
 Open access  Proceedings Article  DOI:10.1109/IROS.2011.6094703

Dense visual mapping of large scale environments for real-time localisation
— Source link 

Maxime Meilland, Andrew I. Comport, Patrick Rives

Institutions: French Institute for Research in Computer Science and Automation, University of Nice Sophia Antipolis

Published on: 05 Dec 2011 - Intelligent Robots and Systems

Topics: Depth map, View synthesis and Graph (abstract data type)

Related papers:

 A spherical robot-centered representation for urban navigation

 KinectFusion: Real-time dense surface mapping and tracking

 Direct Iterative Closest Point for real-time visual odometry

 Dense visual SLAM for RGB-D cameras

 A benchmark for the evaluation of RGB-D SLAM systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-
o3why8g9sv

https://typeset.io/
https://www.doi.org/10.1109/IROS.2011.6094703
https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv
https://typeset.io/authors/maxime-meilland-3kyro5vomg
https://typeset.io/authors/andrew-i-comport-2pa9gxqus6
https://typeset.io/authors/patrick-rives-5976vfn5s7
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-nice-sophia-antipolis-1vadneyw
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/depth-map-1jgxt9c0
https://typeset.io/topics/view-synthesis-1ncat29b
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/papers/a-spherical-robot-centered-representation-for-urban-21tcc36a78
https://typeset.io/papers/kinectfusion-real-time-dense-surface-mapping-and-tracking-pl8e8pbmre
https://typeset.io/papers/direct-iterative-closest-point-for-real-time-visual-odometry-4xks3klj2u
https://typeset.io/papers/dense-visual-slam-for-rgb-d-cameras-15epobe38k
https://typeset.io/papers/a-benchmark-for-the-evaluation-of-rgb-d-slam-systems-4sau0k4128
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv
https://twitter.com/intent/tweet?text=Dense%20visual%20mapping%20of%20large%20scale%20environments%20for%20real-time%20localisation&url=https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv
https://typeset.io/papers/dense-visual-mapping-of-large-scale-environments-for-real-o3why8g9sv


HAL Id: hal-01357369
https://hal.archives-ouvertes.fr/hal-01357369

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dense visual mapping of large scale environments for
real-time localisation

Maxime Meilland, Andrew I. Comport, Patrick Rives

To cite this version:
Maxime Meilland, Andrew I. Comport, Patrick Rives. Dense visual mapping of large scale envi-
ronments for real-time localisation. IEEE/RSJ International Conference on Intelligent Robots and
System, 2011, San Francisco, California, United States. hal-01357369

https://hal.archives-ouvertes.fr/hal-01357369
https://hal.archives-ouvertes.fr


Dense visual mapping of large scale environments

for real-time localisation

Maxime Meilland, Andrew Ian Comport and Patrick Rives

Abstract— This paper presents a method and apparatus for
building dense visual maps of large scale 3D environments for
real-time localisation and navigation. A spherical ego-centric
representation of the environment is proposed that is able
to reproduce photo-realistic omnidirectional views of captured
environments. This representation is novel in that it is composed
of a graph of locally accurate augmented spherical panoramas
that allows to generate varying viewpoints through novel view
synthesis. The spheres are related by a graph of 6dof poses
which are estimated through multi-view spherical registration.
To acquire these models, a multi-baseline acquisition system has

been designed and built which is based on an outward facing
ring of cameras with diverging views. This configuration allows
to capture high resolution spherical images of the environment
and compute a dense depth map through a wide baseline dense
correspondence algorithm. A calibration procedure is developed
for an outward facing camera ring that imposes a loop closing
constraint, in order to obtain a consistent set of extrinsic
parameters. This spherical sensor is shown to acquire compact,
accurate and efficient representations of large environments and
is used for real-time model-based localisation.

I. INTRODUCTION

Acquiring 3D models of large scale environments is cur-

rently a key issue for a wide range of applications ranging

from interactive personal guidance devices to autonomous

navigation of mobile robots. In these applications it is impor-

tant, not only for human operators but also for autonomous

robots, to maintain a world map that holds a rich set of data

including photometric, geometric and saliency information.

It will be shown in this paper why it is advantageous to define

an ego-centric representation of this information that allows

fast model acquisition whilst maintaining optimal realism

and accuracy.

Clearly, an a-priori 3D model simplifies the localisation

and navigation task since it allows to decouple the structure

and motion estimation problems. Current state of the art

approaches mostly rely on global 3D CAD models [10] that

are based on tools and representations that been developed

mainly for texture mapped virtual reality environments. Un-

fortunately, these representations have difficulty in maintain-

ing true photo-realism and therefore introduce reconstruction

errors and photometric inconsistencies. Furthermore, these

models are complicated to acquire and often resort to heavy

off-line modelling procedures. Whilst efforts are being made

to use sensor acquisition systems that automatically acquire
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these classical virtual 3D models [10], it is suggested in this

paper that they are not sufficient to precisely represent real-

world data. Alternatively, it is proposed to use an ego-centric

model [18] that represents, as close as possible, real sensor

measurements.

A well known ego-centric representation model for camera

sensors is the spherical panorama. Multiple cameras systems

such as in [2] allow construction of high resolution spher-

ical views via image stitching algorithms such as reviewed

in [21]. However, contrary to virtual reality models, these

tools have been developed mainly for qualitative photo-

consistency but they rarely require 3D geometric consistency

of the scene. This is mainly due to the fact that, in most

cases, it is impossible to obtain 3D structure via triangula-

tion of points when there is no or little baseline between

images. Another approach is to use a central catadioptric

omnidirectional camera [20] and warp the image plane onto

a unit sphere using the model given in [9]. Unfortunately,

that kind of sensor has a poor and varying spatial resolution

and therefore is not well adapted to a visual memory of the

environment. Furthermore, these approaches assume a unique

center of projection, however, manufacturing such a system

is still a challenging problem [16].

In order to take advantage of both 3D model based

approaches and photometric panoramas it is possible to

augment the spherical image with a depth image containing

a range for each pixel. An augmented sphere then allows

to perform novel view synthesis [1], [7], [18] in a local

domain in all directions. There are many approaches for

obtaining depth information ranging from laser range finders

to structured light and stereo matching with triangulation.

Laser approaches [8], [6] are expensive and cumbersome and

structured light RGB-D systems [11] are short range and

only work indoors. In [17] a spherical camera is built by

combining two fish-eye lenses with a mirror to project both

images onto a unique sensor. Likewise, in [5], stereo vision

tracking is performed using four omnidirectional mirrors.

This type of sensor has a delicate calibration process and

again has uneven spatial resolution. A recent work, [14] uses

two rotating line scan cameras to acquire image spheres at

different heights. Stereo is then achieved via dense matching

between the spheres, however, this system is not adapted to

a vehicle in motion due to the slow acquisition frequency

of the rotating cameras. Multi-camera systems, however, can

perform dense stereo-matching [12], which can be performed

outdoor and indoor, which provides high spatial resolution,

corresponding depth and photometric data.

These ego-centric models are, however, local and do



not provide a global representation of the environment.

This problem can be solved by considering multiple aug-

mented spheres connected by a graph of poses that are

positioned optimally in the environment. Simple spherical

images positioned in the environment are already found

in commercial applications such as Google Street View,

and more recently [15]. The easiest method for positioning

spheres would be via a global positioning system (GPS),

however, in urban environments this system fails easily

due to satellite occlusion. Alternatively, the robot-centered

representation introduced in [18] positions augmented views

globally within a precise topological graph via accurate

stereo visual odometry [7] and does not require any external

sensor. The present paper extends this preliminary work.

A. Contribution

In this paper, a custom made multi-camera spherical imag-

ing system is presented that deviates from classic spherical

sensor in that there is a baseline between each camera. The

new system is designed to maximise the overlap among six

wide field of view cameras equally placed on an hexagon.

A technique is provided for calibrating this outward looking

ring of stereo cameras with a loop closing constraint. This

system is then shown to simultaneously extract a dense

depth-map between all stereo pairs using wide-baseline dense

matching [12]. This dense depth-map is then blended and

mapped onto a unit sphere with 3D geometric constraints.

Spheres are placed optimally within a global graph based on

a robust statistic criteria. The full collection of spheres is

stored in a GIS (Georeferenced Information System), which

is then used during the navigation phase. This ego-centric

visual memory is then shown to be used for real-time robust

localisation with respect to different online visual sensors

(webcam, monocular, stereo). The main advantages of this

spherical representation are :

• An ego-centric representation allows to maintain accurate

local sensor data (i.e. photometric consistency) and only

provides the necessary information (e.g. locally around

navigation path).

• Augmenting photometric spherical panorama’s with dense

depth allows to perform local novel view synthesis.

• A spherical representation provides all local view direc-

tions and therefore allows combination of different kinds

of sensors like perspective cameras, multi-view cameras or

omnidirectional cameras and laser range finders.

• Full-view sensors well condition the observability of 3D

motion [2] which greatly improves robustness.

• Can be made invariant to illumination variation as in [19]

II. REAL-TIME EGO-CENTRIC TRACKING

As mentioned in the introduction, the objective of this

work is to perform real-time tracking using a known envi-

ronment model (see Fig. 1). The essential part of this paper

is therefore divided into two distinct but inter-related aspects:

• Learning - This phase consists in acquiring a 3D model

of the environment and representing this information in

an optimal manner for ”on-line” localisation. It has been

chosen to develop a learning approach that is also efficient

so that, firstly, in a practical sense environments can be

acquired rapidly and secondly, so that the approach may be

used for online mapping in the near future. Essentially this

involves filming, tracking and mapping the 3D environment

(≈1Hz depending on the approach). See Section III for the

local ego-centric 3D model and its acquisition system along

with Section IV for the global graph learning.

• Online tracking - This real-time phase involves estimating

the 6 d.o.f. pose of one or several camera(s) at frame-rate

(here 45 Hz). This phase must take into account efficient

optimisation techniques that require a maximum amount of

computation to be performed ”off-line” during the learning

phase. See Section V-B.

III. SPHERICAL EGO-CENTERED MODEL

An ego-centric 3D model of the environment is defined by

a graph G = {S1, . . . ,Sn;x1, . . . ,xm} where Si are aug-

mented spheres that are connected by a minimal parametri-

sation x of each pose as:

T(x) = e[x]∧ =

[
R t

0 1

]
∈ SE(3), (1)

where xab ∈ R
6 is the 6 d.o.f. twist between the sphere a

and b (see Fig. 1) defined as:

x =

∫ 1

0

(ω, υ)dt ∈ se(3), (2)

which is the integral of a constant velocity twist which

produces a pose T. The operator [.]∧ is defined as follows:

[x]∧ =

[
[ω]× υ

0 0

]
, (3)

where [.]× represents the skew symmetric matrix operator.

A. Augmented visual sphere

Each sphere is defined by the set S = {Is, Ps,Zs,Ws}
where

- Is is the photometric spherical image. This image is

obtained from the custom camera system presented in

Section III-B by warping multiple images onto the sphere

as will be defined in Subsection III-C.

- Ps = {q1, . . . ,qn} is a set of evenly spaced points on the

unit sphere where q ∈ S2. These points have been sampled

uniformly on the sphere as in [18].

- Zs are the depths associated with each pixel which have

been obtained from dense stereo matching as will be

detailed in Section III-E. The 3D point is subsequently

defined in the sphere as P = (q,Z).
- Ws is a saliency image which contains knowledge of good

pixels to use for tracking applications. It is obtained by

analysing the Jacobian of the warping function so that the

pixels are ordered from best to worst in terms of how they

condition the pose estimation problem (the interested reader

can see [18] for detail).
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Fig. 1. Ego-centric representation: graph of spheres G and augmented
spheres containing grey levels and their corresponding depths projected on
a unit sphere S2. A : an agent (robot or person) is shown connected to the
graph.

B. Spherical acquisition system

Following on from the introduction, no commercial cam-

era systems are yet available to acquire spherical panora-

mas with depth information that perform both outdoor and

indoor whilst providing a high spatial resolution map of

the environment. In that respect a new acquisition system

has been designed that purposely maintains a significant

baseline between multiple divergent cameras. The idea being

to equally place the cameras in a ring configuration (see

Fig. 5(a)). The advantage of this design is that the baseline

between each pair of cameras allows to compute dense

correspondences and their corresponding depth maps. One

particularity that makes this system more original is the fact

that the cameras are in a divergent configuration. Indeed

most multi-baseline camera systems are configured so as

to observe the same point(s) in 3D space. This new con-

figuration therefore requires additional modelling to account

for diverging views and loop closing constraints around the

camera ring.

The particular implementation of the system constructed

for this purpose is composed of six high resolution cameras

(1292× 964), each mounted with a wide angle lens (125o)

and configured in a hexagon. The use of wide field-of-view

sensors ensures near-complete overlap between each pair of

cameras and almost covers the full 360 degrees of the sphere.

C. Image warping: Novel view synthesis

To create a spherical panorama from a multi-baseline

camera system it is necessary to warp and blend each

camera’s image onto the sphere (see Fig. 5(b)). For the

purpose of this subsection, suppose that both intrinsic and

extrinsic camera calibration has been achieved and that dense

depth information has been determined (for each pixel). With

this information, image warping (or novel view synthesis [1])

is achievable.

Whilst the warping function is presented here to warp

each camera’s image onto a spherical panorama, it will be

defined in a general manner since it is also a key component

for Section IV in defining the optimisation criteria for off-

line pose estimation along with Section V-B for real-time

tracking.

q

S2

P

[R t]

p
z

y

x θ
φ

zc
ycxc

Fig. 2. The spherical projection of a 3D point P on a sphere. R, t is the
rigid transformation between the camera and the sphere.

The geometric part of the warping function w(.), is defined

to represent the transfer of 3D points of an augmented sphere

wrt. a current generic sensor (see Fig. 2) such that:

IS(Ps) = I
(
w(T(x), ξ; Ps,Zs)

)
, (4)

where I are the current sensor intensities measurement, ξ

is the intrinsic parameter vector (based on the sensor type,

e.g. perspective, catadioptric, spherical etc...) and T(x) is

the rigid pose transformation (1) between sensors (extrinsic

parameters). Since there is rarely a one-to-one pixel corre-

spondence in I(p), corresponding intensities are interpolated

at pixel location p (i.e. by bilinear interpolation). Since

two cameras measure the same intensity (due to overlap)

their values are fused using Laplacian blending [4]. This

compensates exposure differences between cameras.

For a spherical camera the warping function is defined as:

q =
RP + t

‖RP + t‖
∈ S

2. (5)

D. Closed-loop Calibration of Diverging Cameras

As mentioned previously, a multi-baseline divergent cam-

era system presents certain particularities in terms of intrinsic

and extrinsic calibration as well as in terms of divergent

views. In Fig. 3 it can be seen that even if the system contains

multiple cameras, only pairs of cameras observe the same

parts of the scene which means that the camera system is

essentially composed of several stereo-pairs.

Since the calibration patterns are only viewed by two

cameras simultaneously, standard multi-camera calibration

techniques such as [22] are unfortunately not suitable. It

is, however, possible to successively compute the extrin-

sic parameters of each pair of cameras, but in this case

calibration parameters will not be completely consistent

when combining poses around the loop. Therefore, it is

proposed here to define the calibration problem with a global

loop closing constraint that allows to further constrain the

extrinsic parameters of the system so that the poses around

the loop remain consistent.

The new extrinsic calibration procedure is modelled so

as to simultaneously estimate pattern poses x
p
i and camera

poses xc
i with respect to a central coordinate system, where

the pose vectors are defined in equation (2). The unknown

state of the system is therefore defined as:

xΣ = (xc
1, ...,x

c
M ,xp

1, ...,x
p
N )

⊤
(6)
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Fig. 3. Spherical system calibration. xc are the camera pose parameters
and x

p

N
are the N patterns pose parameters.

with N the number of calibration patterns observed over

multiple snapshots and M = 6 is the number of cameras.

The global optimisation criteria is then defined (with abuse

of notation) as the error between a vector of warped pattern’s

points w(Pp) and a vector of matching points in the image

Pm:

e(i, j) = Pm − w
(
T(xc

i )T(xp
j ), ξi; Pp,Zp

)
, (7)

where i and j are the respective camera number and pattern

number (see Fig 3) and K(ξi) ∈ R
3×3 the intrinsic parame-

ters matrix of camera i. In this case, the warping function (4)

is defined to represent the projection of the points of the

pattern j on camera i.
For a perspective camera the warping function w(.) is

defined such that:

p = K
[

R t
]
P, (8)

where P is the 3D Euclidean point within the calibration

pattern.

Using this error function, it is possible to find an optimal

x̂Σ, by minimizing the re-projection error for each overlap

and each pattern using:

x̂Σ = argmin
xΣ

6∑

i=1




N∑

j=1

‖e(i, j)‖2.η(i, j)



 (9)

η(i, j) =

{
1 if pattern j is seen by camera i

0 otherwise

Iteratively minimizing the cost function (9) allows to esti-

mate each camera’s pose xc
i while respecting the loop closing

constraint. In order to avoid local minima, the optimisation

problem is initialised with stereo calibration and the intrinsic

parameters ξk are not recomputed since locally they are

already estimated accurately.

The calibration results of the system are shown on

Fig. 5(b). It can be seen that if the extrinsic parameters

are estimated independently, the error is accumulated (red

positions) from the camera 1 to camera 6. By estimating the

parameters in a global optimization, the loop is closed (blue

positions). As a practical note, due to the scale of the system

Fig. 4. Rectification of two divergent stereo images. Top: Un-rectified left
and right images. Bottom: Rectified left and right images.

it is complicated to construct a single rigid 3D calibration

pattern which surrounds all the cameras simultaneously such

as [17]. Here, only a classical checker-board pattern, which

was dimensioned to cover large parts of the image, has been

used so as to constrain different depths.

E. Dense correspondence

In order to construct high resolution spherical images

(approx. 4.5 million pixels) that are augmented with depth,

it is necessary to perform dense matching. Although dense

matching is not the aim of this paper, several difficulties were

encountered due to the divergent wide-baseline acquisition

system which has required a careful choice of algorithm

and has highlighted potential problems. Firstly, classic dense

matching across diverging views is a non-trivial problem

due to the significant difference in resolution of the scene

between two cameras. Secondly wide baseline stereo cameras

allow to well constrain far off objects, however, they also

require searching much larger intervals on the epipolar line.

In the system presented here, each camera’s image half

overlaps with neighbouring left and right cameras respec-

tively. The major difficulty in this configuration is due to

the hexagonal configuration, the angle between optical axes

of two adjacent cameras are clearly divergent (60o) and

the baselines are (65cm) wide. This creates a significant

difference in base image resolution of the scene and requires

a large disparity search range (See Fig. 4).

In order to perform dense matching, each stereo pair is

first rectified. The important advantage of rectification is

that computing stereo correspondences is reduced to a 1-

D search problem along the horizontal raster lines of the

rectified images. The disadvantage being that the difference

in resolution may produce approximation errors in the rec-

tified image. Even with rectified images, the differences in

resolution (due to perspective distortions) and illumination

(due to shading correction) between two images produce

erroneous dense matches with standard techniques. In this

paper Semi-Global Block Matching [12] was used.

IV. GLOBAL SPHERE POSITIONING

Now that the elementary augmented spheres have been de-

fined, this next section is dedicated to defining the complete



graph (defined in Section III) that makes up a 3D model. This

will involve introducing a model for accurately estimating

the edges (poses) that link the vertices together and also on

how to optimally place the vertices (spheres) within the 3D

environment.

A. Spherical visual odometry

To accurately recover the position of the spheres with

respect to one-another, a 6 d.o.f. multi-camera localisation

model is proposed based on accurate dense localisation [7],

[18]. Considering IS , an augmented sphere defined in Sec-

tion III-B, the objective is now to compute the pose between

a reference sphere and the next one. The localisation problem

(also known as visual odometry) is then to estimate the

incremental pose T(x̃). Since this is a local optimisation

approach it is assumed that the camera framerate is high

(30Hz) and that interframe displacements are small (≤ 2m),

meaning a maximum speed of ∼ 200km/h.

It is noted here that dense visual odometry is computa-

tionally efficient and locally very accurate [7] so it has been

deemed unnecessary to perform costly bundle adjustment

on local visibility windows (although this slightly improves

the estimate it makes timely scene acquisition practically

unfeasible).

Using an iterative optimization scheme as given in the

Appendix VIII-A, the estimate is updated at each step by an

homogeneous transformation:

T̂← T̂T(x), (10)

where T̂ is the current pose estimate with respect to the clos-

est reference sphere which is determined from the previous

iterations up to time t− 1.

The error measure between a reference sphere and a

spherical multi-view system is then defined as follows:

ei = ρ
(
Ii

(
w

(
T(xc

i )T̂T(x); Ps,Zs

))
− Is(Ps,Zs)

)
,

(11)

where i = 1 . . . 6 is the camera index, w(.) is the warping

function of eq. (4), xc
i are the corresponding extrinsic camera

parameters obtained in III-D and the intrinsic parameters are

assumed implicit, and ρ is a robust M-estimator given in [13]

where the robust statistical weight is defined by the Huber

weighting function.

B. Spherical node placement

Indeed, the vertices should be carefully placed in the world

so as to represent the environment with little redundancy.

One preliminary technique to achieve this goal locally is to

observe criteria between an initially selected reference sphere

and surrounding spheres. In practice, the trajectory of the

acquisition system along a sequence is computed by inte-

grating elementary displacements estimated from successive

spherical registration. The strategy used here is to maintain

as long as possible the reference sphere to minimize the drift

introduced when a new reference sphere is taken. Therefore

(a)

C1 C2
C3

C4C5

C6

(b)

Fig. 5. (a): Spherical system mounted on a Cycab robot. (b): Warping
of images onto the sphere. For calibration, in red, the camera poses
successively estimated between each overlap, we can see the drift when
loop closing is not performed. In blue the cameras poses estimated with the
loop closing constraint.

a new reference sphere is placed according to the Median

Absolute Deviation (MAD) and the norm of the error:

λ1 < Median(e−Median(e)), λ2 < |e| (12)

where e is the error defined in (11). A new reference sphere

is therefore placed when the MAD measure of the error is

greater than a defined threshold, or when the weighted error

norm is too large. Since the registration technique is direct,

local precision on the topological graph is very good (around

1% drift), which is important for online navigation.

V. RESULTS

A. Map Building

A 7364 × 6 image sequence was acquired over a 1500
meter long trajectory, using the custom spherical acquisition

system mounted on a mobile robot 5(a). The environment

contains corridors, near and far buildings, vegetation, parked

cars, straight sections, corners and several hills (demonstrat-

ing the 6 d.o.f. trajectory), which well represent most aspects

of an urban environment. Sphere construction and global

positioning was computed off-line at around 1Hz.

Since the positioning method is based on visual odometry,

small errors may be integrated leading to inconsistency in

the global map. A Loop closure detection was performed

and a global pose optimisation was used to correct the drift.

Fig. 6(c) shows the final graph, composed of 310 augmented

spheres, that cover the entire trajectory and well represent the

robot path. Since the spheres are positioned using a dense

direct method, the graph’s edges are accurately estimated,

making navigation between nodes continuous which allows

interactive navigation within a 3D world by an end-user (see

Fig. 6(b)).

B. Real-time tracking and localisation

It is considered that during online navigation, a current

image I , captured by a generic camera (e.g. monocular,

stereo or omnidirectional) and an initial guess T̂ of the

current camera position are available. This initial guess

permits the extraction of the closest reference sphere S from

the graph. Since a sphere provides all local information

necessary for 6 dof. localisation, an accurate estimation of the



pose is obtained by an efficient direct minimization, related

to (11):

e = ρ
(
I

(
w

(
T̂T(x); Ps,Zs,Ws

))
−Is(Ps,Zs,Ws)

)
,

(13)

where Ws is the saliency image [18] which selects only

informative pixels for warping, which speeds up the al-

gorithm without degrading observability and accuracy. The

error function e is minimized using an iterative (IRLS)

non-linear optimization detailed in Appendix VIII-A. A

maximum amount of pre-computation is performed offline

during the construction of the spheres (e.g. Jacobian matrices

and saliency maps) allowing the online algorithm to be

computationally efficient, which allows the camera pose to

be estimated at frame rate.

To farther improve performance, a coarse-to-fine opti-

mization strategy is employed by using multi-resolution

spheres (e.g.. constructed by Gaussian filtering and sub-

sampling [4]). The minimization begins at the lowest res-

olution and the result is used to initialize the next level

repeatedly until the highest resolution is reached. This greatly

improves the convergence domain/speed and some local

minima can be avoided.

In order to choose the closest sphere for tracking within

the graph, it necessary to define a metric. Contrary to

non-spherical approaches, a sphere provides all viewing

directions and therefore it is not necessary to consider the

rotational distance (to ensure image overlap). The closest

sphere is subsequently determined uniquely by translational

distance. In particular this avoids choosing a reference sphere

that has similar rotation but large translational difference

which induces self occlusions of buildings and also differ-

ences in image resolution caused by distance (which affects

direct registration methods).

The online algorithm was tested and validated on a subset

of the full spherical graph containing 12 spheres. A real-time

implementation has been realized in C++. Using only salient

pixels, the online localisation runs at 45Hz on an Intel Core

2 Duo laptop. A vehicle equipped with a monocular camera

of 800 × 600 pixels in size with a frequency of 45Hz, was

moved within the neighbourhood of the graph.

The results of Fig. 6(a) show an overview of the estimated

trajectory in green, (the black part (a) indicates a forward-

reverse movement of the vehicle), with some camera poses.

The camera starting point is (X=−0.4, Y =−0.1, Z=0.8)
and the vehicle begins to move in positive Z direction

until the position (X=−1.8, Y =0.6, Z=20.5). Then the

robot is moved backward (black trajectory) until position

(X=3.3, Y =0.6, Z=18.8) to return to the initial position by

reversing.

The proposed method was able to accurately track the

camera at video frame rate, for a vehicle navigating in

different directions, within a local region of the graph, which

emphasizes the advantages of a spherical ego-centered rep-

resentation 1. Recent results have shown that this technique

1A high quality video is available at:
http://www-sop.inria.fr/arobas/videos/Globeye/DenseVisualMappingHQ.mp4

can be made robust to illumination changes [19].

VI. CONCLUSIONS

The approach described in this paper allows reconstructing

dense visual maps of large scale 3D environments. It has

been shown that this representation is capable of reproducing

photometrically accurate views locally around a learnt graph.

Reconstructed spheres acquired along a trajectory are used

as input for a robust dense spherical tracking algorithm

which estimates the spheres’ positions. Through the design

of a new acquisition system it has been shown that it

is possible to acquire these maps efficiently and a model

has been provided for computing the augmented spherical

representation. Furthermore, a calibration procedure has been

developed that accounts for loop closure on the camera ring.

In perspective, since the method proposed in this paper

deviates from classical 3D texture mapped models as well

as classical panoramic spherical acquisition systems, many

traditional tools are inadequate and need to be redesigned for

the current system. Future effort will be aimed at improving

divergent wide baseline matching (with large resolution dif-

ferences between images) and taking into account illumina-

tion variation with differing aperture sizes between cameras

around the camera ring.
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VIII. APPENDIX

A. Non-linear optimisation

The error functions for the calibration (7), the off-line

graph learning (11) and the real-time tracking (13) are all

minimized using a iteratively re-weighted least squared non-

linear minimization:

O(x) = argmin
x

6∑

i=1

(ei)
2
, (14)

by ∇O(x)|x=x̃ = 0, where ∇ is the gradient operator with

respect to the unknown x defined in equation (2) assuming

a global minimum is reached at x = x̃.

An inverse compositional algorithm is used [3], which

allows to pre-compute most of the minimization parts di-

rectly on the reference image. In this case the unknown x is

iteratively updated using a Levenberg-Marquart optimization

procedure:

x = −λ(Q− µdiag(Q))−1JT De, (15)

where T is the transposition operator, Q = JT DJ is the

robust Gauss-Newton Hessian approximation, µ and λ are

scalar gains to ensure a fast exponential error decrease. J

is the warping Jacobian matrix of dimension n × 6. D is a

diagonal weighting matrix of dimension n × n obtained by

M-estimation [13] which rejects outliers such as occlusions.
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Fig. 6. (a) Real-time tracking of a monocular camera navigating within a portion of the graph containing 12 spheres (blue dots). The estimated trajectory
is shown in green (the black part of the trajectory between two discontinuities is due to a forward-reverse movement of the mobile tracking system).
Several camera poses are plotted (optical axis in blue) to show the orientation of the positioning system at various locations. (b) The top image shows a
snapshot of our real-time interactive 3D OpenGL rendering platform which exploits the augmented spherical memory. It is possible to navigate freely in
the virtual world with photo-realistic view synthesis. In both images, the red spheres indicate the 3D positions of the reference spheres in the world. The
bottom image shows an aerial view of the mapped region and a real-time virtual camera trajectory is plotted in blue. (c) A 1.5 km reconstructed trajectory,
after loop closures and graph optimization, with 310 reference spheres (one sphere out of two is plotted). Some key images are also displayed.
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