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Abstract

We introduce the dense captioning task, which requires a

computer vision system to both localize and describe salient

regions in images in natural language. The dense caption-

ing task generalizes object detection when the descriptions

consist of a single word, and Image Captioning when one

predicted region covers the full image. To address the local-

ization and description task jointly we propose a Fully Con-

volutional Localization Network (FCLN) architecture that

processes an image with a single, efficient forward pass, re-

quires no external regions proposals, and can be trained

end-to-end with a single round of optimization. The archi-

tecture is composed of a Convolutional Network, a novel

dense localization layer, and Recurrent Neural Network

language model that generates the label sequences. We

evaluate our network on the Visual Genome dataset, which

comprises 94,000 images and 4,100,000 region-grounded

captions. We observe both speed and accuracy improve-

ments over baselines based on current state of the art ap-

proaches in both generation and retrieval settings.

1. Introduction

Our ability to effortlessly point out and describe all aspects

of an image relies on a strong semantic understanding of a

visual scene and all of its elements. However, despite nu-

merous potential applications, this ability remains a chal-

lenge for our state of the art visual recognition systems.

In the last few years there has been significant progress

in image classification [39, 26, 53, 45], where the task is

to assign one label to an image. Further work has pushed

these advances along two orthogonal directions: First, rapid

progress in object detection [40, 14, 46] has identified mod-

els that efficiently identify and label multiple salient regions

of an image. Second, recent advances in image captioning

[3, 32, 21, 49, 51, 8, 4] have expanded the complexity of

the label space from a fixed set of categories to sequence of

words able to express significantly richer concepts.

However, despite encouraging progress along the label

density and label complexity axes, these two directions have
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Figure 1. We address the Dense Captioning task (bottom right)

with a model that jointly generates both dense and rich annotations

in a single forward pass.

remained separate. In this work we take a step towards uni-

fying these two inter-connected tasks into one joint frame-

work. First, we introduce the dense captioning task (see

Figure 1), which requires a model to predict a set of descrip-

tions across regions of an image. Object detection is hence

recovered as a special case when the target labels consist

of one word, and image captioning is recovered when all

images consist of one region that spans the full image.

Additionally, we develop a Fully Convolutional Local-

ization Network (FCLN) for the dense captioning task.

Our model is inspired by recent work in image captioning

[49, 21, 32, 8, 4] in that it is composed of a Convolutional

Neural Network and a Recurrent Neural Network language

model. However, drawing on work in object detection [38],

our second core contribution is to introduce a new dense lo-

calization layer. This layer is fully differentiable and can

be inserted into any neural network that processes images

to enable region-level training and predictions. Internally,

the localization layer predicts a set of regions of interest in

the image and then uses bilinear interpolation [19, 16] to

smoothly crop the activations in each region.

We evaluate the model on the large-scale Visual Genome

dataset, which contains 94,000 images and 4,100,000 region

captions. Our results show both performance and speed im-

provements over approaches based on previous state of the

art. We make our code and data publicly available to sup-

port further progress on the dense captioning task.
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2. Related Work

Our work draws on recent work in object detection, im-

age captioning, and soft spatial attention that allows down-

stream processing of particular regions in the image.

Object Detection. Our core visual processing module is a

Convolutional Neural Network (CNN) [29, 26], which has

emerged as a powerful model for visual recognition tasks

[39]. The first application of these models to dense predic-

tion tasks was introduced in R-CNN [14], where each re-

gion of interest was processed independently. Further work

has focused on processing all regions with only single for-

ward pass of the CNN [17, 13], and on eliminating explicit

region proposal methods by directly predicting the bound-

ing boxes either in the image coordinate system [46, 9], or in

a fully convolutional [31] and hence position-invariant set-

tings [40, 38, 37]. Most related to our approach is the work

of Ren et al. [38] who develop a region proposal network

(RPN) that regresses from anchors to regions of interest.

However, they adopt a 4-step optimization process, while

our approach does not require training pipelines. Addition-

ally, we replace their RoI pooling mechanism with a differ-

entiable, spatial soft attention mechanism [19, 16]. In par-

ticular, this change allows us to backpropagate through the

region proposal network and train the whole model jointly.

Image Captioning. Several pioneering approaches have

explored the task of describing images with natural lan-

guage [1, 27, 12, 34, 42, 43, 28, 20]. More recent ap-

proaches based on neural networks have adopted Recurrent

Neural Networks (RNNs) [50, 18] as the core architectural

element for generating captions. These models have pre-

viously been used in language modeling [2, 15, 33, 44],

where they are known to learn powerful long-term inter-

actions [22]. Several recent approaches to Image Caption-

ing [32, 21, 49, 8, 4, 24, 11] rely on a combination of RNN

language model conditioned on image information, possi-

bly with soft attention mechanisms [51, 5]. Similar to our

work, Karpathy and Fei-Fei [21] run an image captioning

model on regions but they do not tackle the joint task of

detection of description in one model. Our model is end-to-

end and designed in such way that the prediction for each

region is a function of the global image context, which we

show also ultimately leads to stronger performance. Finally,

the metrics we develop for the dense captioning task are in-

spired by metrics developed for image captioning [48, 7, 3].

3. Model

Overview. Our goal is to design an architecture that jointly

localizes regions of interest and then describes each with

natural language. The primary challenge is to develop a

model that supports end-to-end training with a single step of

optimization, and both efficient and effective inference. Our

proposed architecture (see Figure 2) draws on architectural

elements present in recent work on object detection, image

captioning and soft spatial attention to simultaneously ad-

dress these design constraints.

In Section 3.1 we first describe the components of our

model. Then in Sections 3.2 and 3.3 we address the loss

function and the details of training and inference.

3.1. Model Architecture

3.1.1 Convolutional Network

We use the VGG-16 architecture [41] for its state-of-the-art

performance [39]. It consists of 13 layers of 3 × 3 con-

volutions interspersed with 5 layers of 2 × 2 max pooling.

We remove the final pooling layer, so an input image of

shape 3×W ×H gives rise to a tensor of features of shape

C×W ′×H ′ where C = 512, W ′ =
⌊

W
16

⌋

, and H ′ =
⌊

H
16

⌋

.

The output of this network encodes the appearance of the

image at a set of uniformly sampled image locations, and

forms the input to the localization layer.

3.1.2 Fully Convolutional Localization Layer

The localization layer receives an input tensor of activa-

tions, identifies spatial regions of interest and smoothly ex-

tracts a fixed-sized representation from each region. Our

approach is based on that of Faster R-CNN [38], but we

replace their RoI pooling mechanism [13] with bilinear

interpolation [19], allowing our model to propagate gra-

dients backward through the coordinates of predicted re-

gions. This modification opens up the possibility of predict-

ing affine or morphed region proposals instead of bounding

boxes [19], but we leave these extensions to future work.

Inputs/outputs. The localization layer accepts a tensor of

activations of size C ×W ′ ×H ′. It then internally selects

B regions of interest and returns three output tensors giving

information about these regions:

1. Region Coordinates: A matrix of shape B × 4 giving

bounding box coordinates for each output region.

2. Region Scores: A vector of length B giving a con-

fidence score for each output region. Regions with

high confidence scores are more likely to correspond

to ground-truth regions of interest.

3. Region Features: A tensor of shape B × C ×X × Y
giving features for output regions; is represented by an

X × Y grid of C-dimensional features.

Convolutional Anchors. Similar to Faster R-CNN [38],

our localization layer predicts region proposals by regress-

ing offsets from a set of translation-invariant anchors. In

particular, we project each point in the W ′ × H ′ grid of

input features back into the W ×H image plane, and con-

sider k anchor boxes of different aspect ratios centered at

this projected point. For each of these k anchor boxes,

the localization layer predicts a confidence score and four
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Figure 2. Model overview. An input image is first processed a CNN. The Localization Layer proposes regions and smoothly extracts a

batch of corresponding activations using bilinear interpolation. These regions are processed with a fully-connected recognition network

and described with an RNN language model. The model is trained end-to-end with gradient descent.

scalars regressing from the anchor to the predicted box co-

ordinates. These are computed by passing the input feature

map through a 3× 3 convolution with 256 filters, a rectified

linear nonlinearity, and a 1 × 1 convolution with 5k filters.

This results in a tensor of shape 5k ×W ′ ×H ′ containing

scores and offsets for all anchors.

Box Regression. We adopt the parameterization of [13]

to regress from anchors to the region proposals. Given an

anchor box with center (xa, ya), width wa, and height ha,

our model predicts scalars (tx, ty, tw, th) giving normalized

offsets and log-space scaling transforms, so that the output

region has center (x, y) and shape (w, h) given by

x = xa + txwa y = ya + tyha (1)

w = wa exp(tw) h = ha exp(hw) (2)

Note that the boxes are discouraged from drifting too far

from their anchors due to L2 regularization.

Box Sampling. Processing a typical image of size W =
720, H = 540 with k = 12 anchor boxes gives rise to

17,280 region proposals. Since running the recognition net-

work and the language model for all proposals would be

prohibitively expensive, it is necessary to subsample them.

At training time, we follow the approach of [38] and

sample a minibatch containing B = 256 boxes with at most

B/2 positive regions and the rest negatives. A region is pos-

itive if it has an intersection over union (IoU) of at least 0.7
with some ground-truth region; in addition, the predicted

region of maximal IoU with each ground-truth region is

positive. A region is negative if it has IoU < 0.3 with

all ground-truth regions. Our sampled minibatch contains

BP ≤ B/2 positive regions and BN = B − BP negative

regions, sampled uniformly without replacement from the

set of all positive and all negative regions respectively.

At test time we subsample using greedy non-maximum

suppression (NMS) based on the predicted proposal confi-

dences to select the B = 300 most confident proposals.

The coordinates and confidences of the sampled propos-

als are collected into tensors of shape B × 4 and B respec-

tively, and are output from the localization layer.

Bilinear Interpolation. After sampling, we are left with

region proposals of varying sizes and aspect ratios. In order

to interface with the full-connected recognition network and

the RNN language model, we must extract a fixed-size fea-

ture representation for each variably sized region proposal.

To solve this problem, Fast R-CNN [13] proposes an RoI

pooling layer where each region proposal is projected onto

the W ′×H ′ grid of convolutional features and divided into

a coarse X × Y grid aligned to pixel boundaries by round-

ing. Features are max-pooled within each grid cell, result-

ing in an X × Y grid of output features.

The RoI pooling layer is a function of two inputs: convo-

lutional features and region proposal coordinates. Gradients

can be propagated backward from the output features to the

input features, but not to the input proposal coordinates. To

overcome this limitation, we replace the RoI pooling layer

with with bilinear interpolation [16, 19].

Concretely, given an input feature map U of shape C ×
W ′ ×H ′ and a region proposal, we interpolate the features

of U to produce an output feature map V of shape C×X×
Y . After projecting the region proposal onto U we follow

[19] and compute a sampling grid G of shape X × Y × 2
associating each element of V with real-valued coordinates

into U . If Gi,j = (xi,j , yi,j) then Vc,i,j should be equal to U
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at (c, xi,j , yi,j); however since (xi,j , yi,j) are real-valued,

we convolve with a sampling kernel k and set

Vc,i,j =

W
∑

i′=1

H
∑

j′=1

Uc,i′,j′k(i
′ − xi,j)k(j

′ − yi,j). (3)

We use bilinear sampling, corresponding to the kernel

k(d) = max(0, 1 − |d|). The sampling grid is a linear

function of the proposal coordinates, so gradients can be

propagated backward into predicted region proposal coordi-

nates. Running bilinear interpolation to extract features for

all sampled regions gives a tensor of shape B×C×X×Y ,

forming the final output from the localization layer.

3.1.3 Recognition Network

The recognition network is a fully-connected neural net-

work that processes region features from the localization

layer. The features from each region are flattened into a vec-

tor and passed through two full-connected layers, each us-

ing rectified linear units and regularized using Dropout. For

each region this produces a code of dimension D = 4096
that compactly encodes its visual appearance. The codes

for all positive regions are collected into a matrix of shape

B ×D and passed to the RNN language model.

In addition, we allow the recognition network one more

chance to refine the confidence and position of each pro-

posal region. It outputs a final scalar confidence of each pro-

posed region and four scalars encoding a final spatial off-

set to be applied to the region proposal. These two outputs

are computed as a linear transform from the D-dimensional

code for each region. The final box regression uses the same

parameterization as Section 3.1.2.

3.1.4 RNN Language Model

Following previous work [32, 21, 49, 8, 4], we use the

region codes to condition an RNN language model [15,

33, 44]. Concretely, given a training sequence of to-

kens s1, . . . , sT , we feed the RNN T + 2 word vectors

x−1, x0, x1, . . . , xT , where x−1 = CNN(I) is the region

code encoded with a linear layer and followed by a ReLU

non-linearity, x0 corresponds to a special START token, and

xt encode each of the tokens st, t = 1, . . . , T . The RNN

computes a sequence of hidden states ht and output vectors

yt using a recurrence formula ht, yt = f(ht−1, xt) (we use

the LSTM [18] recurrence). The vectors yt have size |V |+1
where V is the token vocabulary, and where the additional

one is for a special END token. The loss function on the

vectors yt is the average cross entropy, where the targets at

times t = 0, . . . , T − 1 are the token indices for st+1, and

the target at t = T is the END token. The vector y−1 is

ignored. Our tokens and hidden layers have size 512.

At test time we feed the visual information x−1 to the

RNN. At each time step we sample the most likely next

token and feed it to the RNN in the next time step, repeating

the process until the special END token is sampled.

3.2. Loss function

During training our ground truth consists of positive boxes

and descriptions. Our model predicts positions and confi-

dences of sampled regions twice: in the localization layer

and again in the recognition network. We use binary logis-

tic losses for the confidences trained on sampled positive

and negative regions. For box regression, we use a smooth

L1 loss in transform coordinate space similar to [38]. The

fifth term in our loss function is a cross-entropy term at ev-

ery time-step of the language model.

We normalize all loss functions by the batch size and

sequence length in the RNN. We searched over an effec-

tive setting of the weights between these contributions and

found that a reasonable setting is to use a weight of 0.1 for

the first four criterions, and a weight of 1.0 for captioning.

3.3. Training and optimization

We train the full model end-to-end in a single step of opti-

mization. We initialize the CNN with weights pretrained on

ImageNet [39] and all other weights from a gaussian with

standard deviation of 0.01. We use stochastic gradient de-

scent with momentum 0.9 to train the weights of the con-

volutional network, and Adam [23] to train the other com-

ponents of the model. We use a learning rate of 1 × 10−6

and set β1 = 0.9, β2 = 0.99. We begin fine-tuning the lay-

ers of the CNN after 1 epoch, and for efficiency we do not

fine-tune the first four convolutional layers of the network.

Our training batches consist of a single image that has

been resized so that the longer side has 720 pixels. Our

implementation uses Torch 7 [6] and [36]. One mini-batch

runs in approximately 300ms on a Titan X GPU and it takes

about three days of training for the model to converge.

4. Experiments

Dataset. Existing datasets that relate images and natural

language either only include full image captions [3, 52], or

ground words of image captions in regions but do not pro-

vide individual region captions [35]. We perform our ex-

periments using the Visual Genome (VG) region captions

dataset [25] 1. Our version contained 94,313 images and

4,100,413 snippets of text (43.5 per image), each grounded

to a region of an image. Images were taken from the in-

tersection of MS COCO and YFCC100M [47], and annota-

tions were collected on Amazon Mechanical Turk by asking

workers to draw a bounding box on the image and describe

its content in text. Example captions from the dataset in-

clude “cats play with toys hanging from a perch”, “news-

papers are scattered across a table”, “woman pouring wine

into a glass”, “mane of a zebra”, and “red light”.

1Dataset can be downloaded at http://visualgenome.org/.
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A man and a woman sitting 
at a table with a cake. A train is traveling down the tracks near a forest.A large jetliner flying through a blue sky. A teddy bear with 

a red bow on it.

Our Model:

Full Image RNN:

Figure 3. Example captions generated and localized by our model on test images. We render the top few most confident predictions. On

the bottom row we additionally contrast the amount of information our model generates compared to the Full image RNN.

Preprocessing. We collapse words that appear less than

15 times into a special <UNK> token, giving a vocabulary

of 10,497 words. We strip referring phrases such as “there

is...”, or “this seems to be a”. For efficiency we discard all

annotations with more than 10 words (7% of annotations).

We also discard all images that have fewer than 20 or more

than 50 annotations to reduce the variation in the number

of regions per image. We are left with 87,398 images; we

assign 5,000 each to val/test splits and the rest to train.

For test time evaluation we also preprocess the ground

truth regions in the validation/test images by merging heav-

ily overlapping boxes into single boxes with several refer-

ence captions. For each image we iteratively select the box

with the highest number of overlapping boxes (based on

IoU with threshold of 0.7), and merge these together (by

taking the mean) into a single box with multiple reference

captions. We then exclude this group and repeat the process.

4.1. Dense Captioning

In the dense captioning task the model receives a single im-

age and produces a set of regions, each annotated with a

confidence and a caption.

Evaluation metrics. Intuitively, we would like our model

to produce both well-localized predictions (as in object de-

tection) and accurate descriptions (as in image captioning).

Inspired by evaluation metrics in object detection [10,

30] and image captioning [48], we propose to measure the

mean Average Precision (AP) across a range of thresholds

for both localization and language accuracy. For localiza-

tion we use intersection over union (IoU) thresholds .3, .4,

.5, .6, .7. For language we use METEOR score thresholds

0, .05, .1, .15, .2, .25. We adopt METEOR since this metric

was found to be most highly correlated with human judg-

ments in settings with a low number of references [48]. We

measure the average precision across all pairwise settings

of these thresholds and report the mean AP.

To isolate the accuracy of language in the predicted cap-

tions without localization we also merge ground truth cap-

tions across each test image into a bag of references sen-

tences and evaluate predicted captions with respect to these

references without taking into account their spatial position.

Baseline models. Following Karpathy and Fei-Fei [21], we

train only the Image Captioning model (excluding the local-

ization layer) on individual, resized regions. We refer to this

approach as a Region RNN model. To investigate the differ-

ences between captioning trained on full images or regions

we also train the same model on full images and captions

from MS COCO (Full Image RNN model).

At test time we consider three sources of region propos-

als. First, to establish an upper bound we evaluate the model

on ground truth boxes (GT). Second, similar to [21] we use
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Language (METEOR) Dense captioning (AP) Test runtime (ms)

Region source EB RPN GT EB RPN GT Proposals CNN+Recog RNN Total

Full image RNN [21] 0.173 0.197 0.209 2.42 4.27 14.11 210ms 2950ms 10ms 3170ms

Region RNN [21] 0.221 0.244 0.272 1.07 4.26 21.90 210ms 2950ms 10ms 3170ms

FCLN on EB [13] 0.264 0.296 0.293 4.88 3.21 26.84 210ms 140ms 10ms 360ms

Our model (FCLN) 0.264 0.273 0.305 5.24 5.39 27.03 90ms 140ms 10ms 240ms

Table 1. Dense captioning evaluation on the test set of 5,000 images. The language metric is METEOR (high is good), our dense captioning

metric is Average Precision (AP, high is good), and the test runtime performance for a 720 × 600 image with 300 proposals is given in

milliseconds on a Titan X GPU (ms, low is good). EB, RPN, and GT correspond to EdgeBoxes [54], Region Proposal Network [38], and

ground truth boxes respectively, used at test time. Numbers in GT columns (italic) serve as upper bounds assuming perfect localization.

an external region proposal method to extract 300 boxes for

each test image. We use EdgeBoxes [54] (EB) due to their

strong performance and speed. Finally, EdgeBoxes have

been tuned to obtain high recall for objects, but our regions

data contains a wide variety of annotations around groups of

objects, stuff, etc. Therefore, as a third source of test time

regions we follow Faster R-CNN [38] and train a separate

Region Proposal Network (RPN) on the VG regions data.

This corresponds to training our full model except without

the RNN language model.

As the last baseline we reproduce the approach of Fast

R-CNN [13], where the region proposals during training are

fixed to EdgeBoxes instead of being predicted by the model

(FCLN on EB). The results of this experiment can be found

in Table 1. We now highlight the main takeaways.

Discrepancy between region and image level statistics.

Focusing on the first two rows of Table 1, the Region RNN

model obtains consistently stronger results on METEOR

alone, supporting the difference in the language statistics

present on the level of regions and images. Note that these

models were trained on nearly the same images, but one on

full image captions and the other on region captions. How-

ever, despite the differences in the language, the two models

reach comparable performance on the final metric.

RPN outperforms external region proposals. In all cases

we obtain performance improvements when using the RPN

network instead of EB regions. The only exception is the

FCLN model that was only trained on EB boxes. Our hy-

pothesis is that this reflects people’s tendency of annotating

regions more general than those containing objects. The

RPN network can learn these distributions from the raw

data, while the EdgeBoxes method was designed for high

recall on objects. In particular, note that this also allows our

model (FCLN) to outperform the FCLN on EB baseline,

which is constrained to EdgeBoxes during training (5.24

vs. 4.88 and 5.39 vs. 3.21). This is despite the fact that

their localization-independent language scores are compa-

rable, which suggests that our model achieves improve-

ments specifically due to better localization. Finally, the

noticeable drop in performance of the FCLN on EB model

when evaluating on RPN boxes (5.39 down to 3.21) also

suggests that the EB boxes have particular visual statistics,

and that the RPN boxes are likely out of sample for the

FCLN on EB model.

Our model outperforms individual region description.

Our final model performance is listed under the RPN col-

umn as 5.39 AP. In particular, note that in this one cell of

Table 1 we report the performance of our full joint model

instead of our model evaluated on the boxes from the inde-

pendently trained RPN network. Our performance is quite

a bit higher than that of the Region RNN model, even when

the region model is evaluated on the RPN proposals (5.93

vs. 4.26). We attribute this improvement to the fact that our

model can take advantage of visual information from the

context outside of the test regions.

Qualitative results. We show example predictions of the

dense captioning model in Figure 3. The model generates

rich snippet descriptions of regions and accurately grounds

the captions in the images. For instance, note that several

parts of the elephant are correctly grounded and described

(“trunk of an elephant”, “elephant is standing”, and both

“leg of an elephant”). The same is true for the airplane ex-

ample, where the tail, engine, nose and windows are cor-

rectly localized. Common failure cases include repeated

detections (e.g. the elephant is described as standing twice).

Runtime evaluation. Our model is efficient at test time:

a 720 × 600 image is processed in 240ms. This includes

running the CNN, computing B = 300 region proposals,

and sampling from the language model for each region.

Table 1 (right) compares the test-time runtime perfor-

mance of our model with baselines that rely on EdgeBoxes.

Regions RNN is slowest since it processes each region with

an independent forward pass of the CNN; with a runtime of

3170ms it is more than 13× slower than our method.

FCLN on EB extracts features for all regions after a sin-

gle forward pass of the CNN. Its runtime is dominated by

EdgeBoxes, and it is ≈ 1.5× slower than our method.

Our method takes 88ms to compute region proposals, of

which nearly 80ms is spent running NMS to subsample re-

gions in the Localization Layer. This time can be drastically

reduced by using fewer proposals: using 100 region propos-

als reduces our total runtime to 166ms.
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Ranking Localization

R@1 R@5 R@10 Med. rank IoU@0.1 IoU@0.3 IoU@0.5 Med. IoU

Full Image RNN [21] 0.10 0.30 0.43 13 - - - -

EB + Full Image RNN [21] 0.11 0.40 0.55 9 0.348 0.156 0.053 0.020

Region RNN [21] 0.18 0.43 0.59 7 0.460 0.273 0.108 0.077

Our model (FCLN) 0.27 0.53 0.67 5 0.560 0.345 0.153 0.137

Table 2. Results for image retrieval experiments. We evaluate ranking using recall at k (R@K, higher is better) and median rank of the

target image (Med.rank, lower is better). We evaluate localization using ground-truth region recall at different IoU thresholds (IoU@t,

higher is better) and median IoU (Med. IoU, higher is better). Our method outperforms baselines at both ranking and localization.

GT image Query phrases Retrieved Images

Figure 4. Example image retrieval results using our dense captioning model. From left to right, each row shows a ground-truth test image,

ground-truth region captions describing the image, and the top images retrieved by our model using the text of the captions as a query. Our

model is able to correctly retrieve and localize people, animals, and parts of both natural and man-made objects.

4.2. Image Retrieval using Regions and Captions

In addition to generating novel descriptions, our dense cap-

tioning model can support image retrieval using natural-

language queries, and can localize these queries in retrieved

images. We evaluate our model’s ability to correctly retrieve

images and accurately localize textual queries.

Experiment setup. We use 1000 random images from

the VG test set for this experiment. We generate 100 test

queries by repeatedly sampling four random captions from

some image and then expect the model to correct retrieve

the source image for each query.

Evaluation. To evaluate ranking, we report the fraction of

queries for which the correct source image appears in the

top k positions for k ∈ {1, 5, 10} (recall at k) and the me-

dian rank of the correct image across all queries.

To evaluate localization, for each query caption we

examine the image and ground-truth bounding box from

which the caption was sampled. We compute IoU between

this ground-truth box and the model’s predicted grounding

for the caption. We then report the fraction of query cap-

tion for which this overlap is greater than a threshold t for

t ∈ {0.1, 0.3, 0.5} (recall at t) and the median IoU across

all query captions.

Models. We compare the ranking and localization perfor-

mance of full model with baseline models from Section 4.1.

For the Full Image RNN model trained on MS COCO,

we compute the probability of generating each query cap-

tion from the entire image and rank test images by mean

probability across query captions. Since this does not local-

ize captions we only evaluate its ranking performance.

The Full Image RNN and Region RNN methods are

trained on full MS COCO images and ground-truth VG re-

gions respectively. In either case, for each query and test

image we generate 100 region proposals using EdgeBoxes

and for each query caption and region proposal we compute

the probability of generating the query caption from the re-

gion. Query captions are aligned to the proposal of maximal

probability, and images are ranked by the mean probability
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head of a giraffe legs of a zebra red and white sign white tennis shoes hands holding a phone front wheel of a bus

Figure 5. Example results for open world detection. We use our dense captioning model to localize arbitrary pieces of text in images, and

display the top detections on the test set for several queries.

of aligned caption / region pairs.

The process for the full FCLN model is similar, but uses

the top 100 proposals from the localization layer rather than

EdgeBoxes proposals.

Discussion. Figure 4 shows examples of ground-truth

images, query phrases describing those images, and im-

ages retrieved from these queries using our model. Our

model is able to localize small objects (“hand of the clock”,

“logo with red letters”), object parts, (“black seat on bike”,

“chrome exhaust pipe”), people (“man is wet”) and some

actions (“man playing tennis outside”).

Quantitative results comparing our model against the

baseline methods is shown in Table 2. The relatively poor

performance of the Full Image RNN model (Med. rank 13

vs. 9,7,5) may be due to mismatched statistics between its

train and test distributions: the model was trained on full

images, but in this experiment it must match region-level

captions to whole images (Full Image RNN) or process im-

age regions rather than full images (EB + Full Image RNN).

The Region RNN model does not suffer from a mismatch

between train and test data, and outperforms the Full Image

RNN model on both ranking and localization. Compared to

Full Image RNN, it reduces the median rank from 9 to 7 and

improves localization recall at 0.5 IoU from 0.053 to 0.108.

Our model outperforms the Region RNN baseline for

both ranking and localization under all metrics, further re-

ducing the median rank from 7 to 5 and increasing localiza-

tion recall at 0.5 IoU from 0.108 to 0.153.

The baseline uses EdgeBoxes which was tuned to local-

ize objects, but not all query phrases refer to objects. Our

model achieves superior results since it learns to propose

regions from the training data.

Open-world Object Detection Using the retrieval setup de-

scribed above, our dense captioning model can also be used

to localize arbitrary pieces of text in images. This enables

“open-world” object detection, where instead of commit-

ting to a fixed set of object classes at training time we can

specify object classes using natural language at test-time.

We show example results for this task in Figure 5, where we

display the top detections on the test set for several phrases.

Our model can detect animal parts (“head of a giraffe”,

“legs of a zebra”) and also understands some object at-

tributes (“red and white sign”, “white tennis shoes”) and in-

teractions between objects (“hands holding a phone”). The

phrase “front wheel of a bus” is a failure case: the model

correctly identifies wheels of buses, but cannot distinguish

between the front and back wheel.

5. Conclusion

We introduced the dense captioning task, which requires a

model to simultaneously localize and describe regions of an

image. To address this task we developed the FCLN ar-

chitecture, which supports end-to-end training and efficient

test-time performance. Our FCLN architecture is based on

recent CNN-RNN models developed for image captioning

but includes a novel, differentiable localization layer that

can be inserted into any neural network to enable spatially-

localized predictions. Our experiments in both generation

and retrieval settings demonstrate the power and efficiency

of our model with respect to baselines related tp previous

work, and qualitative experiments show visually pleasing

results. In future work we would like to relax the assump-

tion of rectangular proposal regions and to discard test-time

NMS in favor of a trainable spatial suppression layer.
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