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Dense versus Sparse Approaches for Estimating the

Fundamental Matrix

Levi Valgaerts Andrés Bruhn Markus Mainberger

Joachim Weickert

Abstract

There are two main strategies for solving correspondence problems in

computer vision: sparse local feature based approaches and dense global

energy based methods. While sparse feature based methods are often used

for estimating the fundamental matrix by matching a small set of sophisti-

cally optimised interest points, dense energy based methods mark the state

of the art in optical flow computation. The goal of our paper is to show that

this separation into different application domains is unnecessary and can be

bridged in a natural way. As a first contribution we present a new application

of dense optical flow for estimating the fundamental matrix. Comparing our

results with those obtained by feature based techniques we identify cases

in which dense methods have advantages over sparse approaches. Moti-

vated by these promising results we propose, as a second contribution, a

new variational model that recovers the fundamental matrix and the opti-

cal flow simultaneously as the minimisers of a single energy functional. In

experiments we show that our coupled approach is able to further improve

the estimates of both the fundamental matrix and the optical flow. Our re-

sults prove that dense variational methods can be a serious alternative even

in classical application domains of sparse feature based approaches.

1 Introduction

While correspondence problems are omnipresent in computer vision, it is surpris-

ing that their two main research directions have evolved without much interac-

tion: On the one hand sparse, feature based methods have been developed for

estimating the epipolar geometry from stereo and multiview data, and numerous

statistical efforts have been spent to select the most useful set of sparse correspon-

dences. On the other hand, dense, energy based methods have become the leading

techniques for estimating the correspondences (optical flow) in image sequences.

The goal of our paper is to show that these dense methods can also be very bene-

ficial for estimating the epipolar geometry, and that combining epipolar geometry

computation with energy minimisation also leads to better optical flow methods.

Let us first sketch feature based approaches for estimating the epipolar geometry.

The epipolar geometry is the relation that underlies two stereo views and can be
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described by a single entity, the fundamental matrix [33, 22]. For uncalibrated

images it is possible to estimate the fundamental matrix solely from image cor-

respondences by means of the epipolar constraint, which restricts corresponding

points in the two views to lie on their respective epipolar lines. For feature based

methods these correspondences are typically derived by matching a sparse set of

characteristic image features, for example Förstner-Harris features [25, 30], KLT

features [66], as well as SIFT or SURF features [43, 8]. The first such approach

goes back to Longuet-Higgins [42], who introduced the 8-point algorithm to com-

pute the essential matrix, the equivalent of the fundamental matrix for internally

calibrated cameras. The 8-point algorithm excels in simplicity because of its lin-

ear nature but it has the disadvantage that the quantity being minimised has no

geometrical interpretation. Weng et al. [86] and Luong and Faugeras [45] pro-

posed nonlinear techniques involving geometrically meaningful measures such as

the distance of a point to its epipolar line. Hartley and Zisserman [33] recommend

a Maximum Likelihood (ML) estimation that minimises the distance of a point to

the manifold determined by the parameterisation of the fundamental matrix. The

ML estimate is optimal from a statistical viewpoint if a Gaussian error model is

assumed [85] and is sometimes called the Gold Standard algorithm. In practice, a

feature based estimation method has to be able to deal with false correspondences

arising from the lack of geometrical constraints in the matching process. This has

led to a multitude of robust extensions that can handle a relatively large amount

of outliers: M-estimators [35], Least Median of Squares (LMedS) [59] and the

numerous variants of the Random Sample Consensus (RANSAC) [23] number

among such robust techniques. An overview of robust estimators in the context of

fundamental matrix computation can be found in [76, 91, 70, 57]. In addition to

feature based methods there exists a limited number of approaches that estimate

the fundamental matrix directly from image information [65].

Clearly, the quality of feature based methods relies on the quality of the random

sampling approach. However, one should not forget that also the features may suf-

fer from well-known localisation errors due to their computation in scale-space;

see e.g. [81, 90].

Now that we have discussed sparse, feature based methods for estimating the fun-

damental matrix, we review dense techniques for establishing correspondences

within a global energy minimisation framework. Typical representatives are vari-

ational methods for computing the optical flow. They minimise an energy func-

tional that models temporal constancy of image properties via a data term and

regularity of the flow field via a smoothness term. The quadratic data term of

the seminal model of Horn and Schunck [34] has been gradually extended with

robust variants that combine several constancy assumptions in order to cope with

noise, occlusions and illumination changes [14, 37, 52, 68, 87]. To respect discon-

tinuities in the optical flow, smoothness terms have been proposed that take into
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account image edges [53, 3], edges in the evolving flow field [63, 84] or both [93].

Similar extensions have been introduced in a probabilistic setting using discrete

models [11, 49, 74] or by coupled systems of partial differential equations [56].

The minimisation of variational optical flow methods often proceeds by means of

a gradient descent approach or by discretising the Euler-Lagrange equations.

The basic idea of using dense, energy based methods is not restricted to optical

flow computation, it can also be applied to depth estimation from stereo pairs. If

the epipolar geometry of a stereo image pair is known, the correspondence prob-

lem even reduces to a one dimensional search – the search along epipolar lines.

Most successful stereo correspondence methods are either discrete or continuous

optimisation techniques [61]. Discrete methods model the images and displace-

ment field as Markov random fields and try to find the most probable displacement

for the given data. Minimisation is usually done by means of graph cuts [39], be-

lief propagation [38] or dynamic programming [40]. While discrete approaches

allow a better optimisation of the energy by constraining the depth values to a dis-

crete subset, continuous variational methods can be advantageous when smooth

transitions are favoured. Variational methods either decompose the optical flow

along the epipolar lines [2, 67], restrict the estimation process in horizontal di-

rection after rectifying the images [9], or directly solve for the unknown depth in

every pixel [72].

While ideas from optical flow computation have been widely adopted for dense

stereo matching, it is astonishing that these concepts have rarely found their way

into the estimation of the fundamental matrix. In fact, recent developments in vari-

ational optical flow (e.g. [14, 88, 54, 13, 93]) indicate that there are dense alter-

natives to feature based methods for reliable unconstrained correspondence com-

putation. Apart from their high accuracy, variational methods offer two potential

advantages for the computation of the fundamental matrix: (i) Due to the filling-in

effect they provide a dense flow field, and thus a huge amount of correspondences,

that can increase the robustness of the estimation process. (ii) They do not create

gross outliers – i.e. arbitrary image locations that are wrongly matched across the

whole image plane – because of the combination of robust data constraints and

global smoothness assumptions.

However, not only the benefit of dense optical flow methods for estimating the

epipolar geometry seems promising, but also the opposite direction: Knowing the

epipolar geometry can have a stabilising effect on computing optical flow fields.

First attempts along this line have been made by two-step approaches that feed

a precomputed epipolar geometry into an optical flow method [2, 72, 67, 9, 83].

More recently it has been argued in two conference papers that it can be beneficial

to couple the computation of epipolar geometry and optical flow fields within a

joint energy functional [78, 82].
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The goal of the present paper is to address these two issues. By presenting a

first systematic juxtaposition of sparse and dense methods for correspondence

problems, we come up with two contributions: First, we demonstrate that mod-

ern dense optical flow methods can serve as novel approaches for estimating the

epipolar geometry with competitive quality. Secondly, we demonstrate that this

quality can be further improved within a joint variational approach for simulta-

neous estimation of epipolar geometry and optical flow. This joint method also

yields better results then an optical flow approach without epipolar geometry es-

timation.

While these key results are of a more general nature, we have to restrict our

methodology to prototypical representatives. As a prototype for an accurate dense

optical flow method we choose the approach of Brox et al. [14], sometimes also

replaced by the recent method of Zimmer et al. [92]. For feature based ap-

proaches we consider two feature matching algorithms (KLT [66] and SIFT [43]),

three random sampling algorithms (LMedS [59], LORANSAC [19] and DEGEN-

SAC [20]), and two different distance measures (epipolar distance [22] and repro-

jection error [33]). This comes down to twelve different variants of feature based

methods.

Our paper is organised as follows. In Section 2 we describe our method for

estimating the fundamental matrix from optical flow. In Section 3 we give an

overview of the selected feature based methods and we present a first experimen-

tal comparison in Section 4. Section 5 is dedicated to our novel variational model

that couples the estimation of the epipolar geometry and the optical flow. After a

second experimental comparison in Section 6 we conclude with a summary and

outlook on future work in Section 7.

Related Work Early ideas that couple optical flow with the estimation of the

epipolar geometry go back to the differential form of the epipolar constraint by

Viéville and Faugeras [80] and Brooks et al. [12]. Based on these works, Ohta and

Kanatani [55] and Kanatani et al. [36] have presented statistical evaluations of the

estimation of the stereo geometry and the depth frommonocular image sequences.

These studies suffered, however, from inaccurate optical flow methods and a lack

of absolute performance measures. Moreover, in a differential setting optical flow

is regarded as the infinitesimal displacement field of an image sequences , thereby

strictly separating structure-from-motion from wide baseline stereo. We do not

make such a distinction since recent optical flow methods are able to cope with

both small and large displacements.

Only the work of Strecha et al. [71] is known to the authors in which dense optical

flow correspondences are used for the calibration of a stereo rig, but no quantita-

tive results are reported. In our coupled model for optical flow and fundamental
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matrix estimation a rigid motion model enters the functional in the form of a soft

constraint with unknown fundamental matrix entries. In the optical flow model

of Nir et al. [54] this happens via an explicit parameterisation of the displace-

ments with unknown coefficients. Also close in spirit to our ideas are feature

based ML methods that simultaneously estimate the fundamental matrix while

correcting an initial set of point correspondences [85, 33]. These methods are,

however, inherently sparse and differ by the distance measure that is being min-

imised. Another more recent sparse method that pairs the epipolar constraint with

the brightness constancy assumption is that of Saragih and Goecke [60]. In an

early work, Hanna [29] iteratively estimates camera motion and dense structure

parameters in a joint refinement process by using the optical flow as an interme-

diate representation. Contrary to our approach, the problem is formulated in a

differential setting and the optimisation performed locally. A simultaneous esti-

mation of the fundamental matrix and the 3D surface is proposed by Schlesinger

et al. [62] in an uncalibrated discrete setting. Despite a joint model formulation,

proper initialisation is required to bootstrap the method.

Some preliminary results of our work have been presented at local conferences [46,

78]. In the present paper we consider a larger number of optical flow and feature

based methods, including more recent ones. Last but not least, we carry out a

significant number of additional experiments. They analyse more aspects and

provide deeper insights in the real potential and the limitations of dense optical

flow methods in connection with epipolar geometry estimation.

2 FundamentalMatrix Estimation fromOptical Flow

In this section we propose our first contribution: a novel two-step method for esti-

mating the fundamental matrix from dense optical flow. We first establish a dense

correspondence set between the two input images by computing a displacement

vector for every pixel. This results in a set of matches from which we then es-

timate the fundamental matrix with a modified version of the 8-point algorithm.

We assume that the images have already been corrected for radial distortion. The

8-point algorithm, however, can be extended such that it simultaneously recovers

the fundamental matrix and the radial distortion [24].

2.1 Variational Optical Flow Computation

We compute the optical flow with the variational method that was proposed by

Brox et al. [14]. Although this is not one of the latest methods, it may serve as a

popular prototype of modern variational optical flow techniques. We use a variant

with spatial instead of spatio-temporal smoothing and briefly summarise it here.
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Let g(x,y, t) : Ω× [0,∞)→ R be an image sequence and x = (x,y, t)⊤ a location

within the rectangular image domain Ω ⊂ R
2 at a time t ≥ 0. We further assume

that g(x,y, t) is presmoothed by a Gaussian convolution of standard deviation σ
and that the left and right image of the uncalibrated stereo pair are embedded in the

sequence as two consecutive frames g(x,y, t) and g(x,y, t+ 1). The optical flow

w = (u,v,1)⊤ between the two frames is then found by minimising the energy

functional

E (w) =
∫

Ω

(

Ψ
(

|g(x+w)−g(x)|2+ γ · |∇g(x+w)−∇g(x)|2
)

+ α Ψ
(

|∇w|2
)

)

dxdy , (1)

where ∇ = (∂x,∂y)
⊤ and |∇w|2 := |∇u|2+ |∇v|2 denotes the squared magnitude

of the spatial flow gradient. The first term of E (w) is the data term. It models

the constancy of the image brightness and the spatial image gradient along the

displacement trajectories. These two constraints combined provide robustness

against varying illumination, while their implicit formulation (no linearisation)

makes it possible to deal with the large displacements that are usually present in

wide baseline stereo. The second term in the functional is the smoothness term,

which penalises deviations of the flow field from piecewise smoothness. For the

function Ψ the regularised L1 penaliser

Ψ(s2) =
√

s2+ ε2 , (2)

is chosen, with ε = 10−3 a small constant. In the case of the smoothness term this

equals total variation (TV) regularisation.

The energy functional (1) is minimised via a warping strategy as described in [14].

The flow is incrementally refined on each level of a multi-resolution pyramid such

that the algorithm does not easily get trapped in a local minimum. Moreover, we

followed the multigrid framework suggested in [15] to speed up the computation

of the resulting nonlinear systems of equations. To be able to use RGB colour im-

ages we consider a multichannel variant of energy (1) where the 3 colour channels

are coupled in the data term as follows:

∫

Ω
Ψ

(

3

∑
i=1

|gi(x+w)−gi(x)|
2+ γ ·

3

∑
i=1

|∇gi(x+w)−∇gi(x)|
2

)

dxdy . (3)

Once the optical flow w has been computed, we establish a set of matches by

determining for every point (x,y)⊤ in the left image the corresponding point (x+
u,y+ v)⊤ in the right image. In practice we do this at the discrete pixel locations,

resulting in a finite number of matches. We exclude points that are warped outside
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the image domain by the optical flow because the data term cannot be evaluated

in these regions, leading to less reliable correspondences.

While the method above serves as our baseline algorithm for obtaining dense op-

tical flow fields, we will also use a more sophisticated optical flow method in our

experiments in Section 6. It goes back to [92] and uses constraint normalisation

in the data term and a specific anisotropic smoothness term that works in a way

that is complementary to the data term.

2.2 The 8-point Algorithm of Longuet-Higgins

The fundamental matrix of a stereo pair is a 3×3 matrix of rank 2 that is defined

up to a scaling factor. It can be computed from image correspondences by means

of the epipolar constraint. The epipolar constraint between a given point x̃ =
(x,y,1)⊤ in the left image and its corresponding point x̃′ = (x′,y′,1)⊤ in the right

image can be rewritten in the form [22]

0= x̃′⊤F x̃= s⊤f , (4)

with the two 9 dimensional vectors s and f defined as

s =
(

xx′, yx′, x′, xy′, yy′, y′, x, y, 1
)⊤

, (5)

f = ( f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, f3,3)
⊤

. (6)

The tilde superscript indicates that we are using projective coordinates and the

entries of the fundamental matrix F are denoted by fi, j, with 1 ≤ i, j ≤ 3. Since

the 9 components of f are defined up to a scale factor, 8 point matches are in

general sufficient to uniquely determine a solution from Eq. (4). In practice, point

matches are not exact and the entries of F can be estimated more robustly from

n≥ 8 correspondences by minimising the energy

E (f) =
n

∑
i=1

(s⊤i f)
2 = ‖Sf‖2 , (7)

where S is an n× 9 matrix with rows made up of the constraint vectors s⊤i , 1 ≤
i ≤ n. Minimising the energy (7) is equivalent to finding a least squares solution

to the overdetermined homogeneous system Sf = 0. We can avoid the trivial so-

lution f = 0 by imposing an explicit constraint on the Frobenius norm, such as

‖F‖2Frob = ‖f‖2 = 1. The solution of this total least squares (TLS) problem is

the eigenvector that belongs to the smallest eigenvalue of S⊤S. This simple algo-

rithm is known in literature as the 8-point algorithm [42] and can be implemented

numerically with the help of the Jacobi method [27].
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2.3 Dense Fundamental Matrix Estimation

If we use point matches that have been established by optical flow we expect that

there will be outliers due to noise, occlusions and illumination changes that have

not been modelled (e.g. reflections and transparencies). To account for this we

estimate the fundamental matrix with a robust version of the 8-point algorithm.

This is done by replacing the quadratic penalisation in the energy (7) by another

function of the residual

E (f) =
n

∑
i=1

Ψ
(

(s⊤i f)
2
)

, (8)

where Ψ(s2) is a positive, symmetric and in general convex function in s that

grows sub-quadratically. We choose for our approach the regularised L1 norm (2).

Applying the method of Lagrange multipliers to the problem of minimising the

energy (8) under the constraint ‖f‖2 = f⊤f = 1 means that we are looking for

critical points of the function

F (f ,λ ) =
n

∑
i=1

Ψ
(

(s⊤i f)
2
)

+λ (1−f⊤f) . (9)

Setting the derivatives of F (f ,λ ) with respect to f and λ to zero yields the

nonlinear problem

0 =

(

n

∑
i=1

Ψ′
(

(s⊤i f)
2
)

sis
⊤
i −λ I

)

f , (10)

=:
(

S⊤W (f)S−λ I
)

f , (11)

0 = 1−‖f‖2 . (12)

In the above formula W is an n× n diagonal matrix with positive weights wi,i =
Ψ′

(

(s⊤i f)
2
)

. To solve this nonlinear system we follow a lagged iterative scheme

in which we fix the symmetric positive definite system matrix S⊤WS for the cur-

rent estimate f k. This results in an eigenvalue problem that is solved in the same

way as the standard 8-point algorithm to obtain the updated solution f k+1. By

repeating this process, the solution is successively refined in a reweighted total

least squares (RTLS) sense [76, 33, 22]. Because the calculation of the weights

wi,i requires an estimate of the fundamental matrix and vice versa, we use the

standard 8-point algorithm to obtain an initial estimate.
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2.4 Data Normalisation and Rank Enforcement

The 8-point algorithm is not invariant to similarity transformations, such as trans-

lation, rotation and scaling of the image coordinates. At the same time the eigen-

value problem is poorly conditioned because of the different orders of magnitude

of the projective coordinates. It is therefore essential that all points are expressed

in a fixed coordinate frame prior to the application of the 8-point algorithm. Hart-

ley [31] proposes a data normalisation that translates and scales the points x̃i and

x̃′
i, 1 ≤ i ≤ n, by the affine mappings T and T ′, such that T x̃i and T ′x̃′

i have the

projective coordinate (1,1,1)⊤ on average. The epipolar constraint can be rewrit-

ten in terms of the normalised coordinates as

x̃′⊤T ′⊤F̂ T x̃= ŝ⊤ f̂ , (13)

where f̂ is the vector notation of the fundamental matrix F̂ of the transformed

data. It has to be noted that the solution of the 8-point algorithm for the normalised

data corresponds to a transformed energy and that a fundamental matrix for the

original data can be recovered as F = T ′⊤ F̂ T .

A second issue posed by the method described here concerns the rank of F . The

solution of the 8-point algorithm will in general not satisfy the singularity con-

straint, such that it is common to perform a rank enforcement step after the esti-

mation. This can be done by replacing the solution with the closest rank 2 matrix

using e.g. singular value decomposition (SVD) [77]. In our robust 8-point algo-

rithm we use SVD to enforce the rank of the final estimate before the denormali-

sation step.

3 Feature Based Methods for Comparison

We compare the estimation of the fundamental matrix from optical flow with up

to twelve variants of feature based techniques that are frequently encountered in

literature. Based on the distance measure that is being minimised, we divide them

in two different classes. The first class minimises the distance of a point to its

corresponding epipolar line, while the second class minimises the so-called re-

projection error in a Maximum Likelihood (ML) framework. We will refer to the

first class of feature based technique as method class F1 and to the second class

of feature based techniques as F2. In the following we will give a short overview

of the different steps that make up these two classes.

3.1 Feature Extraction and Matching

Under feature or interest point extraction one traditionally understands the selec-

tion of a sparse set of image locations with distinctive neighbourhood information.
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Classical examples of features are edges [48, 17] and corners [30]. Once a cer-

tain number of interest points has been extracted in both images, correspondences

must be established between them, a process formally known as feature matching.

To obtain a sparse set of feature correspondences for our comparison, we apply

two widely used feature matching algorithms. The first one, known as the Scale

Invariant Feature Transform (SIFT) [43], identifies locations of interest in scale

space and associates with each of them a high dimensional descriptor vector. This

vector representation is designed to be invariant with respect to scale and rotation

and partially invariant with respect to affine distortions and illumination changes.

As a result, a set of distinctive image features is obtained that can be matched cor-

rectly with high probability by means of a nearest neighbour search in descriptor

space. Comparative studies by Mikolajczyk and Schmid [51] have repeatedly put

forward SIFT as one of the most accurate local matching algorithms to date.

While SIFT has become a well accepted standard for stereo matching and ob-

ject recognition, it may be outperformed in small-baseline scenarios by methods

that are specifically tailored to small displacements. To account for these cases,

we consider as a second feature matching algorithm the Kanade-Lucas-Tomasi

tracker (KLT) [44, 75]. The KLT algorithm looks for local maxima of the eigen-

values of the structure tensor [25] and tries to detect the same features in the

second image by minimising the intensity difference over a small local neigh-

bourhood. While KLT feature extraction is closely related to the detection of

other points of interest, such as Harris corners, the tracking mechanism basically

solves a sparse optical flow problem.

3.2 Inlier Selection and Initialisation

The number of feature correspondences that is returned by a matching algorithm

is generally controlled by thresholding a quality measure, such as the distance

ratio between the first and the second nearest neighbour for SIFT descriptors

and the smallest eigenvalue of the structure tensor for KLT features. Choosing

the threshold less strict often guarantees a larger number of tentative correspon-

dences, but at the same time increases the portion of false matches that have an

adverse effect on the estimation of the fundamental matrix. Two robust techniques

that are frequently used in computer vision to reduce the influence of such gross

outliers are the Random Sampling Consensus (RANSAC) [23] and the Least Me-

dian of Squares (LMedS) [59]. In contrast to other robust methods that include

as many correspondences as possible, RANSAC and LMedS repeatedly estimate

the fundamental matrix from randomly sampled minimal data sets in a so-called

hypothesize-and-verify framework. RANSAC ultimately selects the solution that

is consistent with the largest number of correspondences by comparing the dis-

tance measure with a fixed inlier threshold t. LMedS, on the other hand, retains
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the estimate for which the median of the squared distances is minimum over all

samples.

In the last decade several extensions have been proposed to improve the perfor-

mance of random sampling algorithms. Hereby the focus has been primarily on

RANSAC due to its capability of dealing with a large proportion of mismatches.

To incorporate the current state of the art, we consider in this work two such

RANSAC extensions.

The first one has been proposed by Chum et al. [19] to reduce the influence of

noise in the correspondence data and simultaneously achieve a speed-up over the

theoretical number of samples that has to be drawn. It consists of performing

a local optimisation (LO) step for each estimated fundamental matrix that has a

larger support than all hypotheses generated so far. The LO-step comes down to

applying a fixed number of inner RANSAC iterations that only draw samples from

the current set of inliers. This will generally produce an improved hypothesis that

will meet the termination criterion more rapidly.

The same authors propose a second extension to classical RANSAC for overcom-

ing the ambiguity in the estimation process that can occur when the majority of

points lie in a dominant plane. Chum et al. [20] showed that if five or more

correspondences of the minimal sample are related by a planar homography, the

estimated epipolar geometry can be wrong, yet consistent with a high number

of correspondences. For such degenerate configurations their DEGENSAC al-

gorithm simultaneously estimates a fundamental matrix and a homography and

uses model selection to choose the correct solution. Concretely this is done by

sampling correspondences that are outliers to the homography and estimating the

fundamental matrix by means of the plane-and-parallax algorithm [33].

Both extensions described here are implemented as nested RANSAC loops and

are easily combined for improved robustness.

3.3 Minimisation of a Geometric Distance Measure

Method Class F1: Minimisation of the Epipolar Distance. As a geometrically

meaningful distance measure that does not depend on the scale of F , Luong and

Faugeras [45] and Faugeras et al. [22] propose to minimise the squared epipolar

distance over all n inliers.

EF1(F) =
n

∑
i=1

(

d2(x̃′
i,Fx̃i)+d2(x̃i,F

⊤x̃′
i)
)

. (14)

Here d(x̃, l) denotes the Euclidean (geometric) distance between a point x and

a line l in the image plane. The epipolar distance measures how far a point lies

from the epipolar line of the corresponding point. The epipolar lines have to be
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considered in both images, and definition (14) of the epipolar distance ensures

that the measure is symmetric.

The epipolar distance equals a local weighing of the epipolar constraint. As pro-

posed in [76], we minimise the energy (14) subject to the constraint ‖F‖2Frob = 1,

which comes down to an iteratively reweighted total least squares solution that is

similar to the one of Eq. (11)-(12). We further reduce the effects of remaining out-

liers by including a statistical weighing of the epipolar distance by the tri-weight

function as proposed by Huber in the context of M-estimators [35, 22, 76, 70]:

h(s) =











1 |s| ≤ σr

σr/|s| σr < |s| ≤ 3σr

0 3σr < |s|

, (15)

where the robust standard deviation σr is estimated via the error median as pro-

posed by Rousseeuw and Leroy [59]. The fundamental matrix is initialised by

the estimate provided by the random sampling algorithm and the rank of the final

solution is enforced by SVD.

Method Class F2: Minimisation of the Reprojection Error. Hartley and Zis-

serman [33] propose to minimise the squared reprojection error over all n inliers:

EF2(P
′,X1, . . . ,Xn) =

n

∑
i=1

(

d2(x̃i,PX̃i)+d2(x̃′
i,P

′X̃i)
)

, (16)

where d(x̃, x̃′) denotes the Euclidean distance between the two inhomogeneous

points x and x′. In the above definition P and P′ are the 3×4 camera projection

matrices for the left and the right image and Xi, 1≤ i≤ n, are the 3D points that

are reconstructed from the matching feature pairs. The two projections PX̃ and

P′X̃ can be regarded as the most likely true positions of a given pair of points

x̃ and x̃′ if the measurement errors are assumed to be independent and Gaussian

distributed. The ML estimate of F is obtained as the rank 2 matrix that exactly

satisfies the epipolar constraint

(P′X̃i)
⊤F (PX̃i) = 0, ∀i . (17)

By choosing P = (I , 0), with identity matrix I, the fundamental matrix will be

parameterised by the 12 entries of P′, which automatically ensures the singular-

ity constraint. Together with the 3 degrees of freedom for every 3D point, this

brings the total number of variables to 3n+ 12. We minimise the highly nonlin-

ear energy (16) over the motion parameters P′ and the structure parameters Xi,

1 ≤ i ≤ n, by means of the iterative Levenberg-Marquardt algorithm [41, 47].
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The Levenberg-Marquardt algorithm smoothly shifts between a gradient descent

method, that can always be applied far from the minimum, and a Gauss-Newton

method, that assures fast convergence in a small neighbourhood. This is achieved

by effectively augmenting the Hessian of the error function with a factor that con-

trols the transition between these two extremes. Because the Hessian has a sparse

block structure, we used the sparse Levenberg-Marquardt algorithm described in

[33] as the basis for our implementation. We additionally weigh the reprojection

error by the tri-weight function (15) to reduce the effects of remaining outliers.

The fundamental matrix is initialised by the estimate provided by the random

sampling algorithm.

3.4 Inlier Refinement

After the fundamental matrix has been estimated by method classes F1 or F2, we

reclassify the correspondences in inliers and outliers by a selection criterion that

is similar to the one used in RANSAC. We chose the inlier threshold t based on

the robust standard deviation [59] of the current set of inliers and reclassify and

re-estimate the fundamental matrix until the number of inliers converges.

4 Evaluation of Optical Flow Based Fundamental

Matrix Estimation

In our first experimental section we compare the performance of our dense optical

flow based method with the two sparse feature based method classes F1 and F2.

In different tests we compute the epipolar geometry of real-world image pairs that

have been selected from several multiview stereo databases. All images in the

databases have been calibrated by conventional techniques such that the ground

truth fundamental matrix is known for each image pair. To assess the quality of

the results, we evaluate the symmetric error between the estimated fundamental

matrix and the ground truth according to Zhang [91] and Faugeras et al. [22]. This

error measure is computed by using one matrix to randomly create a large number

(100000) of correspondences and the other matrix to establish their epipolar lines.

After the distances between the points and the lines have been computed, the roles

of the two matrices are reversed to obtain a symmetric measure that describes the

average deviation between two epipolar geometries in pixel units. In the following

we denote the corresponding error by dF .

For SIFT matching, we use the implementation of David Lowe 1 and only con-

sider effective SIFT matches by removing feature pairs that have the same image

1available at http://www.cs.ubc.ca/˜lowe/keypoints/
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locations but different histogram orientations. To extract KLT features, we use

publicly available code 2 that is based on the affine tracking algorithm described

by Shi and Tomasi [66]. SIFT and KLT are applied to each image pair, but results

are only listed for the best performing feature sets. Similarly, we either apply

RANSAC or LMedS for the inlier selection, depending on which random sam-

pling technique gives the best result in combination with the distance measures

minimised by F1 and F2. For both random sampling algorithms we choose a min-

imal sample size of 7 and use the 7-point algorithm [33] to generate hypotheses

for F . We additionally assure that the sampled points lie scattered enough over the

whole image to avoid unstable estimates. For RANSAC we estimate the number

of samples adaptively as described by Hartley and Zisserman [33] and use a fixed

inlier threshold t between 0.5 and 1 pixels. This works well in practice because the

distance measures minimised by F1 and F2 can be interpreted as geometrical dis-

tances in the image plane. If degeneracy is suspected, we apply the DEGENSAC

variant. Both standard RANSAC and DEGENSAC are equipped with a LO-step

for local model optimisation. The number of samples for LMedS normally re-

quires an estimate of the proportion of outliers. Following Faugeras et al. [22],

choosing an iteration number of 2000 allows us to deal with the maximum percent-

age (50%) of outliers. Due to the random nature of both RANSAC and LMedS,

we run the feature based methods F1 and F2 for 100 consecutive times with con-

stant settings and present the average of the error dF over all test runs.

Our evaluation includes indoor sequences that have been captured under lab con-

ditions, as well as outdoor sequences with varying illumination and large relative

motion. All images are corrected for radial distortion. The indoor image pairs

depict objects against a homogeneous black background, which we exclude from

the estimation by detecting the object silhouette with a Chan-Vese segmentation

technique [18]. For a fair comparison with the feature based methods, we run our

optical flow based method for a fixed set of default parameters, that are given by

α = 20.0, γ = 20.0 and σ = 0.9. To visualise the epipolar geometries, we draw

the epipolar lines that are estimated for the default settings of our optical flow

based method and the epipolar lines that are estimated from a representative set of

inliers for the feature based methods. By a representative set of inliers, we denote

a set of feature correspondences for which the error dF lies close to (i.e. does not

deviate more than 0.1 pixels from) the average error of F1 or F2. We only draw

the epipolar lines for a set of meaningful points in the left and the right image. For

the left image these are 8 feature points from the representative set of inliers. For

the right image these are either the corresponding features or the pixel locations

warped by the optical flow.

2available at http://www.ces.clemson.edu/ stb/klt/
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Table 1: Overview of the settings for the feature extraction. We list the type of

feature used (SIFT/KLT), the ratio of distances of the first and second neighbour

in SIFT descriptor space (ratio) and the total number of matches (# match). For

KLT we used the standard settings provided in the publicly available code.

Image Pair feature extraction

sequence frames type ratio # match

DinoRing 24 - 25 KLT - 737

Entry-P10 1 - 0 SIFT 0.80 979

TempleRing 13 - 14 SIFT 0.90 627

Herz-Jesu-P25 5 - 6 SIFT 0.90 945

City-Hall 1 - 2 SIFT 0.90 1502

Table 2: Overview of the settings of the feature based estimation methods tech-

niques F1 and F2. We list the type of random sampling algorithm (randsam), the

applied RANSAC threshold t (thresh) and the average number of inliers (# inl)

over 100 test runs.

Image Pair F1 F2

sequence frames randsam thresh # inl randsam thresh # inl

DinoRing 24 - 25 LORANSAC 0.5 587 LORANSAC 0.5 585

Entry-P10 1 - 0 DEGENSAC 1.0 749 DEGENSAC 1.0 743

TempleRing 13 - 14 LORANSAC 0.8 468 LORANSAC 0.8 464

Herz-Jesu-P25 5 - 6 LMedS - 663 LMedS - 667

City-Hall 1 - 2 LORANSAC 1.0 1096 LORANSAC 1.0 1092

Table 3: Overview of the error dF for our optical flow based method and the

average error for the feature based methods F1 and F2 over 100 test runs. The

best results are highlighted in bold face.

Image Pair Our Method F1 F2

DinoRing 0.717 3.865 3.429

Entry-P10 2.448 3.530 4.611

TempleRing 0.151 0.810 0.881

Herz-Jesu-P25 3.227 1.139 3.021

City-Hall 7.349 1.236 1.159
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4.1 Low Texture

In our first experiment we compute the epipolar geometry of frames 24 and 25

of the DinoRing 3 multiview data set [64]. Both images have a resolution of

640×480, with a maximum displacement of 26 pixels, while the depicted scene is

characterised by the absence of texture. For default settings, our optical flow based

method obtains an error dF of 0.717, which is well within sub-pixel precision.

This result is listed in Table 3, together with the errors obtained by the feature

based methods. The settings for the feature based estimation methods F1 and F2

are summarised in Table 2 for all image pairs in this section.

Whereas optical flow based methods benefit from the filling-in effect of the smooth-

ness term in homogeneous regions, insufficient texture often poses a challenge to

feature extraction, such as SIFT, which is unable to find a sufficient amount of

features in the DinoRing images. The number of features tracked by the KLT

algorithm for this sequence is much larger, but their quality is insufficient to ren-

der the results for F1 and F2 sub-pixel precise. We can conclude from Table 3

that the KLT features suffer from poor localisation, as the average performance

of the feature based techniques is worse than our method. The flow field for the

default settings of our method is shown in Fig. 1 (a). For the visualisation we use

the colour code depicted in Fig. 2 (a), where colour encodes the direction of the

flow and brightness the magnitude. In the estimated optical flow we can distin-

guish occlusion artifacts near the tail of the dinosaur model but their influence on

the fundamental matrix estimation is reduced by the proposed robust L1 penalisa-

tion. Fig. 1 further shows a set of inliers and the corresponding epipolar geometry

representing the best average feature based result.

4.2 Near-Degeneracy and Repetitive Structures

A scenario that frequently occurs in stereo vision is that the majority of corre-

spondences lie in the same plane, such as in the case of a dominant plane or when

features are primarily extracted on a planar surface. A random sampling algo-

rithm that is based on the 7- or 8-point algorithm can then produce a consensus

set of coplanar inliers [20, 26]. This set is called degenerate because it does not

provide enough constraints to uniquely compute the fundamental matrix [33]. For

degenerate configurations, it is crucial that a sufficient number of out-of-plane

inliers are selected to overcome this ambiguity and this requires to take special

care in the case of sparse feature based methods. Optical flow, on the other hand,

will likely include a larger amount of out-of-plane correspondences due to its

dense and global nature. This will then provide the necessary constraints for the

3available at http://vision.middlebury.edu/mview/data/
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Figure 1: Results for DinoRing within the object silhouette. Top Row: (a) The

optical flow between frames 24 and 25. (b) + (c) The epipolar geometry estimated

from the optical flow for frames 24 and 25. Points are depicted as red crosses, their

corresponding estimated epipolar lines as full white lines and their corresponding

ground truth lines as dotted white lines. Bottom Row: (d) A representative set of

587 inliers for F2. The correspondences are drawn on frame 24 as lines connecting

the matched features. (e) + (f) The epipolar geometry estimated from these inliers.
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Figure 2: Left: (a) Colour circle. Right: (b) Histogram for the Entry-P10 data

set for F1 in combination with SIFT–LORANSAC.

8-point algorithm in a natural way. We illustrate this intrinsic robustness by es-

timating the epipolar geometry of frames 1 and 0 of the Entry-P10 4 multiview

data set [73]. This image pair depicts the facade of a building with a balcony

as the only out-of-plane element. To ensure realistic image sizes for our optical

flow based technique, we test all estimation methods on 640×427 versions of the

original 3072×2048 images.

If we take a look at the histogram of dF for the method F1 in Fig. 2, we can clearly

distinguish a pronounced mode that is centred between 3 and 4. This mode corre-

sponds to about 50% of the 100 LORANSAC test runs that predominantly select

the inliers within the plane of the facade. The middle row of Fig. 3 shows such

a degenerate set of inliers and the corresponding estimated epipolar lines. These

are wrongly estimated as the vanishing lines of the facade. A similar sensitivity

to degeneracy was also observed for LMedS. Applying the robust DEGENSAC

algorithm improves the performance of the feature based methods only slightly,

as the results in Table 3 show. The reason for this, is the large amount of in-

plane outliers that arise from mismatched repetitive structures such as windows.

These outnumber the out-of-plane inliers such that model verification based on the

amount of support tends to fail, even when the planar homography is estimated

correctly. As an illustration, a set of non-degenerate inliers for F2 is depicted in

the bottom row of Fig. 3, together with the outliers and the planar homography

estimated by DEGENSAC. For default settings, our optical flow based method

performs better than the feature based methods, but the error is not sub-pixel due

to the disturbing occlusion in the lower right corner. The flow field and the cor-

responding estimated epipolar geometry are shown in the top row of Fig. 3. The

4available at http://cvlab.epfl.ch/˜strecha/multiview/denseMVS.html
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Figure 4: Results for TempleRing within the object silhouette. Top Row: (a) The

optical flow between frames 13 and 14. (b) + (c) The epipolar geometry estimated

from the optical flow. Bottom Row: (d) A representative set of 466 inliers for F1.

(e) + (f) The epipolar geometry estimated from these inliers.

balcony is clearly visible and the estimated epipolar lines are closer to ground

truth than the feature based results. In the next section we will improve upon this

result and obtain a sub-pixel error.

4.3 Sufficient Texture and No Degeneracy

For the remainder of our comparison we have selected three image pairs that do

not suffer from degeneracy or a lack of texture. First we compute the fundamental

matrix for frames 13 and 14 of the TempleRing 5 sequence. In Table 3 we ob-

serve that all estimation methods achieve sub-pixel precision, but that our optical

flow based method performs best with an error of only 0.151 pixels for default

parameters. This is well below the average error of both feature based methods.

5available at http://vision.middlebury.edu/mview/data/
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Figure 5: Results for Herz-Jesu-P25. Top Row: (a) The optical flow between

frames 5 and 6. (b) + (c) The epipolar geometry estimated from the optical flow.

Bottom Row (d) A representative set of 664 inliers for F1. (e) + (f) The epipolar

geometry estimated from the inliers.

Figure 6: Results for City-Hall. Top Row: (a) The optical flow between frames

1 and 2. (b) + (c) The epipolar geometry estimated from the optical flow. Bot-

tom Row (d) A representative set of 1089 inliers for F2. (e) + (f) The epipolar

geometry estimated from the inliers.
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Fig. 4 shows the estimated optical flow within the model silhouette and the corre-

sponding epipolar geometry. It can be observed that the epipolar lines practically

coincide with the ground truth. A representative set of inliers and the correspond-

ing feature based result are shown as well.

Next we consider 640× 427 versions of frames 5 and 6 of the Herz-Jesu-P25 5

sequence. Contrary to the Entry-P10 data set, the entrances of the building pro-

vide sufficient out-of-plane correspondences to avoid degeneracy. In Table 3 we

observe that our optical flow based method achieves an error of more than 3 pixels

for default parameter settings and is outperformed by both feature based methods.

The optical flow and the corresponding epipolar geometry are shown in Fig. 5,

together with a set of inliers that is representative for the best average feature based

result. For outdoor sequences like this one, matching SIFT correspondences was

overall more accurate than tracking KLT features due to the large apparent mo-

tion. It can be seen in the cobbled stone region of the scene that the large change

in viewpoint also makes matching more difficult for optical flow, causing a dete-

rioration in the flow field at the bottom of the image. This leads to an undesirable

parameter sensitivity for our method and explains the larger error for fixed default

parameters.

We conclude this section with the recovery of the epipolar geometry of frames 1

and 2 of the City-Hall 6 sequence [72]. Despite being scaled down to a resolution

of 640×427, the image pair contains large displacements of more than 85 pixels.

The large apparent motion and the occlusion on the left side of the building distort

the optical flow, which is reflected by the large error of 7.3 for our method. Both

feature based methods perform similar to each other with an average error close

to one pixel. The estimated optical flow, a representative set of inliers and the

corresponding epipolar geometry are shown in Fig. 6.

4.4 Intermediate Conclusions

The previous experiments have shown that the dense estimation of the fundamen-

tal matrix from optical flow can be competitive with classical sparse techniques.

The advantage of dense estimation methods becomes especially apparent in sit-

uations where the sparse features are not well localised or when the inclusion of

a small number of out-of-plane correspondences is crucial in overcoming the de-

generacy problem. On the other hand, we have seen that the optical flow based

method is more sensitive to large displacements and occlusions that are present in

wide baseline stereo images.

6available at http://cvlab.epfl.ch/data/strechamvs/
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5 A Joint Variational Model

So far we have fed a dense optical flow method into a classical approach for es-

timating the fundamental matrix. Let us now investigate how we can achieve

further improvements by coupling optical flow computation and fundamental ma-

trix estimation in a joint model where they influence each other in a beneficial

way. To this end we look at the epipolar constraint not only as a means of fitting

the fundamental matrix to a given set of correspondences, but also as an additional

restriction on the correspondence search.

In this section we present an intuitive way of coupling the computation of the

fundamental matrix and the optical flow by minimising a single functional for

both unknowns. Their simultaneous solution will ensure a scene structure that

is most consistent with the camera motion, and vice versa, resulting in a higher

overall accuracy and a lower parameter sensitivity.

5.1 Integrating the Epipolar Constraint

In order to jointly estimate the optical flow and the fundamental matrix, we pro-

pose to extend the optical flow model of Eq. (1) with an extra term as follows:

E (w,f) =
∫

Ω

(

Ψ
(

|g(x+w)−g(x)|2+ γ · |∇g(x+w)−∇g(x)|2
)

+ α Ψ
(

|∇w|2
)

+ β Ψ
(

(s⊤ f )2
))

dxdy , (18)

and impose the explicit constraint ‖f‖2 = 1. While the first two terms in E (w,f)
are identical to the original model, the third term has been newly introduced to

penalise deviations from the epipolar constraint s⊤f = 0. The vectors s and f

are defined as in Eq. (5) and (6), but this time s is a function of x and w. The

regularised L1 penaliser Ψ reduces the influence of outliers in the computation

of F and the weight β determines to what extent the epipolar constraint will be

satisfied in all points. The constraint on the Frobenius norm of F avoids the trivial

solution. An extension of our functional to RGB-images is obtained by replacing

the data term by its multichannel variant (3).

5.2 Minimisation

To minimise the functional E (w,f) with respect to u, v and f , subject to the

constraint ‖f‖2 = 1, we use the method of Lagrange multipliers. We are looking

for critical points of

F (w,f ,λ ) = E (w,f)+λ (1−f⊤f) , (19)
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i.e. tuples (u∗,v∗,f∗,λ ∗) for which the functional derivatives of the Lagrangian

F with respect to u and v and the derivatives of F with respect to f and λ vanish.

Optical Flow. The Euler-Lagrange equations of the optical flow components u

and v are obtained by setting

∂

∂u
F (w,f ,λ ) = 0 and

∂

∂v
F (w,f ,λ ) = 0 . (20)

To derive them in more detail we write the argument of the epipolar term as a

scalar product involving the optical flow:

s⊤f =





x+u

y+ v

1





⊤

F





x

y

1



 (21)

=





u

v

0





⊤

F





x

y

1



+





x

y

1





⊤

F





x

y

1



 (22)

= au+bv+q . (23)

Here a and b denote the first two coefficients of the epipolar line F x̃ of a point

x̃= (x,y,1)⊤ in the left image,

a= (F x̃)1 and b= (F x̃)2 , (24)

while the quantity q can be interpreted as the distance of x̃ to this epipolar line up

to a scale factor:

q= x̃⊤F x̃ . (25)

With the help of formula (23) we can easily derive the contributions of the epipolar

term in E (w,f) to the Euler-Lagrange equations. The partial derivatives of its

integrand Ψ
(

(s⊤f)2
)

with respect to u and v are

∂

∂u
Ψ
(

(s⊤f)2
)

= 2Ψ′
(

(s⊤f)2
)

(a2 u+abv+aq), (26)

∂

∂v
Ψ
(

(s⊤f)2
)

= 2Ψ′
(

(s⊤f)2
)

(abu+b2 v+bq) . (27)

The contributions from the data term and the smoothness term remain unchanged

with respect to the original model. Thus, we obtain the final Euler-Lagrange equa-

tions of u and v by adding the right hand sides of equations (26) and (27) to the
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Euler-Lagrange equations given in [14]:

0 = Ψ′
(

g2z + γ
(

g2xz+g2yz
))

(gxgz+ γ (gxxgxz+gxygyz))

− α div
(

Ψ′
(

|∇u|2+ |∇v|2
)

∇u
)

+ β Ψ′
(

(s⊤f)2
)

(

a2 u+abv+aq
)

, (28)

0 = Ψ′
(

g2z + γ
(

g2xz+g2yz
))

(gygz+ γ (gyygyz+gxygxz))

− α div
(

Ψ′
(

|∇u|2+ |∇v|2
)

∇v
)

+ β Ψ′
(

(s⊤f)2
)

(

abu+b2 v+bq
)

. (29)

Here we have made use of the same abbreviations for the partial derivatives and

the temporal differences in the data term as in [14]:

g∗ = ∂∗g(x+w), (30)

gz = g(x+w)−g(x), (31)

g∗z = ∂∗g(x+w)−∂∗g(x) , (32)

where ∗ stands for either x,y,xx,xy or yy. The subscript z indicates the occurrence
of a temporal difference in contrast to a temporal derivative.

Fundamental Matrix. To solve for the fundamental matrix we have to set

∇f F (w,f ,λ ) = 0 and
∂

∂λ
F (w,f ,λ ) = 0 , (33)

where ∇f stands for the gradient operator (∂ f1,1 , . . . ,∂ f3,3)
⊤. To differentiate the

Lagrangian F with respect to f , we only have to consider the newly introduced

epipolar term since neither the data term nor the smoothness term depends on f .

Equations (33) then give rise to the eigenvalue problem

0 =

(

∫

Ω
Ψ′

(

(s⊤f)2
)

ss⊤ dxdy−λ I

)

f , (34)

=: (M−λ I)f , (35)

0 = 1−‖f‖2 . (36)

Note that we were able to switch the order of differentiation and integration be-

cause f is a constant over the domain Ω. The system matrix M is symmetric
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positive definite and its entries are the integral expressions

mi, j =
∫

Ω
Ψ′

(

(s⊤f)2
)

sis j dxdy , (37)

with 1≤ i, j ≤ 9 and si being the i-th component of s.

5.3 Solution of the System of Equations

The system of equations (20) and (33) is solved by iterating between the optical

flow computation and the fundamental matrix estimation. The Euler-Lagrange

equations (28) and (29) are first solved for w with a current estimate of the fun-

damental matrix. Using the computed optical flow, we then compose the system

matrixM and solve the eigenvalue problem (35)-(36) for f . Due to the constraint

(36) the solution will always be of unit norm. The new estimate of the fundamen-

tal matrix will in turn be used to solve the Euler-Lagrange equations again for the

optical flow. This process is repeated until convergence. To initialise the funda-

mental matrix we compute it in the first iteration step from pure optical flow as

proposed in the previous section. Our model does not explicitly enforce the singu-

larity constraint of F and therefore its rank is not enforced in the iterative process.

The Euler-Lagrange equations are solved by a coarse-to-fine warping strategy in

combination with a multigrid solver [15], while Equation (35) is solved as a series

of linear eigenvalue problems as described in Section 2. In practice we exclude

points from the estimation process that are warped outside the image by the optical

flow.

5.4 A Joint Model with Data Normalisation

Data normalisation, as discussed in Section 2.4, dramatically improves the condi-

tioning of the eigenvalue problem and is essential for obtaining an accurate esti-

mate of the fundamental matrix. It consists of replacing each point x̃= (x,y,1)⊤

in the left image and its corresponding point x̃′ = (x+ u,y+ v,1)⊤ in the right

image by the transformed points T x̃ and T ′x̃′. The normalisation transformations

T and T ′ are composed of a translation and a scaling such that the normalised

coordinates are of the same order.

It is highly desirable that this normalisation step is integrated into our energy func-

tional (18). To this end we express the epipolar term in function of the normalised

fundamental matrix with the help of Eq. (13). This leads to a joint variational
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model with data normalisation:

E (w, f̂) =
∫

Ω

(

Ψ
(

|g(x+w)−g(x)|2+ γ · |∇g(x+w)−∇g(x)|2
)

+ α Ψ
(

|∇w|2
)

+ β Ψ
(

(ŝ⊤ f̂ )2
))

dxdy , (38)

By imposing the constraint ‖f̂‖2 = 1 and by applying the method of Lagrange

multipliers we obtain a similar eigenvalue problem as (35) - (36), which can be

solved for the normalised fundamental matrix F̂ . For the computation of the op-

tical flow from energy (38), however, we have to take into consideration that the

vector ŝ is now not only a function of x and w, but also of the normalisation

transformations T and T ′. It is important to note here that in the approach of

Hartley [31] each normalisation transformation depends on the set of points that

has to be normalised. Because the set of correspondence points in the left image

consists of the pixels of the rectangular image domain Ω, T is a constant mapping

that only depends on the image size. The transformation T ′, on the other hand,

normalises the warped pixel coordinates and thus depends on the optical flow w.

To avoid derivatives of T ′ with respect to u and v in the Euler-Lagrange equations,

we replace T ′ with a constant transformation. As a result, the Euler-Lagrange

equations do not change under the normalisation step and thus remain the same

as those presented in Eq. (28) and (29). We further assume that the normalising

transformations for the left and right correspondences are similar, such that we can

choose T ′ = T . Experiments have shown that this approximation has only a minor

influence on the results compared to the approach of Hartley [31]. The solution of

the system of equations is done iteratively, as explained in Section 5.3, by solving

the eigenvalue problem for F̂ and using the fundamental matrix F = T⊤ F̂ T to

solve the Euler-Lagrange equations for w.

6 Evaluation of the Joint Method

In our second experimental section we assess the performance of our joint vari-

ational method by evaluating the fundamental matrix estimation and the optical

flow computation separately. We recover the epipolar geometry of the image

pairs of Section 4 and present results for the afore mentioned fixed default set-

tings (α = 20.0, γ = 20.0 and σ = 0.9). To judge the quality of the optical flow

computation, we use stereo pairs from the Middlebury optical flow database for

which the ground truth is publicly available. We evaluate the estimated optical

flow by means of the average angular error (AAE) [7] and the average endpoint

error (AEE) [6].
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Table 4: Overview of the error dF for 30 iterations of our joint variational method

and the average error for the feature based methods F1 and F2 over 100 test runs.

The best results are highlighted in bold face.

Image Pair Our Method F1 F2

DinoRing 1.175 3.865 3.429

Entry-P10 0.645 3.530 4.611

TempleRing 0.274 0.810 0.881

Herz-Jesu-P25 0.502 1.139 3.021

City-Hall 1.002 1.236 1.159

6.1 Fundamental Matrix

We first demonstrate the convergence behaviour of our iterative minimisation

strategy. To this end we recover the epipolar geometry of the Herz-Jesu-P25 and

City-Hall image pairs with our joint estimation method for the default parameter

settings. The first row of Fig. 7 and Fig. 8 shows the estimated epipolar lines after

the first iteration step. These geometries correspond to the error dF that has been

listed before in Table 3 for the respective image pairs. The second row of these

figures shows how these initial estimates are readjusted after 30 iterations to al-

most coincide with the ground truth. These geometries correspond to the errors

that can be found in Table 4. We additionally observe that the simultaneous recov-

ery of the optical flow and the epipolar geometry has led to a visual improvement

of both flow fields. This is most apparent in the occluding side of the building in

the City-Hall sequence.

We found empirically that the value of the weight β mainly has an influence on the

convergence speed and to a much lesser extend on the final error. In combination

with the default settings we used β = 40, for which we obtained convergence

within 10 iteration steps for all image pairs. If we compare the results of Table 4

with those of Table 3, we see that our joint estimation method has improved the

accuracy substantially for all outdoor sequences. At the same time our method

performs better on average than both feature based methods for all image pairs.

For 3 out of 5 data sets our results are within sub-pixel precision. We make the

remark here that our joint method converges towards an optical flow that is most

consistent with the estimated fundamental matrix. While this will generally result

in a more accurate epipolar geometry than the purely optical flow based estimates

of the previous section, the errors for DinoRing in Table 3 and Table 4 illustrate

that this is not always true.

To demonstrate the scalability of our results, we present the error dF for the full
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(3072×2048) and half (1536×1024) resolution images of the Strecha data base.

These are shown in Table 5, together with the outcome for the quarter size (640×
427) versions. We compare our results with those achieved by the feature based

methods, for which we chose the same settings as in Table 2. We see that the errors

for the full resolution images scale well for our method. For the half resolution

versions we even obtain sub-pixel precision. For the feature based methods, the

inlier ratios of the different sequences stayed roughly the same for all image sizes.

The absolute number of inliers for Entry-P10 and Herz-Jesu-P25 (≈ 3270 and

≈ 1520 respectively for full resolution) did, however, not scale with the image

size. The good results of F1 for the full resolution Herz-Jesu-P25 sequence can

therefore mainly be attributed to an increased precision of the feature locations.

For the half resolution images of the City-Hall sequence, the absolute inlier count

scaled significantly with the image size (≈ 4304) and this helped in achieving a

lower feature based error.

Table 5 additionally lists run time information for our joint method. For the quar-

ter size images, one iteration of our alternating minimisation requires about 30 s,

which is almost exclusively spent on the optical flow computation. For the half

size images this grows to approximately 170 s. The total run time of the feature

based methods with adaptive RANSAC ranges from less than 10 s for quarter size

images to more than 150 s for half size images, depending on the amount of fea-

tures and the minimised distance measure. Here, the run time is dominated by

feature extraction and matching. In order to speed up the run time of our method,

several options exist. First of all, we require significantly less than 30 iterations to

converge to an accurate solution. This allows us to reduce the number of iterations

drastically. Secondly, variational optical flow computation can be parallelised ef-

ficiently on recent graphical hardware. According to [28], the run time for a GPU

implementation of the advanced method of Zimmer et al. [93] is less than 1 s

for quarter size images and less than 2.5 s for images of half size. If we assume

convergence within 10 iterations, the total run time of a parallel implementation

of our baseline method would thus be around 10 s and 30 s, respectively. For the

full size images, run times are prohibitively large and memory requirements make

the execution on current GPUs infeasible.

6.2 Optical Flow

In a second set of experiments we provide evidence that the concept of simultane-

ously recovering the correspondences and the epipolar geometry can improve the

optical flow computation. First we use our joint estimation method to compute the

optical flow between frames 8 and 9 of the Yosemite sequence 7 without clouds.

7available at http://www.cs.brown.edu/people/black/images.html
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Table 5: Overview of the error dF for the quarter (640×427), half (1536×1024)

and full (3072× 2048) resolution versions of the outdoor image pairs for 30 it-

eration steps of our joint variational method and for 100 test runs of the feature

based methods F1 and F2. The best results are highlighted in bold face. The cor-

responding run time (in seconds) of our method on a machine with a 1862MHz

Intel Core2 CPU is given in the last column.

Image Our Run

Size
Image Pair

Method
F1 F2

Time

Entry-P10 0.645 3.530 4.611

quarter Herz-Jesu-P25 0.502 1.139 3.021 880

City-Hall 1.002 1.236 1.159

Entry-P10 0.400 7.062 10.094

half Herz-Jesu-P25 0.977 1.940 4.393 5190

City-Hall 0.657 0.591 0.600

Entry-P10 1.957 10.142 19.165

full Herz-Jesu-P25 2.404 2.149 7.997 > 8 h

City-Hall 1.305 2.011 2.102

Figure 7: Results for Herz-Jesu-P25 Top Row: (a) The optical flow between

frames 5 and 6 after 1 iteration step. (b) + (c) The corresponding epipolar geom-

etry. Bottom Row (d) The optical flow between frames 5 and 6 after 30 iteration

steps. (e) + (f) The corresponding epipolar geometry.
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Figure 8: Results for City-Hall. Top Row: (a) The optical flow between frames

1 and 2 after 1 iteration step. (b) + (c) The corresponding epipolar geometry.

Bottom Row (d) The optical flow between frames 1 and 2 after 30 iteration steps.

(e) + (f) The corresponding epipolar geometry.

This classical sequence of size 316×252 actually depicts a static scene captured

by a moving camera and therefore forms a stereo pair. Table 6 shows that we are

able to improve the AAE from 1.59◦ for standard optical flow to 1.15◦. This ranks

us among the best methods with spatial regularisation published so far 8. For this

experiment all parameters have been optimised with respect to the AAE of the

optical flow in the first iteration step and β has been set to 50. The sky region has

not been excluded from the computation, and pixels that are warped outside the

image are included in the evaluation of the AAE. Our result is similar to the one

presented by Nir et al. [54], which is not surprising since a rigid motion model

enters the functional of both methods. It has to be noted that methods with spatio-

temporal smoothness terms give lower errors in general. In Fig. 9 we show the

results for the estimated optical flow and the corresponding epipolar geometry for

15 iteration steps.

In a final experiment we evaluate our methodology on four image pairs of the

Middlebury optical flow benchmark [5]. Frames 10 and 11 of the synthetic Ur-

ban2, Urban3, Grove2 and Grove3 9 training set deal with rigid stereo motion for

which the ground truth is publicly available. In Table 7 we show the influence of

including the epipolar constraint in pure optical flow by collecting the AAE and

the AEE of the estimated flow fields. The first column shows the errors for the

8Better results are reported in the technical report [10] which did not yet undergo the process

of peer reviewing.
9all available at http://vision.middlebury.edu/flow/data/
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Table 6: Results for the Yosemite sequence without clouds compared to other 2D

methods.

Method AAE

Brox et al. [14] 1.59◦

Mémin and Pérez [50] 1.58◦

Roth and Black [58] 1.47◦

Bruhn et al. [16] 1.46◦

Amiaz et al. [4] 1.44◦

Nir et al. [54] 1.15◦

Our method 1.15◦

Table 7: Influence of including the epipolar term (+ET) in optical flow for the

four stereo image pairs of the Middlebury optical flow training set. The results in

the first two columns are presented for the default settings (α = 20.0, γ = 20.0,
σ = 0.9 and β = 40.0). The results in the last two columns are presented for the

fixed settings given in [92] (α = 400.0, γ = 20.0, σ = 0.5 and β = 5.0).

[14] [14] + ET [92] [92] + ET
Image Pair

AAE / AEE AAE / AEE AAE / AEE AAE / AEE

Grove2 2.67/0.19 2.53/0.17 2.19/0.16 2.13/0.14
Grove3 6.78/0.69 5.89/0.64 5.84/0.59 5.61/0.57
Urban2 2.66/0.32 2.20/0.29 2.46/0.26 2.15/0.24
Urban3 5.26/0.61 4.96/0.56 3.40/0.44 3.11/0.39
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Figure 9: Results for the Yosemite sequence without clouds. Top Row: (a) Frame

8. (b) Estimated eipolar lines in frame 8. (c) Ground truth optical flow. Bottom

Row: (b) Frame 9. (d) Estimated eipolar lines in frame 9. (f) Estimated optical

flow (settings: α = 19.1, γ = 2.1, σ = 0.9 and β = 50.0). Pixels (apart from the

sky region) that are warped outside the image are colored black.

Figure 10: The flow fields between frames 10 and 11 of the Middlebury training

sequences. The estimated epipolar lines for frame 10 have been overlaid. Top

Left: (a) Grove2. Top Right: (b) Grove3. Bottom Left: (c) Urban2. Bottom

Right: (d) Urban3.
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optical flow method of Brox et al. [14], while the second column lists the errors

for our joint model that adds the epipolar term to the functional. The results for

both methods are obtained for the default settings with β = 40. Our joint method

outperforms pure optical flow for all tested image pairs, even for Urban2 where

the motion of a small car does not fulfill the epipolar constraint. To illustrate that

our idea can even improve the performance of more recent state of the art op-

tical flow techniques, we additionally provide results for the method of Zimmer

et al. [92] without and with the additional epipolar term proposed in (18). The

original method without epipolar term is currently one of the top ranking methods

in the Middlebury benchmark and has been briefly sketched at the end of Sub-

section 2.1. For fixed settings (α = 400.0, γ = 20.0, σ = 0.5 and β = 5.0), the
joint variant of [92] improves the AAE and AEE over pure optical flow for all four

sequences, leading to some of the best results published so far. The corresponding

estimated flow fields and epipolar lines are shown in Fig. 10.

6.3 Automatic 3D Reconstruction

To conclude, we present reconstruction results for some of the images that were

used previously. To perform a dense reconstruction of the depicted scene, we ex-

tract the left and right camera projection matrices P and P′ from the estimated

fundamental matrix F and use them to triangulate the back-projected rays for

each pixel. If no additional information about the cameras or the scene is avail-

able, a reconstruction is only possible up to a projective transformation of 3D

space [21, 32]. One type of information that is often at hand in practice are the

internal camera parameters, such as the focal length and the principal point. If

these parameters are known, we can extract the essential matrix from F and de-

termine the relative pose and orientation of the second camera with respect to the

first one [42, 33, 22]. This way we obtain a reconstruction that is up to scale.

By simultaneously solving for the dense optical flow and the epipolar geometry of

two images, we can associate with each pixel of the left image a 3D point in space,

a so-called range image. Contrary to multiview reconstruction [64, 73], range im-

ages are not a complete representation of the depicted scene and can therefore

not be evaluated against multiview ground truth. Although the methodology pre-

sented in this paper could serve as a basis for an uncalibrated multiview system

that integrates these range images [89], we restrict ourselves for now to a visual

assessment of the results.

In Fig. 11 we present the reconstruction from frames 5 and 6 of the Herz-Jesu-

P25 data set as an untextured mesh. The ground part is left out for visualisation

purposes. Many details are visible and discontinuities in the depth are accurately

recovered. This is also true for the reconstruction from frames 1 and 2 of the City-

Hall sequence in Fig. 12. We do not display points that are warped outside the im-
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Figure 11: Untextured reconstruction from frames 5 and 6 of the Herz-Jesu-P25

data set.

age by the optical flow. Fig. 12 (b) and (c) show a close-up of the middle section

of the building. Fine details can clearly be distinguished and the statues are easily

recognisable in the untextured surface. For both pairs we used the 1536× 1024

versions of the original images, which comes down to more than 1.5 million re-

constructed points. The settings for our joint estimation method are those from

Table 5 and for the reconstruction we used the provided internal camera parame-

ters. In a final experiment we reconstruct a face from a stereo pair that we have

recorded with two Point Grey Flea cameras. The images are shown in Fig. 13 (a)

and (b) and are of size 280×430. We do not perform a full calibration of the stereo

rig but only use the focal length and an approximation of the principal point for

our reconstruction. The result in Fig. 13 (c)-(e) is obtained by replacing the TV-

regularisation of our original model by an anisotropic flow-driven one [84]. This

results in a better smoothing between and along flow discontinuities. The facial

expression is captured very well with only a slight degeneration of the reconstruc-

tion near specularities on the nose and the eyes. The background is excluded from

the fundamental matrix estimation.
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Figure 12: Reconstruction from frames 1 and 2 of the City-Hall data set. Top

(a) Untextured reconstruction. Bottom Left: (b) Untextured close-up. Bottom

Right: (c) Textured close-up.
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Figure 13: Face reconstruction from 2 frames. Top Left: (a) Left frame. Top

Middle: (b) Right frame. Top Right: (c) Untextured frontal view. Bottom Left:

(d) Untextured side view. Bottom Right: (e) Textured side view.
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6.4 Limitations of Dense Methods

In this paper we show the advantages of dense methods for the estimation of the

fundamental matrix, particularly in challenging cases with low-texture or near-

degenerate configurations.

From our experiments, however, it is clear that large changes in view point can

pose a problem to dense matching algorithms due to the large displacements and

induced occlusions. While some of these effects are counterbalanced by including

a coupling between optical flow and fundamental matrix estimation, for very wide

baseline image pairs sparse feature based methods still offer advantages. Recent

optical flow methods have been proposed to overcome this limitation by either

integrating feature matches [13] or by applying a more global search [69]. Also

motion parallax, induced by sudden and large changes in depth, forms a problem

for traditional optical flow, since large jumps in the displacement field are diffi-

cult to capture by global methods. Feature matching, in contrast, does not suffer

from parallax because it is essentially a local process that does not enforce spatial

consistency.

Occlusions can form a second challenge. They are usually present in dense flow

fields, but hardly pose a problem in feature matching where disappearing interest

points will generally not be matched in the next frame. For our joint method we

experienced that small occlusions only have a very limited influence because they

are down weighted by the robust epipolar term. Additionally these regions are

filled in by the smoothness term in accordance with the estimated stereo geom-

etry. In wide baseline scenarios, occlusions will have a larger impact such that

their explicit detection [1, 79] should be considered in combination with the afore

mentioned techniques for large displacement optical flow.

In contrast to wide baseline images and occlusions, illumination changes are less

problematic for dense estimation methods. While the SIFT descriptor is invariant

under multiplicative and additive illumination changes by using normalised gra-

dient information, similar concepts can be used by optical flow methods, e.g. by

using photometric invariants [52] or normalised cross correlation [68, 87].

Since our joint variational model relies on image sequences that allow a stable

estimation of the fundamental matrix, the application is restricted to rigid scenes

which are not dominated by moving objects.

7 Conclusions and Future Work

We have explored a new application field for dense optical flow techniques: the

robust estimation of the fundamental matrix. Variational optical flow methods in-

corporate a global smoothness constraint that ensures filling-in in the absence of
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texture and dense correspondences in the case of degeneracy. Our experiments

demonstrate that in these scenarios optical flow based fundamental matrix es-

timation clearly outperforms the widely-used feature based methods. In these

scenarios we recommend to favour dense over sparse methods for estimating the

fundamental matrix.

As a second contribution we have also shown that epipolar geometry helps to

improve the computation of dense optical flow. A simultaneous estimation of

the fundamental matrix and the optical flow leads to higher accuracy and better

stability than their separate estimation. To this end, we have proposed a novel

coupled energy formulation and an iterative solution strategy. This allows us to

obtain estimates of the fundamental matrix that are competitive to and more stable

than those of well-established feature based methods. Additionally, the accuracy

of the optical flow improves significantly when applied to rigid scenes.

It is interesting to analyse the reasons why a dense approach that incorporates all

correspondences can be competitive with fairly sophisticated strategies that sin-

gle out only the very best correspondences. Our explanation for this observation

is as follows: In those cases where feature based methods produce a mismatch,

its influence on the final result is severe. Hence they require involved robusti-

fication methods such as RANSAC and its numerous variants. Dense methods,

on the other hand, incorporate smoothness terms that prevent individual outliers.

Furthermore, the accuracy of the fundamental matrix estimation benefits from the

error averaging when exploiting thousands of correspondences. This accuracy

will improve even further with ongoing, rapid progress in dense optical flow esti-

mation.

Our short term goals for improving the present approach include, among others,

the incorporation of occlusion handling, the segmentation of the scene into homo-

geneous motion regions and extensions to multiview settings. In the long run we

hope that our paper helps to pave the road towards a much larger class of novel,

more robust computer vision approaches based on dense correspondences.
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[49] E. Mémin and P. Pérez. Dense estimation and object-based segmentation

of the optical flow with robust techniques. IEEE Transactions on Image

Processing, 7(5):703–719, May 1998.
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B. Jähne, editors, Pattern Recognition, volume 4713 of Lecture Notes in

Computer Science, pages 152–162, Heidelberg, Germany, 2007. Springer,

Berlin.

[53] H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints

for the estimation of displacement vector fields from image sequences. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 8:565–593,

1986.

44



[54] T. Nir, A. M. Bruckstein, and R. Kimmel. Over-parameterized variational

optical flow. International Journal of Computer Vision, 76(2):205–216,

2008.

[55] N. Ohta and K. Kanatani. Optimal structure from motion algorithm for opti-

cal flow. IEICE Transactions on Information and Systems, E78-D(12):1559–

1566, December 1995.

[56] M. Proesmans, L. Van Gool, E. Pauwels, and A. Oosterlinck. Determination

of optical flow and its discontinuities using non-linear diffusion. In J.-O.

Eklundh, editor, Computer Vision – ECCV ’94, volume 801 of Lecture Notes

in Computer Science, pages 295–304. Springer, Berlin, 1994.

[57] R. Raguram, J. M. Frahm, and M. Pollefeys. A comparative analysis of

RANSAC techniques leading to adaptive real-time random sample consen-

sus. In D. Forsyth, P. Torr, and A. Zisserman, editors, Computer Vision –

ECCV 2008, Part II, volume 5303 of Lecture Notes in Computer Science,

pages 500–513. Springer, Berlin, 2008.

[58] S. Roth andM. Black. On the spatial statistices of optical flow. In Proc. Tenth

International Conference on Computer Vision, volume 1, pages 42–49, Bei-

jing, China, June 2005. IEEE Computer Society Press.

[59] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection.

Wiley, New York, 1987.

[60] J. Saragih and R. Goecke. Monocular and stereo methods for AAM learning

from video. In Proc. 2007 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, Minneapolis, MN, June 2007. IEEE

Computer Society Press.

[61] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. International Journal of Computer

Vision, 47(1-3):7–42, 2002.

[62] D. Schlesinger, B. Flach, and A. Shekhovtsov. A higher order MRF-model

for stereo-reconstruction. In C. E. Rasmussen, H. H. Bülthoff, M. A. Giese,

and B. Schölkopf, editors, Pattern Recognition, volume 3175 of Lecture

Notes in Computer Science, pages 440–446. Springer, Berlin, 2004.
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