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Abstract
Breast tumors are from the common infections among women around the world. Classifying the various types of breast 
tumors contribute to treating breast tumors more efficiently. However, this classification task is often hindered by dense tissue 
patterns captured in mammograms. The present study has been proposed a dense tissue pattern characterization framework 
using deep neural network. A total of 322 mammograms belonging to the mini-MIAS dataset and 4880 mammograms from 
DDSM dataset have been taken, and an ROI of fixed size 224 × 224 pixels from each mammogram has been extracted. In 
this work, tedious experimentation has been executed using different combinations of training and testing sets using differ-
ent activation function with AlexNet, ResNet-18 model. Data augmentation has been used to create a similar type of virtual 
image for proper training of the DL model. After that, the testing set is applied on the trained model to validate the proposed 
model. During experiments, four different activation functions ‘sigmoid’, ‘tanh’, ‘ReLu’, and ‘leakyReLu’ are used, and the 
outcome for each function has been reported. It has been found that activation function ‘ReLu’ perform always outstanding 
with respect to others. For each experiment, classification accuracy and kappa coefficient have been computed. The obtained 
accuracy and kappa value for MIAS dataset using ResNet-18 model is 91.3% and 0.803, respectively. For DDSM dataset, 
the accuracy of 92.3% and kappa coefficient value of 0.846 are achieved. After the combination of both dataset images, the 
achieved accuracy is 91.9%, and kappa coefficient value is 0.839 using ResNet-18 model. Finally, it has been concluded that 
the ResNet-18 model and ReLu activation function yield outstanding performance for the task.
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Introduction

The statistical report produced by the American cancer soci-
ety shows that among twelve women one is the possibility 
of rising breast-related lesions. Among the various breast 
lesions, breast tumor is one of the repeatedly occurring 
infections among women in every region of the world [1–5]. 
The major attribute to developing breast cancer is breast 
tissue pattern density, body weight, age, genetic history of 
breast lesions, type of radiation therapy, alcohol consump-
tion, etc. [4, 5]. The relation between the development of 
cancer and risk factor is shown in Fig. 1.

After the study of past statistics and Fig. 1, it has been 
seen that the tissue density plays a crucial role in develop-
ing breast cancer. Breast tissue density is the ratio between 
fibro-glandular tissues to the fatty tissues. According to the 
Breast Imaging-Reporting and Data System (BIRADS) nota-
tion [6], breast tissue characterization is further classified 
into four different levels as per the tissue density availability 
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in mammograms. The four class of tissue characterization 
[7–13] is as BIRADS-I which covers completely fatty tis-
sue, i.e., ratio is less than 25%, BIRADS-II which covers 
the ratio between 25 and 50%, BIRADS-III which covers 
the ratio between 51 and 75% and BIRADS-IV includes the 
ratio between 76 and 100%.

In most of the cases, BIRADS-I and BIRADS-II com-
bined together as fatty breast tissue class and BIRADS-III 
and BIRADS-IV combined together as dense breast tissue 
class. The sample image of each ACR-BIRADS class taken 
from the Digital Database for Screening Mammography 
(DDSM) dataset [14] is shown in Fig. 2.

The characterization of breast tissue pattern density 
is important because of (i) adequate scheduling of treat-
ment related to breast lesions, and (ii) it has been also 
found that lesions are masked behind the dense tissue so 
that the treatment is not going in proper directions, for 
such type of cases expert may take the opinion of sec-
ondary imaging modalities. It has been also observed that 
the early predictions of increased breast tissue density 
reduce the development of cancerous cell and improve 
the treatment adequacy. For characterization of breast tis-
sue pattern, machine learning and deep learning models 
have played a crucial role [7, 8]. Therefore, the growth of 

efficient computer-aided classification (CAC) system is a 
challenging task for the research community. Regarding 
this problem, so much work based on the machine learn-
ing concept has been already completed, but these models 
suffered from either complexity or less accuracy [9, 10, 
15–17].

Based on the challenges obtained from the previous stud-
ies, a dense tissue pattern classification framework has been 
proposed using a deep neural network model. The major 
contributions of the proposed work as follows:

1. Deep neural network–based dense tissue pattern clas-
sification framework is proposed for prediction of breast 
tissue pattern. This framework is suitable for clinical 
practice as a secondary opinion tool for prediction of 
breast density.

2. The extensive experiments have been carried out on 322 
mammograms taken from mini-MIAS dataset and 4880 
mammograms taken from DDSM dataset.

3. The present work is different from past studies in terms 
of complexity because it is based on the region of inter-
est. In which a region of interest (ROI) is cropped from 
the center region of the mammograms and passed to the 
framework, and the decision of the system is generated.

Fig. 1  Relation between the development of cancer and risk factor [3]
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4. For attaining better result and accuracy, different acti-
vation functions like ReLU, Sigmoid, Tanh, and Leaky 
ReLU are investigated on the same dataset with AlexNet 
and ResNet-18 deep learning model.

5. The results achieved by proposed the model are com-
pared with state-of-art and results achieved in our model 
outperform existing works by achieving an accuracy 
of 92.3%, and the kappa coefficient value of 0.846 for 

characterization of dense tissue using mammographic 
images.

The rest of the paper is ordered as a literature review 
section as "Related Studies" section, in which major find-
ings and limitations of past studies have been illustrated. In 
next "Materials and Methods" section, material and meth-
ods are described in which data preparation protocols, ROI 

Fig. 2  Sample image of ACR-
BIRADS class taken from 
DDSM dataset [14]
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extraction, data augmentation and dataset bifurcation are 
discussed. In "Experiments and Results" proposed model, 
experiments and results are discussed, and finally, the com-
plete work has been summarized in the "Conclusion" section 
as a conclusion.

Related Studies

After a deep study of literature related to dense tissue pattern 
characterization, it has been found that the characterization of 
tissue can be done in two methods: (i) segmented tissue–based 
characterization (ST) and (ii) region of interest tissue–based 
characterization (ROIT). ROI-based method is simpler than 
segmentation-based method because segmentation-based 
approach needs additional preprocessing steps, but in case 
of ROI-based approach, a fixed size ROI has to be cropped 
and passed to the model without any additional preprocessing 
steps. Therefore, the present work is based on an ROI-based 
method for dense tissue pattern characterization.

In past studies, so many studies for breast tissue pattern 
characterization using ST and ROIT have been done [7, 8, 
18, 19]. For these methodologies, machine learning (ML) 
and deep learning (DL) are prominently used [20, 21]. In 
ML, support vector machine (SVM), artificial neural net-
work (ANN), k-nearest neighbor (kNN), probabilistic neural 
network (PNN), smooth SVM (SSVM), etc. [7, 8, 18] are 
applied with spatial domain feature extraction, transform 
domain–based feature extraction, and law’s texture energy 
features [18]. The past studies show some promising results 
with ML models, but it suffers if the number of the input 
sample is large. For such types of problems, DL models 
yield better performance. Due to that, DL model is getting 
more attention in the last few years.

With time, several deep learning model–based computer 
aided diagnostic systems have been developed for the detec-
tion or classification of tumors. In the study [22], convolu-
tional neural network (CNN) is used for lesion classification 
on 736 mammograms and attained the accuracy of 82.6%. In 
this model, computed features are passed to the classification 
module. The experiment performed by Qiu et al. in study 
[23] used a DL model having eight layers for classification 
task. The proposed eight-layer DL model can extract the 
features automatically, and extracted features are used for 
feature classification. The designing of the DL model is a 
hectic task; therefore, pre-trained models can be also used 
for the classification problem [24]. The study [25] used a 
pre-trained model for benign and malignant cancer classi-
fication on DDSM and InBreast dataset [26]. The obtained 
ROC curve shows the accuracy of 90.0%. For tissue den-
sity classification, the study [15] shows the accuracy of 
83.6% for two-class classification on MIAS dataset using 
pre-trained VGG16 model. The breast tissue density can be 

also classified into four classes as reported in previously 
published work [27]. In this work, the DL model is used and 
validated on 200,000 mammographic samples. The achieved 
accuracy for the proposed model is 84.2%. The obtained 
result shows the promising results for four class classifica-
tion tasks. The similar type of task has been performed in 
[16] using the Inception V3 model and achieves the accuracy 
of 84.4% on 3813 number of samples.

The DL model is not only limited to the classification 
task. Such a type of model can be also used for the fea-
ture extraction, and the computed values are passed to the 
machine learning model called transfer learning [28–30]. 
The study [28] shows the application of transfer learning 
and achieved outstanding results. In the proposed work, DL 
model is used for feature extraction, and extracted features 
are passed to the ML algorithm for classification task. The 
proposed model is validated on self-collected mammograms. 
The concept of transfer learning is also used in [29] where 
22000 samples are used, and the CNN model is used for fea-
ture extraction. Finally, the reported accuracy for this study 
is 92.6% for testing and 94.2% for training.

Keeping in the view of previously published results, it 
has been conceded that most of work has been concentrated 
around complete mammogram processing. In past studies, it 
has been also found that the density of tissue pattern is high-
est at behind the nipple and center location of breast. The 
same fact has been experimentally proved by Li [31]. It is 
also noticed that the same facts have been also observed by 
radiologist and medical experts [7, 8]. Therefore, ROIT con-
cept is used to design a dense tissue pattern characterization. 
In the proposed work, a fixed size of ROI is extracted from 
the mammograms and then it is passed to the DL model.

In this work, two pre-trained DL models AlexNet and 
ResNet-18 [19, 25, 32] have been used to develop the pro-
posed system. For each model, four activation functions ‘sig-
moid’, ‘tanh’, ‘ReLu’, and ‘leakyReLu’ [33] are used for acti-
vation of neurons. The training and testing image samples 
are taken from mini-MIAS and DDSM database. The image 
augmentation has been performed to increase the number 
of samples. After that, training and testing of DL model is 
performed and obtained results are evaluated in terms of 
accuracy, misclassification accuracy, and kappa coefficient.

Materials and Methods

Dataset Preparation

In this work, two scientific datasets (mini-MIAS, DDSM) 
are used. Both datasets are freely available for research 
purposes. The various experiments have been performed 
on firstly individual dataset then the combination of both 
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dataset and obtained findings has been reported in results 
sections.

The mini-MIAS [34] consists of 322 mammograms of 
161 patients. Each mammogram of the dataset is digitized 
at 50-micron pixels. The density label of each mammogram 
is labeled by three expert radiologists as fatty tissue class, 
fatty-glandular tissue class, and dense-glandular class. For 
two class tissue pattern classification, fatty tissue class is 
considered as class 1, i.e., fatty whereas fatty-glandular and 
dense-glandular are treated as class 2, i.e., dense class. The 
total number of samples in the fatty class is 106 mammo-
grams (106 samples ϵ fatty tissue classes), and the number 
of samples in dense class is 216 mammograms (104 samples 
ϵ fatty-glandular and 112 samples ϵ dense-glandular class).

In DDSM dataset [14], 10000 multi-view (CC view and 
MLO view) mammograms of 2500 patients are available 

of three classes as benign, malignant, and normal. Each 
mammogram of the dataset is digitized at 42 to 50 microns. 
Each study includes two projections (MLO and CC view) 
of each breast, along with essential patient information like 
patient age, tissue pattern density rating, rating for lesions, 
and description of architectural distortion. The density label 
of each mammogram is categorized into four classes, i.e., 
BIRADS-I, BIRADS-II, BIRADS-III, and BIRADS-IV. To 
attain the objective of proposed work, a total sample of 4880 
mammographic images are used as a fatty class and dense 
class. The fatty class comprised of 2460 mammograms as 
620 samples ϵ BIRADS-I and 1840samples ϵ BIRADS-II 
and dense class comprised of 2420 mammograms as 1440 
samples ϵ BIRADS-III and 980 samples ϵ BIRADS-IV class 
of MLO view. The brief detail of dataset preparation is given 
in Fig. 3 for MIAS and DDSM dataset.

Fig. 3  Dataset preparation

Fig. 4  Steps for ROI extraction
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ROI Extraction

From the past studies, it has been observed that the maxi-
mum tissue pattern density found at the center of mammo-
grams just behind the nipple [7, 8, 18, 31]. After the concern 
of an expert radiologist, they had also concluded a similar 
fact. Therefore, an ROI of size 224 × 224 pixels has been 
cropped from the center of each mammogram for the entire 
experiments. For mini-MIAS dataset, a total of 322 ROIs 
have been cropped, and from DDSM dataset, a total of 4880 
ROIs have been cropped. The steps for ROI extraction are 
shown in Fig. 4.

Data Augmentation

It is well known that the performance of deep learning mod-
els depends on the amount of training dataset. In case of 
fewer amounts of data, data augmentation is used for gen-
erating a large amount of virtual samples from the available 
samples [35–37]. The virtual images are generated with 
the help of angle rotation of 5° with height, width, shear, 
and zoom range of value 0. In the case of DDSM mammo-
grams, ten virtual samples are generated using one sample 

with abovementioned parameters, and a set of twenty vir-
tual images is generated using mini-MIAS mammograms 
by using the above mentioned parameters. After the aug-
mentation, overall mammographic samples from the DDSM 
dataset are 48800 and 6440 samples of mini-MIAS mam-
mographic images are available. The sample image of the 
augmented dataset is shown in Fig. 5.

Dataset Bifurcation

The complete set of samples further bifurcated into training 
and testing samples in a balanced and unbalanced manner. In 
a balanced manner, bifurcation with 50:50 ratio is used for 
training and testing samples. According to this, 24400 sam-
ples of DDSM dataset and 3220 samples of the mini-MIAS 
dataset are used as training and testing dataset. Similarly, 
for unbalanced bifurcation of samples 70:30 ratio is main-
tained for training and testing samples. Thus 34160 samples 
of DDSM dataset and 4508 samples of the mini-MIAS data-
set are used as a training set and 14640 samples of DDSM 
dataset 1932 samples of the mini-MIAS dataset are used as 
a testing set. The brief description of dataset preparation and 
bifurcation is given in Table 1.

Fig. 5  Augmented image of DDSM and MIAS dataset based on fatty and dense image class

Table 1  Brief description 
of dataset preparation and 
bifurcation

DDSM dataset Mini-MIAS

Total cases 4480 322
Total ROIs 4880 322
Augmented sample 4880 × 10 = 48800 ROIs 322 × 20 = 6440 ROIs
Dataset bifurcation Balanced bifurcation Training set: 24400 Training set: 3220

Testing set: 24400 Testing set: 3220
Unbalanced bifurcation Training set: 34160 Training set: 4508

Testing set: 14640 Testing set: 1932
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Proposed Work

The proposed workflow chart is shown in Fig. 6. The proposed 
work is divided into three main levels as a pre-processing 
module, model building module, and decision section. In the 

preprocessing section, dataset preparation, ROI extraction, 
data augmentation, and ROIs bifurcation are performed, and 
in model building section, DL-based model is trained using 
the training set, and trained model is used to predict the test-
ing samples of testing dataset described in decision section.

Fig. 6  Proposed workflow 
diagram for dense tissue pattern 
characterization using deep 
learning model
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Deep Learning Model

In the recent trends of artificial intelligence, deep learning 
(DL) model plays a significant role in the development of 
computer-assisted framework [25] and different domains 
of research [38]. DL is the subset of ML which learns 
underlying features from data using neural a network. It is 
well known that the ML-based framework performance is 
degraded with a large amount of data, but DL models show 
promising results on the large amount of dataset. Another 
important limitation of the ML algorithm is learning from 

hand-engineered features, which are time consuming, brittle, 
and non-scalable whereas in case of the DL model tries to 
learn high-level features from the data itself. The DL model 
is similar to the neural network having multiple hidden 
layers, convolution layers, pooling layers, fully connected 
layers, activation functions, etc. Some popular pre-trained 
neural network architectures like CNN and recurrent neu-
ral network (RNN) are suitable for classification and object 
detection type problems [19, 33]. The generalized archi-
tecture of the DL model (CNN) as a classifier is shown in 
Fig. 7.

Fig. 7  Architecture of CNN model as a classifier

Fig. 8  Convolution operation
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Convolutional Layer

In CNN, the convolution layer is used as a feature extractor 
layer of the input image. To compute the feature, the input 
image is convolved with the weight matrix of the convolu-
tional layer [39]. The output of every neuron is obtained 
using dot matrix multiplication between the weight matrix 
of the convolutional layer and part of the input image. The 
explanation of the convolution operation is shown in Fig. 8.

The size of the output image is defined as given in Eq. (1) 
for input image I(W,H).

where W and H are the width and height of the image. F is 
used for kernel filter, P is pooling function, and S is used 
for stride value.

Activation Layer

In this layer, a nonlinear function, known as activation 
function, is applied to the input matrix and performs the 

(1)
outputsize(W) = {(W − F + 2P)∕(S + 1)}

outputsize(H) = {(H − F + 2P)∕(S + 1)}

Fig. 9  Average pooling opera-
tion at pooling layer

Fig. 10  Architecture of ‘AlexNet’ model
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complex operation. The resultant value of the activation 
function is used to decide whether a neuron is active or 
not. The most frequently used activation function in DL 

models is ‘sigmoid’, ‘tanh’, ‘ReLu’, ‘leakyReLu’, and so 
many variants of ReLu [33].

Fig. 11  Experimental structure of AlexNet with input sample taken from the used dataset

Fig. 12  Residual Block or identity block
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Fig. 13  ResNet-18 architecture
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Pooling Layer

This layer is used to reduce the spatial dimension of the 
input image so that fewer operations have to be performed 
at the next layer. The most frequently used pooling layer 
operations are average pooling and max pooling. The 
example of average pooling operation is shown in Fig. 9.

In this work, two different pre-trained DL models 
(AlexNet, ResNet-18) are used for dense tissue pattern 
characterization. The brief description of each model is 
given below.

AlexNet

The first deep learning model ‘AlexNet’ is developed by 
Alex Krizhevsky [40] which makes a huge revolution in 
ML and AI research field. The model consists of five con-
volutional layers, two fully connected layers, and a soft-
max layer. The architecture of ‘AlexNet’ model is given 
in Fig. 10.

Each convolutional layer uses a convolutional filter fol-
lowed by a non-linear activation function. Out of these five 

convolutional layers, three layers are followed by a pool-
ing layer as shown in Fig. 9. The input size of the AlexNet 
model is 224 × 224 × 3, so the ROI of every mammogram 
has been resized to 224 × 224 × 3. A convolution filter size 
of 11 × 11 with stride size of 4 is applied on input images of 
size 224 × 224 × 3. Therefore, the size of the conv2 layer is 
55 × 55 × 96 using {(224 − 11/4) + 1} = 55 and a kernel size 
of 96 is generated. After that, a max-pooling filter of size 
3 × 3 with a stride rate of 2 is applied so that the size of the 
next layer becomes 27 × 27 × 256.

The similar calculation has been done for others layers, 
and experimental structure of AlexNet with input sample 
taken from the used dataset is shown in Fig. 11.

ResNet

The ResNet model is the same as the GoogleNet model hav-
ing seven numbers of layers [41, 42]. Each layer consists 
of an identity block. The structure of identity block-1 and 
identity block-2 is shown in Fig. 12. Each block consists 
of a convolutional filter, batch normalization, and non-
linear activation function. The convolutional filter size 
of block-1 is 3 × 3, and 1 × 1 convolutional filter size for 

Algorithm 1  Train a deep neural network model with defined batch size for SGD approach

1739Cognitive Computation  (2022) 14:1728–1751



1 3

block-2 is used. The resultant vector of residual block-1 is 
directly added, i.e., element wise addition with input vec-
tor so that the extracted features are preserved and the DL 
model tries to learn maximum features from low to high 
level. In the same manner, block-2 performs the same set of 
operations with a minor difference as shown in Fig. 12. In 
this work, ResNet-18 model is used for dense tissue pattern 
characterization.

The complete architecture of ResNet-18 is shown in 
Fig. 13. The ResNet-18 [19] is composed of 8 residual 

blocks. Among these, residual block-1, residual block-2, 
residual block-4, residual block-6, and residual block-8 are 
composed of identity block-1, and residual block-3, residual 
block-, and residual block-7 are composed of identity block-
2. The size of the 224 × 224 × 3 pixels input image is applied 
to the ResNet model. At layer one convolution filter of size 
3 × 3, a total number of kernels 64, stride of [2, 2] with pad-
ding [3, 3, 3, 3] is applied. This operation is followed by 
batch normalization and activation function, and finally, max 
pooling, stride, and padding are applied on the normalized 

Fig. 14  Confusion matrix

Fig. 15  Relation between kappa coefficient and the significance of the system
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vector. The resultant vector of layer one is passed to layer 
two, which comprises identity block 1. The set of opera-
tions performed at layer 2 is mentioned in Fig. 11. Layer 3 
is divided into two identity blocks as residual block 3 and 
block 4. Residual block 3 consists of identity block-1 and 
residual block 4 consists of identity block-2. In the same 
manner, the remaining layer has consisted, and details of 
each layer are shown in Fig. 12. To train the DL model, 
stochastic gradient descent algorithm is used.

Stochastic Gradient Descent

In past studies, it has been found that stochastic gradient 
descent (SGD) is frequently used for DL model training and 

attains the promising results [43]. SGD is an optimization 
technique which is mathematically defined as a given expres-
sion in Eq. (2) for training sample tr(x) with label tr_b(y).

(2)� = � − �∇�j
(

�, tr(x)(i);tr_b
(

y(i)
))

Table 2  Description of bifurcation of ROIs belonging from DDSM 
and MIAS datasets

MIAS ROIs DDSM ROIs

Balanced Bifurcation Training set: 3220 Training set: 24400
Testing set: 3220 Testing set: 24400

Unbalanced Bifurcation Training set: 4508 Training set: 34160
Testing set: 1932 Testing set: 14640

Fig. 16  Sample of the original and augmented image with true class and predicted class
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The complete training algorithm is given as Algorithm 1.

Performance Evolutionary Parameters

In this work, the proposed work has been evaluated through 
accuracy and kappa coefficient. For accuracy calculation, 
a confusion matrix (CM) is used as shown in Fig. 14, and 
the mathematical expression of accuracy is also given in 
the same.

Kappa Coefficient

The kappa coefficient [44] is the statistical analysis of the 
proposed work, which shows the significance or reliability 
of the proposed work. The kappa coefficient � is calculated 
with the help of given Eq. (3).

where � is kappa value, P0 is the probability of observed 
agreement, and pe is the probability of hypothetical agree-
ment. With the help of CM, P0 and Pe are computed as:

and

where Pclass1 and Pclass2 are computed as given expression.

The relation between kappa coefficient and the signifi-
cance of the system is shown in Fig. 15.

Experiments and Results

Experimental Setup

The complete experimentation has been performed at HP 
Z4 G4 workstation. The specification of the system is given 
as Intel Xeon W-2014 CPU @ 3.2 GHz, 64 GB RAM, 4 
GB NVIDIA Quadro P1000, 256 GB SSD, and 2 TB SATA 
HDD. All the images and ROIs are stored in this system, 
and the Python environment is used for performing the 
experiments.

Experiments

In this work, meticulous experimentations have been car-
ried out for the dense tissue pattern characterization using 

(3)� =
p0 − pe

1 − pe

(4)p0 =
TP + TN

TP + TN + FP + FN

(5)pe = pclass1 + pclass2

(6)
pclass1 =

TP+FP

TP+FP+TN+FN
∗

TP+FN

TP+FP+TN+FN

pclass2 =
FN+TN

TP+FP+TN+FN
∗

FP+TN

TP+FP+TN+FN

deep learning models. To achieve the desired outcome, 
AlexNet and ResNet-18 deep learning models have been 
used. The input mammograms were taken from mini-MIAS 
and DDSM databases. Due to the limited number of sam-
ples available in MIAS and DDSM dataset, virtual images 
were generated using data augmentation, for the training 
and testing purpose of the model. After the augmentation, 
322 × 20 = 6440 ROIs of MIAS and 4880 × 10 = 48800 ROIs 
of the DDSM dataset are generated. Further, the complete 
set of ROIs is bifurcated into the training and testing set. 
The description of the bifurcation of ROIs belonging from 
DDSM and MIAS dataset is shown in Table 2.

The sample of the original and augmented dataset with 
true class and predicted class is shown in Fig. 16.

In this work, experiments have been carried out for 
MIAS, DDSM, and MIAS + DDSM mammograms. Initially, 
a model is designed for MIAS images and tested with the 
test samples from MIAS mammograms. In the next model, 
input mammogram ROIs are taken from the DDSM dataset, 
and the test set is also generated from the same set. In the 
next experiments, input ROIs are taken from DDSM and 
MIAS both dataset and then train the model from a training 
set ROIs and lastly test the model using the testing set. The 
bifurcation of the training and testing set is performed by 
balanced and unbalanced methods. The list of experiments 
carried out for the work is given in Table 3.

Experiment 1

In this experiment, a total number of 6440 ROIs have been 
used for dense tissue pattern classification using AlexNet and 
ResNet-18 models. From 6440 ROIs, training and testing 
sets are created using balance bifurcation; therefore, 3220 
ROIs are used as a training set, and the remaining 3220 ROIs 
are used as a testing set. From 3220 ROIs of the training set, 
1060 ROIs belong to the fatty class, and 2160 ROIs belong 
to dense tissue class. In the same manner, the testing set is 
created. The four activation functions ‘ReLU’, ‘Sigmoid’, 
‘Tanh’, and ‘Leaky ReLU’ are used for the experiment, and 
the obtained results are reported in Table 4. The distribution 
of ROIs is given as

Experiment 2

In this experiment, a total number of 6440 ROIs have been 
used for dense tissue pattern classification using AlexNet and 
ResNet-18 model. From 6440 ROIs, training and testing sets 
are created using unbalanced bifurcation; therefore, 4508 ROIs 
are used as a training set, and remaining 1932 ROIs are used 
as a testing set.

Total ROIs of fatty class ∶ 106 × 20 = 2120{1060 training + 1060 testing}

Total ROIs of dense class ∶ 216 × 20 = 4320{2160 training + 2160 testing}.
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The obtained results for four different activation functions 
are reported in Table 5. The description of ROIs distribution 
ROIs is given as

Experiment 3

In this experiment, 4880 cases are taken from the DDSM 
dataset, and an ROI from each mammogram has been 
extracted according to previously mentioned steps and 
area. After the augmentation, a total set of a total number 
of 48800 ROIs have been generated for dense tissue pattern 
classification using AlexNet and ResNet-18 model. From 
48800 ROIs, training and testing sets are created using bal-
ance bifurcation; therefore, 24400 ROIs are used as a train-
ing set, and remaining 24400 ROIs are used as a testing set. 
The obtained results for four different activation functions 

Total ROIs of fatty class ∶ 106 ∗ 20 = 2120{1484 training + 636 testing}

Total ROIs of dense class ∶ 216 ∗ 20 = 4320{3024 training + 1296 testing}.

are reported in Table 6. The description of ROIs distribution 
is given as

Experiment 4

In this experiment, 4880 ROIs are extracted from each mam-
mogram taken from the DDSM dataset. To improve the 
learning of the DL model, the large number of input sam-
ples required; therefore, augmentation is used to create vir-
tual 48800 ROIs for dense tissue pattern classification using 
AlexNet and ResNet-18 model. Further, these samples are 
divided into training and testing sets using an unbalanced man-
ner, i.e., 70;30 ratio. The obtained results for four different 
activation functions are reported in Table 7, and the descrip-
tion of ROIs distribution ROIs is given as

Total images fatty class ∶ 24600{12300 training + 12300 testing}

Total images dense class ∶ 24200{12100 training + 12100 testing}.

Total images fatty class ∶ 24600{17220 training + 7380 testing}

Total images dense class ∶ 24200{16940 training + 7260 testing}.

Table 3  Details of experiments carried out for the work

Dataset Dataset bifurcation Experiment no Description

MIAS Balanced bifurcation Experiment 1 Dense tissue pattern characterization using AlexNet and ResNet-18 model
Unbalanced bifurcation Experiment 2 Dense tissue pattern characterization using AlexNet and ResNet-18 model

DDSM Balanced bifurcation Experiment 3 Dense tissue pattern characterization using AlexNet and ResNet-18 model
Unbalanced bifurcation Experiment 4 Dense tissue pattern characterization using AlexNet and ResNet-18 model

DDSM + MIAS Balanced bifurcation Experiment 5 Dense tissue pattern characterization using AlexNet and ResNet-18 model
Unbalanced bifurcation Experiment 6 Dense tissue pattern characterization using AlexNet and ResNet-18 model

Table 4  Classification accuracy 
for MIAS dataset

DL model Activation function Confusion matrix Accuracy (%) Kappa 
coefficient 
( �)Fatty Dense

AlexNet ReLU Fatty 897 163 88.9 0.750
Dense 194 1966

Sigmoid Fatty 897 163 86.3 0.698
Dense 278 1882

Tanh Fatty 895 165 86.1 0.694
Dense 282 1878

Leaky ReLU Fatty 873 187 85.0 0.669
Dense 296 1864

ResNet-18 ReLU Fatty 908 152 89.8 0.770
Dense 176 1984

Sigmoid Fatty 864 196 87.2 0.711
Dense 216 1944

Tanh Fatty 870 190 85.0 0.668
Dense 293 1867

Leaky ReLU Fatty 873 187 85.2 0.673
Dense 289 1871
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Experiment 5

In this experiment, a total of 55240 ROIs (6440 belonging 
to MIAS and 48800 belonging to DDSM) are considered. 
The total number of fatty class ROI is 26720, and 28520 
ROIs belong to dense tissue class. In this experiment, bal-
ance bifurcation of the dataset is used to create training and 
testing sets. The AlexNet and ResNet-18 model is used for 
dense tissue pattern classification. The obtained results for 
four different activation functions are reported in Table 8, 
and the description of ROIs distribution ROIs is given as

Experiment 6

In this experiment, the same number of samples as Experi-
ment 5 is used, but the bifurcation of the training and testing 
sets is made according to the unbalanced manner. The ratio 
of 70:30 is used for the training and testing set creation. The 
description of ROIs distribution ROIs is given as:

Total images fatty class ∶ 26,720{13,360 training + 13,360 testing}

Total images dense class ∶ 28,520{14,260 training + 14,260 testing}.

Table 5  Classification accuracy 
for MIAS dataset

DL model Activation function Confusion matrix Accuracy (%) �

Fatty Dense

AlexNet ReLU Fatty 569 67 89.3 0.766
Dense 138 1158

Sigmoid Fatty 581 55 89.1 0.763
Dense 155 1141

Tanh Fatty 548 88 86.1 0.698
Dense 179 1117

Leaky ReLU Fatty 541 91 88.6 0.749
Dense 125 1171

ResNet-18 ReLU Fatty 581 55 91.3 0.807
Dense 113 1183

Sigmoid Fatty 570 66 89.6 0.770
Dense 135 1158

Tanh Fatty 568 68 87.8 0.734
Dense 168 1128

Leaky ReLU Fatty 558 78 86.5 0.706
Dense 183 1113

Table 6  Classification accuracy 
for DDSM

DL model Activation function Confusion matrix Accuracy (%) �

Fatty Dense

AlexNet ReLU Fatty 10849 1451 88.2 0.764
Dense 1428 10672

Sigmoid Fatty 11123 1177 86.3 0.725
Dense 2166 9934

Tanh Fatty 10418 1882 85.6 0.712
Dense 1631 10469

Leaky ReLU Fatty 10568 1732 86.0 0.720
Dense 1684 10416

ResNet-18 ReLU Fatty 11112 1188 90.2 0.803
Dense 1206 10894

Sigmoid Fatty 10910 1390 88.7 0.773
Dense 1368 10732

Tanh Fatty 10676 1624 86.8 0.736
Dense 1597 10503

Leaky ReLU Fatty 11218 1082 89.7 0.794
Dense 1420 10680
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The obtained results for different activation functions are 
reported in Table 9.

Results Analysis

To achieve the efficient model for dense tissue characteriza-
tion, extensive experiments have been carried out on MIAS 
and DDSM mammograms using AlexNet and ResNet-18. 
Initially, MIAS and DDSM images have been considered 

Total images fatty class ∶ 26, 720{18704 training + 8016 testing}

Total images dense class ∶ 28, 520{19964 training + 8556 testing}.

separately for model designing, and later on, combined sam-
ples are used, so that maximum variability of input samples 
are considered. After the experimentations, following major 
outcomes have been induced as:

 (i) For the MIAS dataset, two experiments (Experiment 
1 and Experiment 2) have been performed using the 
AlexNet and ResNet-18 model. In these experiments, 
training and testing sets have been created using bal-
ance and unbalanced bifurcation approaches. The 
various activation functions have been checked for 
the convolutional layer, and results have been reported 

Table 7  Classification accuracy 
for DDSM using unbalanced 
bifurcation

DL model Activation function Confusion matrix Accuracy (%) �

Fatty Dense

AlexNet ReLU Fatty 6389 991 87.8 0.756
Dense 794 6466

Sigmoid Fatty 6332 1048 85.1 0.702
Dense 1133 6127

Tanh Fatty 6103 1277 84.6 0.692
Dense 977 6283

Leaky ReLU Fatty 6456 924 87.1 0.742
Dense 964 6296

ResNet-18 ReLU Fatty 6812 568 92.3 0.846
Dense 559 6701

Sigmoid Fatty 6718 662 89.0 0.780
Dense 946 6314

Tanh Fatty 6287 1093 87.3 0.746
Dense 763 6497

Leaky ReLU Fatty 6676 704 90.3 0.807
Dense 702 6558

Table 8  Classification accuracy 
for MIAS + DDSM images 
using balanced bifurcation

DL model Activation function Confusion matrix Accuracy (%) �

Fatty Dense

AlexNet ReLU Fatty 11583 1777 86.7 0.733
Dense 1897 12363

Sigmoid Fatty 11336 2024 85.6 0.730
Dense 1654 12306

Tanh Fatty 11429 1931 84.8 0.695
Dense 2268 11992

Leaky ReLU Fatty 11649 1711 87.2 0.743
Dense 1825 12435

ResNet-18 ReLU Fatty 12097 1263 88.3 0.766
Dense 1969 12291

Sigmoid Fatty 11730 1630 87.8 0.755
Dense 1740 12520

Tanh Fatty 11416 1944 86.2 0.723
Dense 1868 12392

Leaky ReLU Fatty 11667 1693 88.1 0.761
Dense 1594 12666
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in Tables 4 and 5. The performance of each experi-
ment has been evaluated using classification accuracy 
(Acc) and kappa coefficient ( � ). The highest accuracy 
of 89.8% (2892/3220) has been reported for Experi-
ment 1 using ResNet-18 model for ReLu non-linear 
activation function and value of the kappa coefficient 
( � ) is 0.770. For the same testing set, the accuracy 
of 88.9% (2863/3220) has been achieved using the 
AlexNet model for ReLu activation function, and the 
value of � is obtained as 0.750. Further, the accuracy 
of 86.3%, 86.1%, and 85.0% have been obtained and 
the value of � is obtained as 0.698, 0.694, and 0.669 
for ‘Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ using the 
AlexNet model. Similarly, 87.2%, 85.0%, and 85.2% 
of accuracy and the kappa coefficient as 0.711, 0.668, 
and 0.673 have been obtained for ‘Sigmoid’, ‘Tanh’, 
and ‘Leaky ReLU’ using the ResNet-18 model.

   For Experiment 2, the highest Acc of 89.3% 
(1727/1932) and 91.3% (1764/1932) has been 
achieved for the AlexNet and ResNet-18 model, 
respectively using the ReLu activation function. The 
value of kappa coefficient � is 0.776 and 0.807 for 
the AlexNet and ResNet-18 model, respectively. In 
this experiment, the non-linear activation functions 
‘Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ have been also 
checked, and the obtained classification accuracy for 
each function is noted as 89.1%, 86.1%, and 88.6%, 
and the value of kappa coefficient is obtained as 
0.763, 0.698, and 0.749 for AlexNet model. In the 
similar manner, the accuracy of 89.6%, 87.8%, 
86.5%, and value of � is 0.770, 0.734, and 0.706 for 
‘Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ activation func-
tion using the ResNet-18 model.

 (ii) For the DDSM dataset, two extensive experiments 
(Experiment 3 and Experiment 4) have been per-
formed for dense tissue pattern characterization using 
AlexNet and ResNet-18 model. In this experiment, 
four activation functions ‘ReLu’, ‘Sigmoid’, ‘Tanh’, 
and ‘Leaky ReLU’ is used for both DL model and 
obtained classification accuracy, and kappa coeffi-
cient value is reported in Tables 6 and 7.

   In Experiment 3, the bifurcation of training 
and testing samples is made according to the bal-
anced bifurcation. The achieved accuracy is 90.2% 
(22006/24400) using the ResNet-18 model and 
88.2% (21521/24400) accuracy is achieved using 
AlexNet model for ReLu activation function. The 
value of � is 0.803 and 0.764 obtained for the 
ResNet-18 and AlexNet, respectively. The accuracy 
for other activation functions (‘Sigmoid’, ‘Tanh’, 
and ‘Leaky ReLU’) for AlexNet model is obtained 
as 86.3%, 85.6%, and 86.0% respectively. The kappa 
value for the same activation function is 0.725, 
0.712, and 0.720 for AlexNet model, respectively. 
Similarly, the obtained accuracy for ResNet-18 
model is as 88.7%, 86.8%, and 89.7% respec-
tively. The kappa value for the ‘Sigmoid’, ‘Tanh’, 
and ‘Leaky ReLU’ using the ResNet-18 model is as 
0.773, 0.736, and 0.794, respectively.

   In Experiment 4, the same number of samples as 
Experiment 3 are used, but the distribution of sam-
ples in the training and testing sets is made accord-
ing to the ratio of 70:30. It means 70% of the total 
sample is used as a training set, and the remaining 
30% is used as a testing set. The highest classification 
accuracy of 92.3% (13513/14610) is achieved using 

Table 9  Classification accuracy 
for MIAS + DDSM using 
unbalanced bifurcation

DL model Activation function Confusion matrix Accuracy (%) �

Fatty Dense

AlexNet ReLU Fatty 7378 638 90.8 0.815
Dense 888 7668

Sigmoid Fatty 7014 1002 87.5 0.749
Dense 1070 7486

Tanh Fatty 6965 1051 86.9 0.736
Dense 1130 7426

Leaky ReLU Fatty 7054 962 88.0 0.759
Dense 1027 7529

ResNet-18 ReLU Fatty 7289 727 91.9 0.839
Dense 599 7957

Sigmoid Fatty 7102 914 88.6 0.771
Dense 976 7580

Tanh Fatty 7014 1002 87.5 0.749
Dense 1070 7486

Leaky ReLU Fatty 7078 938 88.3 0.766
Dense 998 7558
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the ResNet-18 model and 87.8% (12855/14610) of 
accuracy is achieved for the AlexNet model for the 
ReLU function. The kappa value for the same activa-
tion function for the AlexNet and ResNet-18 model is 
obtained as 0.846 and 0.756, respectively. The accu-
racy for ‘Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ using 
ResNet-18 is 89.0%, 87.3%, and 90.3%, respectively. 
The kappa values for ‘Sigmoid’, ‘Tanh’, and ‘Leaky 
ReLU’ activation function are 0.780, 0.746, and 
0.807 respectively for the ResNet-18 model. Simi-
larly, the accuracy for three activation functions is 
obtained as 85.1%, 84.6%, and 87.1% for AlexNet 
model using ‘Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ 
activation functions, respectively, and the kappa 

coefficient values are as 0.702, 0.692, and 0.742 
respectively.

 (iii) For MIAS + DDSM dataset, two extensive experi-
ments (Experiment 5 and Experiment 6) have been 
performed for dense tissue pattern characterization 
using AlexNet and ResNet-18 model. In this experi-
ment, four activation functions ‘ReLu’, ‘Sigmoid’, 
‘Tanh’, and ‘Leaky ReLU’ are used for both DL 
model and obtained classification accuracy, and 
kappa coefficient value is reported in Tables 8 and 9, 
respectively.

   From Table 8, it has been found that the maxi-
mum classification accuracy of 88.3% (24388/27620) 
is attained for the ReLu activation function using 

Fig. 17  Training, testing, and train loss curves for ResNet-18 model
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ResNet-18 model, and the kappa value of 0.766 
is achieved. The accuracy for ‘Sigmoid’, ‘Tanh’, 
and ‘Leaky ReLU’ function is reported as 87.8%, 
86.2%, and 88.1% respectively, and the kappa 
value is obtained as 0.755, 0.723, and 0.761 respec-
tively. With the help of the AlexNet model, 87.2% 
(24084/27620) of accuracy is achieved using the 
Leaky ReLU activation function, and the kappa value 
is obtained as 0.743. The accuracy for ‘ReLu’, ‘Sig-
moid’, and ‘Tanh’ activation function is obtained as 
86.7%, 85.6%, and 84.8%, respectively. The kappa 
coefficient value for these activation functions is 
obtained as 0.733, 0.730, and 0.695 respectively.

   From Table 9, it has been observed that the AlexNet 
and ResNet-18 model is used for the development of 
dense tissue pattern characterization systems. The 
highest classification accuracy is obtained as 91.9% 
(15246/16572) and the kappa value as 0.839 using 
ResNet-18 model for ReLu activation function. The 
accuracy for Sigmoid’, ‘Tanh’, and ‘Leaky ReLU’ 
activation function is obtained as 88.6%, 87.5%, and 
88.3%, respectively. The kappa coefficient values of 
0.771, 0.749, and 0.766 are obtained for Sigmoid’, 
‘Tanh’, and ‘Leaky ReLU’ activation functions using 
the ResNet-18 model. The highest accuracy for 
AlexNet model is obtained as 90.8% (15046/16572) 
using the ReLU activation function, and the kappa 
value is obtained as 0.815. The accuracy for ‘Sig-
moid’, ‘Tanh’, and ‘Leaky ReLU’ activation functions 

is obtained as 87.5%, 86.9%, and 88.0%, respectively, 
and the kappa coefficient value is obtained as 0.749, 
0.736, and 0.759, respectively.

 (iv) In this work, six different experiments have been 
performed with the help of three different com-
binations of the dataset (i.e., MIAS, DDSM, and 
MIAS + DDSM). The obtained maximum accu-
racy for MIAS dataset is 91.3% (1764/1932), for 
DDSM, dataset is 92.3% (13513/14610), and for 
MIAS + DDSM, dataset is 91.9% (15246/16572). 
The training and testing accuracy for every model is 
shown in Fig. 17.

Misclassification Analysis

After the successful completion of experiments, so many 
samples are misclassified. The analysis of the misclassifica-
tion of every experiment is given in Table 10.

From Table 10, it has been observed that the minimum 
misclassification accuracy is 7.7% (1127/14640) using the 
ResNet-18 model for DDSM dataset. It shows that 1127 
samples are not correctly predicted. From 1127 samples, 
568 samples of the fatty class and 559 samples of the dense 
class have been incorrectly classified. The minimum mis-
classification accuracy for MIAS dataset is 8.7% using the 
ResNet-18 model. In the same manner, the minimum mis-
classification accuracy for MIAS + DDSM dataset is 8.1% 
using the ResNet-18 model.

Table 10  Misclassification 
analysis of experiments

Miss_F Misclassified samples of fatty class, Miss_D misclassified samples of dense class, Mis_Acc. mis-
classification accuracy

Experiment no Model Dataset No. of samples Miss_F Miss_D Mis_Acc

Experiment no. 1 AlexNet MIAS 3220 152 176 10.2
Experiment no. 2 ResNet-18 MIAS 1932 55 113 8.7
Experiment no. 3 AlexNet DDSM 24400 1188 1206 9.8
Experiment no. 4 ResNet-18 DDSM 14640 568 559 7.7
Experiment no. 5 AlexNet MIAS + DDSM 27620 1263 1969 11.7
Experiment no. 6 ResNet-18 MIAS + DDSM 16572 727 599 8.1

Table 11  Comparison between 
proposed work and the state 
of art

DL model Number of 
samples

Accuracy (%) Kappa 
coefficient

Proposed work ResNet-18 48800 92.3 0.846
Valencia-Hernandez et al. [26] Takagi–Sugeno 1010 84.2 –
Dontchos et al. [9] CNN 2174 90.7 –
Clancy et al. [10] AlexNet 22000 77.0 –
Gandomkar et al. [16] Inception-V3 3813 83.3 0.775
Shi et al. [15] VGG-16 10304 83.9 –
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Comparative Analysis

The performance of proposed work has been compared with 
the current state of the art, and comparative analysis table 
is shown in Table 11. The comparative analysis has been 
performed on the basis used DL model, the total number of 
considered cases for experiment, accuracy, and kappa coef-
ficient. Figure 18 shows the comparative analysis between 
proposed works and previously published.

In Table 11, previously published work [9, 10, 15, 16, 26] 
is compared with present work. The comparative table shows 
the accuracy of present work is better than the accuracy of 
the state of art work done in [9, 10, 15, 16]. The accuracy of 
the work reported in a study [9] is 90.7% that is the highest 
among the accuracy of study reported in [10, 15, 16, 26]. It 
is also worth mentioning that the proposed work accuracy is 
92.3% which is higher than the previously reported accuracy 
in study [9].

Among previously published work [9, 10, 15, 16, 26], 
only study done by Gandomkar et al. [16] done kappa coef-
ficient evaluation for their work. The obtained kappa value 
for proposed work is 0.846, and kappa value for the study 

[16] is 0.775. The kappa coefficient value obtained for the 
proposed work shows that the significance of proposed work 
is more than the previously published work. Thus, the pre-
sent study is more suitable for the clinical purpose for dense 
tissue pattern characterizations.

Conclusion

It is very well known that dense tissue is a major risk fac-
tor for the growth of cancerous cells in women’s breasts. 
Therefore, the present study reports the performance of the 
proposed dense tissue pattern characterization model using 
deep neural networks. Initially, MIAS and DDSM datasets 
are used for input image samples. Due to less number of 
samples, data augmentation has been performed to generate 
virtual samples, so that the training and testing of models 
are done properly. After the augmentation, the problem of 
under-fitting and over-fitting of the model is reduced.

In this work, two deep learning models (AlexNet and 
ResNet-18) are used, and four activation functions (‘Sig-
moid’, ‘Tanh’, ‘ReLu’, and ‘LeakyReLU’) have been tested 

Fig. 18  Comparative analysis 
between proposed works and 
previously published
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with each model. To achieve the desired objective, exten-
sive experiments have been performed with the different 
combination of training and testing samples with different 
activation functions using AlexNet and ResNet-18 model. 
For every experiment, the outcome of the results has been 
measured in terms of accuracy and kappa coefficient. The 
obtained accuracy and kappa value show the activation 
function ‘ReLu’, and deep neural network model ResNet-18 
is more suitable for dense tissue pattern characterization. 
Finally, it has been concluded that the designed model is 
more suitable for clinical purposes, and it shall be helpful 
for an expert person for proper and adequate scheduling of 
the treatment.

This work is also suffering from the manual ROIs extrac-
tion. If the ROIs extraction performed automatically then the 
execution time and performance will be improved. The same 
limitations will be also considered as a future work of the 
proposed work. In near future, the same set of approaches 
have been also used for the designing a computerized frame-
work for breast density classification on full-field screen 
mammograms.
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