albedo � is approximated by:

� � ��	 � � �
 ��
�� (1)

Here the �� � ���-dimensional vector �
 is a known func-
tion on the unit sphere. Its components are proportional to
the spherical harmonics of orders up to �, and are poly-
nomials of degrees �� �� � � � �� on the components of the
normal �
.

This approximation appears to be sufficiently accurate
already for small orders of approximation. More pre-
cisely [7], on average (assuming lighting in any direction
is equally likely), the accuracy of this approximation is at
least ���	
 for a first order approximation (involving four
harmonics) and �����
 for a second order approximation
(nine harmonics). Moreover, empirical evidence suggests
that this approximation remains valid even for fairly near
lighting [7].

Equation (1) gives a simple low-dimensional model, that
accurately describes the dependence of the image on the pa-
rameters of the object (albedo and normal) and the environ-
ment (lighting vector �	). It is also important to note, that in
this model we do not assume any particular light configura-
tion. In particular, this model permits arbitrary collections
of point and extended light sources.

1Theoretically, under the distant light assumption harmonics of odd or-
ders from order 3 and up do not contribute energy [1, 17] and can be omit-
ted, but empirical study under near lighting implies that they are still worth
including [7].
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Camera geometry
We will need the following geometric information for

our correspondence measure: (a) projection of 3D object
points onto all images; (b) change of surface orientation
(surface normal) from view to view. The first will be used
to extract the intensities of points in all views. The latter
will be used to model the change of intensities due to object
motion.

Denote by �� a point on the surface of our object, in some
reference frame attached to the object (independent of the
view). We assume that for every view � the projection of ��
onto this view is given by the relation:

��� � proj���� �� (2)

where proj���� is a known mapping from 3D space to 2D
image coordinates.

Now if �
 is the normal vector at �� , then this normal in
the �th view is

�
� � ���
� (3)

where �� is a � � � rotation matrix (we consider rigid
transformations of the object). Surface orientations in all
views are functions of a single vector �
, which has 2 de-
grees of freedom (we assume that the rotation matrices ��

are known).

4.2. Definition of the measure

We are now ready to turn to the correspondence measure
itself. For a given 3D point �� on the object surface2 we can
use (2) to find its projections to the view �. Assume that
we are given images �� taken from different views, then the
point �� has intensity ������� in the view �.

If a Lambertian object does not move, these intensities
should be the same (in the absence of noise). In this case
several good correspondence measures can be devised, e.g.,
the variance of ���������� , their range, etc.

In our, non-stationary scenario we have to use a more
complicated approach. Instead of just brightness constancy
we have the model (1). For a point �� in view � we can
write:

��	 � � �
 ����
� � �������� (4)

Here ��� is a known function of �� and � (2). We are un-
able to evaluate this constraint (4) because �, �	 and �
 are
unknown. We can, however, try to estimate these unknowns
from additional views.

We consider equations (4) for some fixed point �� ob-
served in views � � �� � � � ��. As we deal with differ-
ent views of the same point, we can simplify our notation:
(a) we will write �	 instead of ��	, because in this case albedo

2Recall that �� is in a coordinate system that is local to the object, and
is not affected by its motion.

� cannot be distinguished from the intensity of the lighting
��	�, (b) we will replace ���proj���� �� (the intensity of the
point projected onto view �) simply by �� . Then we have
the following system of equations:

���
��

�	 � �
 ����
� � ���
...

�	 � �
 ����
� � ���

(5)

Here �� , �� and 
 ��� are known, �	 and �
are unknown.
Now, for given image intensities ��� � � � � �� of �� in all

views, we can compute a correspondence measure ���� � in
the following way: search for �	 and �
 that satisfy (5) the
best, and take this best residual of (5) as our measure:

���� � � 
��
�����

�residual of (5)�� (6)

If �� lies on the object surface, the residual of (5) is guaran-
teed to be small for the correct values of the unknowns, so
���� � will also be small. We expect that in general for points
that are not on the surface, no values of unknowns will give
a good fit to the system (5), and ���� � will be large.

In this definition of the correspondence measure we con-
sider every point �� separately, so our measure will not en-
sure that the lighting is consistent for all points. Enforcing
illumination consistency could potentially improve shape
reconstruction, but we cannot do it directly because our
workspace contains many more points outside the surface
(which give rise to false correspondences) than points on
the surface (true correspondences). On the other hand, we
do not want to rely on just a few points to estimate the global
illumination (as is done, for example, in [14]). If those
points violate some of our assumptions (exhibit significant
specular reflectance, fall in a cast shadow, etc.), this would
deteriorate reconstruction for all points. A robust way of
enforcing illumination consistency is a topic of our ongoing
research.

4.3. Computation of the measure

In general, for reliable evaluation of the correspondence
measure (6) we may need to perform global minimization
in the space of ��	� �
�. We want to avoid this because of
very high computational cost. However, local optimiza-
tion, while considerably faster, often gives solutions that are
quite far from the global optimum. Below we show how we
solve this problem in our case. We start by considering an
important practical case.

First order approximation in the reflectance model (see
section 4.1) gives us particularly simple relations while
achieving reasonable accuracy. In this case spherical har-
monics are linear functions and the system (5) becomes bi-
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linear:
�	� �

��	 ����
� ��
� � �� � � � ���

(7)

Here the scalar �	� and the 3-vector ��	 compose the 4-
dimensional lighting vector�	 (scaled by the appropriate nor-
malization constants of the spherical harmonics). This ap-
proximation in fact models light as a sum of ambient com-

ponent �	� and a single directional source��	, and, surprisingly,
is quite accurate for an arbitrary light distribution.

We can eliminate �	� by subtracting the first equation (� �

�) from all the rest. Then for ��	 we obtain the following
system:

��	 � ��� �����
� ���
� � �� � � � ���

(8)

where ��� � �� � ��.
Let us consider the case in which an object rotates by

small angles. Then, assuming without loss of generality that
�� is the identity matrix, and exploiting the Rodrigues’ for-
mula for rotation matrices, we observe that (8) becomes:

�����
�
� ���	 � �
� � ���� � �� � � � ��� (9)

where ��� and �� are the rotation axis and angle of �� re-
spectively, and “�” denotes the cross product of vectors.

This means that when we consider small angles the bilin-
ear system becomes linear with respect to the new unknown

�����	 � �
. We therefore have an inherent ambiguity of the
solutions: there is a whole plane of normals �
 (and like-

wise of light��	) that solve our system. Importantly, all these
solutions have the same residual.

We can directly use this results, for example, if we cap-
ture a moving object at a video rate, when rotations from
frame to frame are very small. But it also appears, that
this particular case analysis gives a good description of the
general case. The ambiguity that arises with the first or-
der harmonic approximation in the case of small angles (9)
is observed also for the general system (5) both for fairly
large angles (we had rotations by 5–30 degrees in our exper-
iments) and for higher order approximations (we checked
the case of second order approximation with 9 harmonics).

This has important implications for our problem of effi-
cient and reliable computation of the correspondence mea-
sure (6). Starting from a random initial guess and minimiz-
ing the residual of the system (5) by a local iterative opti-
mization technique, we will obtain different solutions that
will generally be rather far from the true solution, but will
lie on the ambiguity plane determined by (9). (This indeed
is what we observe in our experiments). But all the solu-
tions on the ambiguity plane have roughly the same resid-
uals, so this ambiguity will not affect our computation of
correspondence measure.
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Figure 1. Comparison of correspondence
measures. A good measure should increase
as the actual error increases.

We can also gain two practical results for our problem
of computation of our correspondence measure. First, we
can use the residual of the linearized system (9) as the cor-
respondence measure:

������� � � ������������ � �� � ����� (10)

where the �������matrix � consists of the rows������
�

and ��� � ����� � � � �����
� .

Alternatively, we can constrain the initial guess of the
local optimization to lie on the ambiguity plane, that we
can compute in advance. This improves the stability of the
optimization.

Overall, experiments (see Section 6) show that our cor-
respondence measure solves the task of separating “good”
and “bad” points quite reasonably. Therefore, it can serve as
an adequate replacement for measures that punish variation
of image intensity values.

4.4. Comparison to the brightness constancy mea-
sure

In Section 6 we provide results of shape reconstruction
using our correspondence measure (6), and compare these
results to ones obtained using a measure based on intensity
variation. However, here we want to take a look at the corre-
spondence measures themselves, not yet involving the sur-
face extraction algorithm, which introduces its own effects.
We will show that the usual measure does not provide suf-
ficient information to distinguish correct correspondences
from incorrect ones.
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Using the true shape, for every point �� in a 3D vol-
ume containing the shape we can compute its actual error:
������ � � ��� � �� ��, where �� � denotes the point on the
true object surface that is closest (in some sense) to �� . We
can also evaluate our correspondence measure ���� � at �� ,
or any alternative correspondence measure. Ideally, a cor-
respondence measure should “mimic” the actual error func-
tion ������ �. To evaluate our correspondence measure we
computed statistics of our measure ���� � as a function of
������ � for the dinosaur toy which we used in our real ex-
periment (Section 6, images are shown in Fig. 3). We also
computed statistics for a second measure ����� � based on in-
tensity difference. (We got similar behavior for all variants
of �� that we checked: standard deviation of intensities and
their range in different sets of images.)

Fig. 1 shows graph plots of the mean values of ���� � and
����� � for every value ������ �. The graphs show a significant
difference between these two measures. While our measure
behaves as expected (it has a steep minimum at the true so-
lution and increases as the actual error increases), the inten-
sity difference measure is nearly flat in a significant interval
around the true solution. Obviously, no shape reconstruc-
tion algorithm can be expected to produce good results if it
relies on a correspondence measure that does not differen-
tiate correct points from incorrect ones. On the other hand,
the measure we developed looks quite adequate for the task,
and, as our experiments show, indeed provides accurate re-
constructions.

5. Extraction of the optimal surface

We seek to find the most likely object surface given a
sequence of images of an object and the transformation pa-
rameters, whose effect is captured by the correspondence
measure (described in Section 4). As in standard stereo
problems, using the notion of Markov Random Fields the
problem of finding the most likely surface can be cast as
an energy minimization problem. The energy function is
a sum of two terms: a data term and a smoothness (prior)
term. The data term is the sum of correspondence mea-
sure values over the surface. The smoothness term penal-
izes large jumps of the surface, that are often caused by ran-
dom errors due to noise in the data and imperfections of the
method. This term depends only on neighboring points on
the surface. We perform energy minimization by adopting
the expansion algorithm from [5]. This algorithm allows
us to choose a robust (discontinuity preserving) smoothness
term (we implemented the truncated linear functional).

6. Experiments

In this section we present experimental results obtained
with our shape reconstruction algorithm. We performed
both computer simulations and experiments with a real ob-
ject. We compare our recovered shape with the ground truth
one, which enables precise evaluation of the results.

Details of the implementation
Our shape reconstruction implementation was based on

a variant of the expansion algorithm from [5], implemented
by Kolmogorov [12]. Shape was obtained by labeling the
pixels in one of the images. Labels could be either depth
or the location of a corresponding point in another image,
with a special label meaning that no surface point exists
(occlusion). We used an energy function that included a
truncated linear smoothness term, which encourages piece-
wise smooth solutions. The correspondence measure (6)
was computed with first order approximation (4 harmon-
ics), and we used 6–10 input images.

In our implementation we parameterized the 3D space
as it is commonly done in a non-calibrated setting. We took
two reference images, and represented a 3D point by a point
on the first image together with the position of its corre-
sponding point along the epipolar line in the second image.
(This is analogous to the notion of disparity in stereo). So
the value that we recover is this position on the epipolar
line, and the reconstruction error (or correspondence er-
ror) that we report is the error in this position. This error
is very natural to evaluate results, and it is influenced by
the performance of the algorithm rather than, say, camera
configuration (as is the error in 3D position). The cameras
are modeled as affine, and the projection from the object
coordinate system to images (2) has the following form:
proj���� � � ��

�� � ��� � where �� is a � � � matrix and
��� is a 2D vector.

Time complexity
Time complexity of our shape reconstruction algorithm

is in practice slightly more than ��
����, where 
 denotes
the image size. The main contribution is due to the mini-
mum graph cut algorithm which is at the heart of the energy
minimization technique. The min-cut algorithm, developed
by Boykov and Kolmogorov [4], has 
� worst case com-
plexity (which is not as good as the state of the art), but
is reported to run in effectively linear time on the special
graphs that are used in these energy minimization methods
(for example, [5]). Min-cut is computed for every label and
we have ��
���� labels, which results in ��
���� worst
case and about ��
���� practical complexity. The energy
minimization algorithm makes a constant number of itera-
tions, and computation of our correspondence measure for
one point is performed in constant time, so the asymptotic
complexity is not changed. Note, that we do not need to
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(a) Examples of input images (3 out of 10)

(b) Quality of reconstruction (the graphs show how many
reconstructed points lie within given radius from their true
positions).
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Figure 2. Simulation results.

compute the correspondence measure for more than 
���

points. To measure the actual complexity we ran the shape
reconstruction algorithm for images of sizes from ����� to
���� ��� pixels. We obtained a running time of ��
������
with high accuracy, which supports the good practical com-
plexity reported previously.

Simulations
We present here results of two computer simulations:

a teapot (Fig. 2(a)) and a dinosaur head (“jurassic”)
(Fig. 2(b)). Both were performed by rendering images of
3D models using the 3D Studio Max software package.
Along with the images we obtained exact camera calibra-
tion, object motion and ground truth shape. Both objects are
perfectly Lambertian with uniform albedo. The largest mo-
tion between the most extreme views was 	� degrees. The
scenes were lit by several (5-10) distant point light sources
(placed manually at random positions). We compared the
shape recovered by our algorithm to the ground truth shape.
The results of these comparisons for both objects are pre-
sented in Fig. 2. The graphs show how many points of the
reconstructed shape lie within a certain error radius from
the correct points.

Experiment with a real object
In a real experiment, a dinosaur doll was rotated (rotation

was within �� degrees) and photographed with a camera
(original ��� � ��� images were cropped and subsampled
to obtain ��	� 	� input images for the algorithm). Ground
truth shape was obtained by using a 3D laser scanner (which
introduces its own errors). The camera was stationary (we
do not need to move it, as in stereo, because the object itself
moves), and calibration along with object motion were es-
timated from manually provided point correspondences in
the images and the 3D scan.

We computed shape by running our algorithm and com-
pared it against the shape obtained with the 3D scanner.
We attempted also to reconstruct the shape using a corre-
spondence measure that assumes brightness constancy (in-
tensity difference). This was done to check how a standard
measure copes with slight violations of the brightness con-
stancy assumption. We chose the most similar pair of im-
ages (with the least difference of intensities of the corre-
sponding points) and computed correspondence measure as
intensity difference on these images. Note that this recon-
struction problem is expected to be difficult for stereo al-
gorithms that use the brightness constancy assumption be-
cause the dinosaur has roughly uniform albedo. The results
of the experiment are presented in Fig. 3.

We see that our algorithm produces quite an accurate
reconstruction and copes with brightness variations which
considerably deteriorate the results obtained with the usual
method. Our algorithm showed good performance in spite
of inaccuracies in the estimation of parameters that are in-
evitable in practical applications.

In this experiment we used a few manually selected point
correspondences to determine object motion and camera
calibration (this enabled us to recover full calibration and
compare results with ground truth). However a fully auto-
matic implementation is possible, e.g., by tracking reliable
point correspondences followed by motion estimation (e.g.,
using [18]).

7. Conclusion

We presented a method for shape reconstruction of a
non-stationary object under arbitrary lighting. We intro-
duced a new correspondence measure, that indicates if
points in different views should match, taking into account
change in surface orientation and subsequent change in im-
age intensity. We showed that our measure is suitable for
solving the task. We described experiments with several
objects, both synthetic and real, which illustrate the appli-
cability of our method.

Our method relies on object motion, not the motion of
the camera (as stereo methods). This allows us to use a fixed
camera setup (which only simplifies the problem, remov-
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(a) Examples of input images (3 out of 10)

(b) Quality of reconstruction for our measure and
usual brightness constancy measure.
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Figure 3. Dinosaur experiment.

ing ambiguity between camera and object motion). Such a
setup is natural for video applications, and one can address
shape reconstruction from video sequence of a moving ob-
ject, with the benefit of a large number of views available to
the algorithm.
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