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Abstract

The sign language translation (SLT) which aims
at translating a sign language video into natural
language is a weakly supervised task, given that
there is no exact mapping relationship between vi-
sual actions and textual words in a sentence la-
bel. To align the sign language actions and trans-
late them into the respective words automatically,
this paper proposes a dense temporal convolution
network, termed DenseTCN which captures the ac-
tions in hierarchical views. Within this network,
a temporal convolution (TC) is designed to learn
the short-term correlation among adjacent features
and further extended to a dense hierarchical struc-
ture. In the kth TC layer, we integrate the outputs
of all preceding layers together: (1) The TC in a
deeper layer essentially has larger receptive fields,
which captures long-term temporal context by the
hierarchical content transition. (2) The integration
addresses the SLT problem by different views, in-
cluding embedded short-term and extended long-
term sequential learning. Finally, we adopt the
CTC loss and a fusion strategy to learn the feature-
wise classification and generate the translated sen-
tence. The experimental results on two popular sign
language benchmarks, i.e. PHOENIX and USTC-
ConSents, demonstrate the effectiveness of our pro-
posed method in terms of various measurements.

1 Introduction

There is a communication gap between deaf-mutes and nor-
mal people. People with no knowledge and experience of
sign language always have difficulty in comprehending the
expressions performed by the signers. Recently, the vision-
based SLT system which recognizes and translates compli-
cated variations of hand gestures, skeleton movements and
facial expressions of singers provided an applicable commu-
nication platform to these people [Futane et al., 2012]. How-
ever, there exist challenges in the sign language (SL) cap-
turing and translating. Therefore, SL research has become
significant in reality.

The SL task can be divided into two categories, namely
the sign language recognition (SLR) and the SLT. The SLR is

considered as a classification task [Guo et al., 2017]. Differ-
ent from the SLR task which uses dynamic visual SL action
to represent a single word or a phrase, the video of SLT task
usually consists of several SL actions and composes a contin-
uous semantic description [Pu et al., 2018].

In this paper, we proposed a model to learn the repre-
sentation of actions in the video without any artificial align-
ment, and translate the representations into linguistic words.
Recently, the 3D convolutional neural network (3D-CNN)
which captures both sequential and spatial pixel distribu-
tion in continuous frames has shown better effectiveness
to express the video and was used in many video-based
tasks [Huang et al., 2018; Pu et al., 2018]. Therefore, we use
the 3D-CNN for visual expression in our translation process.
The recurrent neural network (RNN) was widely adopted in
many sequential learning tasks, such as visual caption and
textual translation [Guo et al., 2018], however In [Cui et al.,
2017], however, the authors indicated that the RNN-based
methods are more inclined to end in over-fitting when train-
ing on a limited amount of data. Meanwhile, RNN converged
at a low speed while training [Pu et al., 2018]. René et al.
proposed a convolution-based architecture named encoder-
decoder TCN (ED-TCN) for action segmentation and detec-
tion [René and Hager, 2017]. Their model avoided the prob-
lem of long-term dependencies ignoring and achieved better
expressions than the RNN. Considering advances in ED-TCN
for the sequential task, we design a temporal convolutional
operation which calculates n adjacent features to capture the
local-pattern contents in each convolution layer. We then ex-
tend the TC to a dense hierarchical structure and use it to learn
the global-pattern contexts.

With the increasing of depth in the convolution network, al-
though the more visual information have been viewed by the
subsequent convolution layers, the details of contents have
been weakened. To solve this problem, Huang et al. pro-
posed a brilliant and effective connectionist structure called
DenseNet which connects each layer to every other layer in
a feed-forward fashion [Huang et al., 2017]. Inspired by
DenseNet, we employ the dense connectionist mechanism to
keep and deliver the sequential contents in a multi-layered
structure. Compared with the DenseNet which concerns the
relations in the pixels, the DenseTCN focuses on the succes-
sive features across the temporal dimension. After that, we
optimize the parameters of our network with the connection-
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Figure 1: The overview of our K = 4 layers sign language translation framework.

ist temporal classification (CTC) [Graves et al., 2006] object
function which reliefs the strong alignment in the sequential
data to handle the relations between the visual actions and
textual words.

As depicted in Figure 1, we first split the video into clips
and extract the feature of each clip from the 3D-CNN, which
captures the sequential and the spatial information simulta-
neously from the successive original frames in our datasets.
Then, the multi-layered TC structure is developed for calcu-
lating adjacent features in different receptive fields. Mean-
while, we concatenate the outputs of all preceding layers and
use them as the input of the current calculation layer. In other
words, the deeper TC layer not only focuses on the long-term
contexts but also contains the contents from other receptive
fields. In the training stage, we use the CTC to learn the rela-
tionship between the translated and the real sentences in each
TC layer. In the testing stage, the greedy decoder and the
fusion strategy are used to find a more reliable sentence.

The main contributions of our work are two folds:

• We propose an end-to-end trainable multi-layer structure
which is designed in pure temporal convolution for SLT
problem. This structure catches the changes in the de-
tails of the actions.

• We develop the connectionist mechanism to keep and
deliver the contents from different calculation layers.
This mechanism fuses the diversity of multi-views ob-
servations and improves the expression of the current
moment clip.

2 Related Works

The solution of SLT contains two sub-processes: feature ex-
traction and sequence translation. Previous works usually uti-
lize the hand-craft feature as the visual expression to learn the
hidden semantic information from the sequential actions. In
[Quattoni et al., 2007], the human skeletons which describe
the postures trajectory were used to recognize the action from
the video. In [Guo et al., 2017], the authors added the his-
togram of oriented gradient (HOG) descriptor of hand into an
adaptive Hidden Markov Model (HMM) model for bettering
the sign classification. In addition, Koller et al. encoded each
frame from the video by a 3D-HOG [Koller et al., 2015] algo-
rithm to solve the SLT problem. As for sequence translation,

the traditional methods, such as HMM [Koller et al., 2017]

and Hidden Conditional Random Fields (HCRF) [Quattoni et
al., 2007] were usually used in early works.

Recently, deep learning approaches has been proved the
success in visual information capturing, such as image clas-
sification [Krizhevsky et al., 2012], object detection [Gir-
shick et al., 2014], and video tasks [Szegedy et al., 2015;
Huang et al., 2017]. As one of the popular techniques, 3D-
CNN preserves the strong capacity for sequential visual com-
prehension and shown higher effectiveness than other tradi-
tional methods [Huang et al., 2018; Pu et al., 2018]. In
addition, many DL-based sequential learning structures had
been proposed and shown the powerful on the translation
problem. For example, 2D-CNN features extracted by the
GoogleNet [Szegedy et al., 2015] and the VGG [Simonyan
and Zisserman, 2015] of frames were fed into a bidirectional
RNN model with the long short-term memory (LSTM) to
generate words [Cui et al., 2017]. In [Guo et al., 2018], it
considered the SLT as a video caption task that learns the vi-
sual semantic in the video and decodes the embedding vectors
into sequential words by a hierarchical LSTM.

Cui et al., however, indicated the RNN-based methods usu-
ally produce the over-fitting phenomenon when limited train-
ing data available [Cui et al., 2017]. Therefore, in [Pu et
al., 2018], the authors proposed a structure which combines
the 3D Residual Networks (3D-ResNet) [Hara et al., 2017]

and dilated convolution [Yu and Koltun, 2016] to translate
the video into the sentence. To better the translation pro-
cess, this combination was limited to use the Expectation-
Maximization (EM) strategy which optimizes the feature ex-
traction stage by the pseudo label generated from the sen-
tence decoder stage and then to promote the accuracy of the
SLT. And in [Wang et al., 2018], the authors proposed a fu-
sion layer combing the TCOV (short-term) and the BGRU
(long-term) information for bettering translation without the
EM strategy. In the translation stage, the CTC was proposed
to solve the unequal sequence alignment problem, such as
textual recognition, and vocal segmentation [Graves et al.,
2006].

The methods related to ours are recently proposed by [René
and Hager, 2017] and [Huang et al., 2017]. The key differ-
ences of ours are two folds. First of all, our model is pro-
posed to solve the sequence-to-sequence SLT problem with
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pure convolutional operations. We replace the traditional se-
quential learning units, e.g. RNN, LSTM, BGRU, etc, and
tackle the over-fitting problem by focusing on the details with
the TC. Second, compared with the DenseNet which aims at
learning a good representation for image classification tasks,
the proposed DenseTCN targets at temporal sequential learn-
ing. In a nutshell, DenseTCN combines short-term and long-
term sequential learning on the feature matrix by TC opera-
tions. Our model learns the embedding of transposed feature
matrix under the multi-granularity TC layers, which is fed
into the CTC to learn the translation.

3 Our Proposed Method

We split the video into clips and extract its features by 3D-
CNN. Then we will introduce the details of our DenseTCN
as follow.

3.1 Dense TC

Compared with the RNN-based units, the TC avoids the prob-
lem of long-term dependencies and focuses on the adjacent
features in sequential data during the calculation. As a result,
we improve the TC to consider both current and preceding
views by once calculation.

The operations of the kth TC are shown in Figure 2. We
consider a feature matrix contains M temporal features in d′

dimension as input Hk = {hi}
M
i=1 ∈ R

k×M×d′

. Such matrix

is concatenated of the outputs from the 0th to (k − 1)th cal-
culation layer, we first pad it across the temporal dimension.
Then we employ q TC filters to capture the dynamic visual
information from the input by calculating n-item adjacent
features. At last, we concatenate the outputs after all filters
across the feature dimension into a matrix {h′

i}
M
i=1 ∈ R

M×q

as the output of the kth TC layer. In our method, the number
of TC filters q can be set to any value. However, we aim to
verify the effectiveness of our structure rather than the setting
of parameters and we use the simplest strategy q = d′ in our
experiments. We use Hk and Ok to represent the input and
output of the kth calculation layer, respectively. The entire
calculation layers of our deep network are shown as follow.

{

H0 =F , k = 0

O0 =Φ(H0) , k = 0
(1)

where Φ is a embedding function which wraps the original in-
put visual features F into transposed feature matrix and finds
the appropriate embedding size in our method. We denote
the formula (1) as the operations of the 0th calculation layer.
Then, the following layers are calculated by formula (2).

{

Hk =[Ok−1, Ok−2, ..., O0] , k > 0

Ok =TCk(Hk) , k > 0
(2)

The notation Ok represents the output of the kth TC calcu-
lation layer. Similar to the traditional convolutional network,
the deeper layer has a larger respective field. Therefore, our
TC structure responses the SL in hierarchical design by con-
catenating the outputs of all preceding calculation layers.

In each calculation layer, we apply the activation function
to promote the learning ability of the network. In addition,
we adopt the dropout [Krizhevsky et al., 2012] to avoid the
over-fitting and improve the generalization of our method.
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Figure 2: The operations of the TCk layer (i.e. k = 4, n = 3).

3.2 Sentence Learning

In our method, we consider the CTC as our objective function
to find a decoded sentence with the maximum sum of proba-
bilities of various alignments π between input and target se-
quences [Graves et al., 2006]. The CTC focuses on the order
and correct words of predictions without the strict alignment
operation. In other words, it provides an end-to-end training
strategy for sequence-to-sequence learning where the unequal
length in the different data.

In the learning stage, we introduce a new blank word ‘ ’
and add it into vocabulary V oc to construct a new word vo-
cabulary as V oc′=V oc ∪ {‘ ’}, where V oc is a set which con-
tains all words of the training set. Meanwhile, to predict the
continuous probable words, we use a fully-connected (FC)
layer after each TC layer, which transfers each clip feature
into word vocabulary.

pk = FCk(Ok) = Ok ·Wk + bk , k > 0 (3)

where pk is a set containing prediction words features of the
kth TC layer. Wk and bk are the parameters of the kth FC.
The size of these parameters is dependent on the setting of
the convolution layer and the scale of word vocabulary in the
training set.

Next, we compare the prediction p with the target sen-
tence Y to optimize the parameters of our proposed network.
Firstly, given the prediction pk of the kth TC layer, we trans-
form it into sequence features as {pik}

M
i=1. The probability of

a CTC alignment path πk is defined as follow.

Pr(πk|pk) =
M
∏

j=1

Pr(πk,j |pk), ∀πk,j ∈ V oc′ (4)

where πk has the same sequence length as pk, πk,j is the jth

element of πk.
Then, to transform πk into a variable sentence Y , the CTC

applies a many-to-one mapping operation B which removes
the blank words and the repeated words in πk, e.g. B( a
a pencil)= {a pencil}. Therefore, the probability of a
labeling Y = (y1, y2, ..., yL) with L words is calculated as
the summation of the probabilities of all word alignments:

Pr(Y|pk) =
∑

πk∈B−1(Y)

Pr(πk|pk) (5)

where B−1(Y) = {πk|B(πk) = Y}.
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Signers Sentences Videos Words

TRAIN 9 5672 5672 1231
VAL 9 540 540 461
TEST 9 629 629 497

Table 1: PHOENIX Dataset

Signers Sentences Videos Words

Split I
TRAIN 40 100 4000 178
TEST 10 100 1000 178

Split II
TRAIN 50 94 4700 178
TEST 50 6 300 20

Table 2: USTC-ConSents Dataset

To learn the hierarchical views of the visual sequence, we
combine the outputs of all FC layers with the CTC. Then we
use the combination to optimize the whole parameters of the
network. Therefore, assume that P = {pk}

K
k=1 is the inputs

of the CTC, where K is the depth of the DenseTCN, the CTC
loss is defined as follow

LCTC = − log Pr(Y|P ) = −
K
∑

k=1

log Pr(Y|pk) (6)

This operation transforms the sequence translation problem
to a hierarchical words translation task.

Score Fusion and Translation

Given the prediction set P = {pk}
K
k=1 in the translation

stage, where pk ∈ R
M×w and w are the sizes of word vo-

cabulary. We use the softmax operation to normalize each
prediction score vector, and sum different normalized score
vectors,

pifusion,j =
1

K

K
∑

k=1

ep
i
k,j

∑w

j′=1 e
pi
k,j′

(7)

Then, we use the function argmax on pifusion and output the

ith word classification label with the maximum score value.
Finally, the greedy strategy is applied to delete the blank
words ‘ ’ and merge the repetition in nearby words, e.g. I

I have a a pencil → I I have a a pencil → I have a
pencil.

4 Experiments

4.1 Datasets

We evaluate our method on two benchmarks: German con-
tinuous sign language dataset (PHOENIX)1 and Chinese sign
language dataset (USTC-ConSents)2.

PHOENIX records the daily news and weather forecast air-
ings of German sign language interpretation. It contains 6841
videos performed by 9 signers and each video is displayed by
one related sentence. The statistic details are available in the
Table 1.

1https://www-i6.informatik.rwth-aachen.de/∼koller/RWTH-
PHOENIX/

2http://mccipc.ustc.edu.cn/mediawiki/index.php/SLR Dataset

USTC-ConSents is a collection of videos covering 100
Chinese daily sentences played by 50 signers. To evaluate
the effectiveness of our proposed method, we split the dataset
by two strategies same to [Guo et al., 2018] as “Split I” and
“Split II” task in Table 2. (a) “Split I” is a signer independent
test. The TRAIN set contains samples of 40 signers and the
remaining of 10 signers as the TEST set. The sentences of
the TEST set are existing in the TRAIN set. (b) “Split II” is
an unseen sentences test which selects video samples of 94
sentences as the TRAIN set and the remaining 6 as the TEST
set. Although sentences of the TEST set are completely dif-
ferent from the TRAIN set, the words in the TEST sentences
exist in the TRAIN. Moreover, the glosses in the 6 test sen-
tences sparsely occur in the training set and have much more
difficult textual semantics.

4.2 Evaluation Metrics

Word error rate (WER) is a widely used metric which eval-
uates the similarity between two sentences. For each gener-
ated sentence, referenced to the ground truth sentence, such
measurement counts the least operations of substitution (S),
deletion (D), and insertion (I). Then, we denote the number
of words in the ground truth sentence as G and the WER can
be calculated as

WER = (S +D + I)/G× 100% (8)

Lower WER means the higher accuracy of the translation pro-
cess. In addition, there are two auxiliary evaluations del and
ins, which represent the proportions of deletion and insertion
operations calculated as follows.

del = D/G× 100% , ins = I/G× 100% (9)

4.3 Network Setting

To fairly compare with other methods, we adopt the dif-
ferent 3D-CNN models according to [Pu et al., 2018] and
[Guo et al., 2018] on two datasets. Assume a video with
N frames as V = {vi}

N
i=1, we first split it into M clips

as C = {ci}
M
i=1 with s-frames and overlapped by o-frames,

where M = ⌊N−o
s−o

⌋ and ⌊z⌋ returns the max integer that is

less than z. Then, all clips are represented as fixed-length
vectors F = {fd

1 , f
d
2 , ..., f

d
M} = {Ωθ(ci)}

M
i=1 by passing

through the 3D-CNN Ω with parameters θ, where fd
i is the d-

dimensional vector of ith clip. In the PHOENIX dataset, we
split each video into 8-frames and overlapped by 4-frames.
Therefore, we acquire 190536 / 17908 / 21349 clips from
TRAIN / VAL / TEST sets, respectively. Through by the 18-
layer 3D-ResNet [Hara et al., 2017] with initializing parame-
ters by the pre-trained model which trained on an SLR dataset
[Zhang et al., 2016], each clip is represented in the d = 512-
dimensional vector. As for USTC-ConSents dataset, we set
s = 16 and o = 8. Therefore, we achieve 111864 / 29080
and 131892 / 9052 clips in “Split I” task and “Split II” task of
TRAIN / TEST set, respectively. Then the C3D [Huang et al.,
2015] is used to embed each clip into d = 4096-dimensional
feature.

In order to find the suitable feature size in the training stage
and reduce the parameters when the input contains the high-
dimensional feature, we propose a linear embedding function
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Figure 3: The fusion performance of DenseTCN with different
strategies under PHOENIX VAL set.

Φ which embeds the d-dimensional features into dimension
d′. Then, defining the parameters format of kth(k > 0) TC
as [number of filters, k, n, d, padding, stride], we set the
parameters of kth TC as [d′, k, 3, d′, 1, 1], where n = 3 means
that each calculation only concerns 3 adjacent features across
the temporal dimension. The discussions of d′ are analyzed in
section 4.4. In the PHOENIX dataset, the feature of input is in
d = 512 dimension, and the parameters W and b of each FC

are the matrix in R
d′
×1232 and the vector in 1232-dimension,

respectively, where 1232 is the size of vocabulary containing
the blank label ‘ ’. As for the USTC-ConSents dataset, the
original input features are with dimension d = 4096, and the
size of vocabulary w is 179.

In the training stage, we use ReLU as activation func-
tion [Krizhevsky et al., 2012] and the parameter of the
dropout is ρ = 0.5. Then, we train our network by CTC ob-
ject function in ADAM optimization starting with the learn-
ing rate of 10−4, beats range from 0.5 to 0.999, and weight
decay is 10−5. We reduce the learning rate by 0.1 after each
30 training epoch and stop the training stage when the learn-
ing rate is lower than 10−6. In the testing stage, we remove
all dropout layers.

4.4 Depth Discussion

We set the depth of network K range from 1 to 16, mean-
while, we use different size with or without (w/o) dropout to
find the appropriate embedding vectors. Experiments on the
PHOENIX VAL set, as depicted in Figure 3, it is easy to find
the network with dropout is better. And with the increasing
of the depth in our network, the performance of translation
is better and more stability. Therefore, we set K = 10 and
embedding size d′ = 512 on PHOENIX dataset referred to
Figure 3. However, there is no validation set in the USTC-
ConSents dataset. Thus, we observe the statistics from two
datasets: the linguistic word responses to the 3.5 and 5.5
clips on average in the PHOENIX and the USTC-ConSents
dataset, respectively. Thus, we choose the deeper structure on
the USTC-ConSents dataset to obtain a larger receptive field.
In our experiments, we set K = 16 and d′ = 512 which is the
maximum value under the up-limit of calculation capacity of
GPU as the network setting on this datasets.

Methods
VAL TEST

del / ins WER del / ins WER

HOG-3D N 25.8 / 4.2 60.9 23.2 / 4.1 58.1
CMLLR N 21.8 / 3.9 55.0 20.3 / 4.5 53.0
1M-Hands N △ 16.3 / 4.6 47.1 15.2 / 4.6 45.1
CNN-Hybrid N △ 12.6 / 5.1 38.3 11.1 / 5.7 38.8
Staged-Opt N △ 13.7 / 7.3 39.4 12.2 / 7.5 38.7
SubuNets N 14.6 / 4.0 40.8 14.3 / 4.0 40.7
Dilated-CNN △ 8.3 / 4.8 38.0 7.6 / 4.8 37.3
LS-HAN - - - 38.3
CTF-SLT 12.8 / 5.2 37.9 11.9 / 5.6 37.8

DenseNet* - 49.7 - 49.2
Our DenseTCN 10.7 / 5.1 35.9 10.5 / 5.5 36.5

Table 3: Evaluations under PHOENIX (N: Other modality, △: Extra
supervision)

4.5 Comparison

PHOENIX

As is shown in Table 3, the notation N denotes that the mod-
els were trained with other feature descriptors, such as “hand
image”, “trajectory motion”, and “face image”. △ means
that the models utilized an additional off-line optimization,
such as using multiple EM iterations on a hybrid CNN-HMM
(CNN-Hybrid) framework for weak supervision [Koller et
al., 2016b]. Here we analyze the differences among these
models. Both HOG-3D and CMLLR belonged to traditional
HMM-based model learning with different hand-craft fea-
tures [Koller et al., 2015]. Then turning to deep features,
Cui et al. proposed a three-step training optimization named
Staged-Opt [Cui et al., 2017]. In 1M-Hands [Koller et al.,
2016a] and SubuNets [Camgoz et al., 2017], both hand fea-
tures and global image features were used to solve the SLT
problem. LS-HAN introduced the attention mechanism to
measure the influences of all input sources to the current
decoding position [Huang et al., 2018]. And the model in
Dilated-CNN [Pu et al., 2018] was trained five times by the
EM optimization procedure. In the CTF-SLT [Wang et al.,
2018], it combined the BGRU with the TCOV to focus both
on the long-term and short-term contents from the video by
joint CTC-based fusion.

Our model has CTC learning optimization and training the
network in hierarchical views in one-step learning. Com-
pared with the other methods based on the sequential cal-
culation, our structure only uses the temporal convolution to
focus on the short-term to the long-term contents. Our re-
sults outperform the state-of-the-art methods with only once
end-to-end training. Furthermore, we replace our TC layers
with the dense blocks introduced in DenseNet as DenseNet*,
and the results are displayed Table 3 - 5 show that the op-
erations of DenseNet are unsuitable for the sequential learn-
ing. It is because that DenseNet ignores the temporal rela-
tionship in the sequences. Here is a translation process of
our K = 10 layers DenseTCN in Figure 4. For a video
with 38 clips, we show the translated sentences of each TC
layer. Referenced to “ground-truth”, the values of the evalu-
ation metric WER are range from 50% to 8%, and the fusion
results show the correct translation sentence. In a nutshell,
DenseTCN regains the deletion (D) words: “MOEGLICH”
and “VERSCHIEDEN”, picks the substitution (S) words:
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Methods WER

DTW-HMM [Zhang et al., 2014] 28.4
LSTM [Venugopalan et al., 2015b] 26.4
S2VT [Venugopalan et al., 2015a] 25.5
LSTM-A [Yao et al., 2015] 24.3
LSTM-E [Pan et al., 2016] 23.2
HAN [Yang et al., 2016] 20.7
LS-HAN [Huang et al., 2018] 17.3
HLSTM-atten [Guo et al., 2018] 10.2
CTF-SLT [Wang et al., 2018] 11.2

DenseNet* [Huang et al., 2017] 38.3
Our DenseTCN 14.3

Table 4: Evaluation under USTC-ConSents Split I

“WIND” and “loc-REGION”, and excludes the insertion (I)
word: “UNTERSCHIED”. It demonstrates the effectiveness
of our DenseTCN model.

USTC-ConSents

“Split I” task is designed to evaluate the translation pro-
cess that already learns the sentence of the dataset and only
changes the sign language users. Experimental results are
shown in the Table 4. The DTW-HMM required segmenta-
tion in recognition process, and encoder-decoder RNN-based
methods, such as LSTM, S2VT, LSTM-A, LSTM-E, HAN,
LS-HAN and HLSTM-atten, are calculated the whole se-
quential data and generate sequential words. CTF-SLT also
contains a long-term memory to remember the existing sen-
tence. These methods perform better on “Split I” task, it is
because that the RNN-based methods were easier into over-
fitting which tends to translate the sentence existing in the
TRAIN set. But we achieve a comparable performance on
this task.

“Split II” task is similar to the PHOENIX dataset in some
aspects that each sentence never exists in the training set,
but all words in the sentence have been contained in. Com-
pared with “Split I” task, “Split II” task has meaningful in
the practical application. As is shown in the Table 5, S2VT,
HLSTM and other various structure all used the RNN-based
methods that calculate or remember all sequential data by
shared weights cells. Therefore, in “Split I” task, the RNN-
based methods shown the better performance, but in “Split II”
task, the new sentence never exists the training stage which
means the remember strategy is invalid in the testing stage.
But in our method, the hierarchical views on the temporal in-

Methods WER

S2VT [Venugopalan et al., 2015a] 67.0
S2VT(3-layer) [Yao et al., 2015] 65.2
HLSTM (SYS sampling) [Guo et al., 2018] 66.3
HLSTM [Guo et al., 2018] 66.2
HLSTM-atten [Guo et al., 2018] 64.1

DenseNet* [Huang et al., 2017] 52.1
Our DenseTCN 44.7

Table 5: Evaluation under USTC-ConSents Split II

formation are designed to learn the word-level representation
and capture the SL actions in detail. It avoids the problem
of long-term dependencies and relieves the influences of the
words which were translated before. Therefore, our method
achieves the best performance on “Split II” task, which per-
forms much better than others by 19.4 - 22.3 WER improve-
ment.

5 Conclusion

This paper proposes a hierarchical structure which captures
the visual contents from short-term to long-term transition to
address the problem of SLT. In detail, with the increasing of
depth in our DenseTCN, the translated words are observed
from actions, signs, and semantics. It improves the perfor-
mance of word-level translation and relieves the over-fitting
phenomenon in the limited training dataset. Experiments on
two popular SLT benchmarks have shown the effective per-
formance of DenseTCN on different sides.
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