
 

 

 

Abstract 

 

Recently, deep convolutional neural networks have been 

applied in numerous image processing researches and have 

exhibited drastically improved performances. In this study, 

we introduce a densely connected hierarchical image 

denoising network (DHDN), which exceeds the 

performances of state-of-the-art image denoising solutions. 

Our proposed network improves the image denoising 

performance by applying the hierarchical architecture of 

the modified U-Net; this enables our network to use a larger 

number of parameters than other methods. In addition, we 

induce feature reuse and solve the vanishing-gradient 

problem by applying dense connectivity and residual 

learning to our convolution blocks and network. Finally, we 

successfully apply the model ensemble and self-ensemble 

methods; this enables us to improve the performance of the 

proposed network. The performance of the proposed 

network is validated by winning the second place in the 

NTRIE 2019 real image denoising challenge sRGB track 

and the third place in the raw-RGB track. Additional 

experimental results on additive white Gaussian noise 

removal also establish that the proposed network 

outperforms conventional methods; this is notwithstanding 

the fact that the proposed network handles a wide range of 

noise levels with a single set of trained parameters. 

 

1. Introduction 

Image denoising is a process that generates a high quality 

image from a low quality image which is degraded by 

external noises such as additive white Gaussian noise 

(AWGN) [1, 15], speckle noise [3, 8], and impulse noise 

[7]. Image denoising is a major research area in image 

processing research field because of its wide range of use 

such as medical image denoising [5, 6, 28], satellite image 

denoising [2, 8], and compression noise denoising [9, 10]. 

Among many uses, object detection [11, 12] and 

recognition [26, 27, 28] in autonomous vehicles significant-

ly increased attention of the researchers on image denoising; 

this is because it is essential to remove noise from an image 

to improve the performance of object recognition. Owing to 

these demands on image denoising research, numerous 

image denoising solutions have been proposed [3, 4, 25]. 

However, there was limited improvement in image 

denoising performance prior to the application of deep 

convolutional neural network (CNN). BM3D [13], which 

was proposed in 2007 by Dabov et al., was the most popular 

image denoising algorithm prior to the application of CNN. 

This reveals that image denoising research lacked progress 

in terms of performance improvement. Recently, the 

performance of numerous image processing solutions, 

including image denoising, improved substantially with the 

application of CNN [20, 22, 23, 24].  

In 2016, Zhang et al. proposed deep CNN for image 

denoising (DnCNN) [15]; it is popular as an early stage 

CNN model for image denoising. They apply batch 

normalization (BN) [21] and residual learning [27] on their 

model and demonstrate improved performance. As an early 
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Sequence 1 from the Kodak dataset 
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Figure 1: Denoising results of the conventional methods and the 

proposed method on noise level σ = 30. 
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stage model, DnCNN exhibits the scope for improvement 

in denoising performance with the application of CNN. In 

the following year, Zhang et al. proposed CNN denoiser for 

image restoration (IRCNN) [16]; it reduces the 

computational complexity with minimizing the perfor-

mance degradation. They apply a dilated filter [37] to their 

seven-layer model to enlarge the receptive field [22]. As a 

result, IRCNN exhibits competent performance with 

considerable reduction in the computational complexity. 

Zhang et al. also proposed fast and flexible denoising 

network (FFDNet) [17]; it can flexibly handle a wide range 

of noise levels with a single image denoising network. They 

indicate that conventional image denoising models learn to 

remove noise from images with a specific noise level, 

which compels them to train multiple models for different 

noise levels [3, 15, 25]. To solve this problem, FFDNet 

trains their model using training images with different noise 

levels to handle multiple noise levels. However, FFDNet 

exhibits their limitation when removing noise of images 

with unspecified noise level because FFDNet requires the 

noise level of the image as an input data. Another approach 

to solving the limitation of conventional denoising 

networks wherein they require a model for each noise level 

was proposed by Lefkimmiatis. He proposed universal 

denoising network (UDN) [18], which halves the range of 

noise level and covers half range of the noise level with a 

single model. However, UDN also requires the noise level 

of images as an input data. Liu et al. proposed multi-level 

wavelet CNN (MWCNN) [19], which applies modified U-

Net [28] architecture and wavelet transform [2] to their 

model. Whereas they enlarge the receptive field of their 

model while reducing its computational complexity, the 

limitation that their model is effective only for single noise 

level remained unsolved. Moreover, their application of 

wavelet transform can result in performance degradation by 

compelling their network to use feature information of the 

wavelet transform. 

In this paper, we propose a CNN-based denoising 

solution that overcomes the limitations of the conventional 

methods and exceeds the performance of state-of-the-art 

denoising solutions. The proposed network applies the 

hierarchical structure of the modified U-Net, which enables 

our network to efficiently use limited memory. By reducing 

the memory used for storing information of feature maps, 

the proposed network can use a larger number of 

parameters than the conventional methods; thereby, our 

network exhibits better results than those of conventional 

methods. As our network has a larger number of parameters 

than conventional methods, it can suffer from the 

vanishing-gradient problem [40]. We apply dense 

connectivity [26] and residual learning [27] to our 

convolution block and network and successfully resolve the 

problem. Moreover, we train our model with noisy input 

images with a wide range of noise levels to enable our 

model to handle multiple noise levels with a single set of 

trained parameters. Most conventional denoising models 

exhibit a limitation wherein they can handle only one noise 

level with a single trained model. Notwithstanding the 

contribution of FFDNet and UDN toward overcoming this 

limitation, they are constrained by their need for the noise 

level of the input image as an input data. To solve this 

problem completely, we train our model to handle a wide 

range of noise levels without any input data of input noise 

level. Although our network handles multiple noise levels 

with a single set of trained parameters, the proposed 

network outperforms conventional solutions trained for a 

specific noise level. The proposed network exhibits further 

improvement in performance when it is trained for a 

specific noise level. Finally, we apply the self-ensemble [34] 

and model ensemble [35, 36] methods, enabling our 

network to improve the quality of output images. 

Our main contributions are summarized as follows: 

 

 We apply the hierarchical architecture of the modified 

U-Net, enabling our network to efficiently use limited 

memory. Thereby, our model can use a larger number 

of parameters than conventional networks. 

 We apply dense connectivity and residual learning to 

our novel convolution blocks and network architecture 

to remove the noise of input images accurately and solve 

the vanishing-gradient problem. 

 We apply the self-ensemble and model ensemble 

methods; this enables our proposed network to improve 

the objective and subjective quality of output images. 

 We train our model to handle a wide range of the noise 

levels with a single set of trained parameters. As our 

network does not require information of input noise 

level, we completely overcome the limitation of 

conventional methods. 

2. Related works 

2.1. Hierarchical structure 

As image processing researches are starting to apply 

CNN, it is important to use the limited memory efficiently 

to deepen networks. One of the solutions of conventional 

image processing algorithms is hierarchical architecture [38, 

39]. Hierarchical structures have been used for numerous 

image processing researches to reduce the computational 

complexity and memory consumption of algorithms. For 

CNN models, Ronneberger et al. proposed U-Net [28]; it 

applies the concept of a hierarchical structure to the CNN 

model. A U-Net consists of two paths: contracting path and 

expanding path. In the contracting path, the U-Net halves 

the size of the feature map with a 2 ×  2 max pooling 

operation with stride 2 while increasing the number of 

feature maps to two times. As a result, each downsampling 

step halves the amount of data the U-Net should handle. It 

enables the U-Net to use a larger number of parameters than 



 

 

other models. Inspired by the U-Net, our proposed network 

applies the hierarchical structure with a modification.  

2.2. Dense connectivity and residual learning 

As CNN models deepened, another problem exhibited by 

numerous models is the vanishing-gradient problem [40], 

which is a critical issue because it completely hinders the 

models from training the parameters as the models 

deepened. To solve this problem, He et al. proposed deep 

residual learning for image recognition (ResNet) [27], and 

Huang et al. proposed densely connected convolutional 

network (DenseNet) [26]. ResNet solves the vanishing-

gradient problem by applying skip connection, which 

enables a network to learn residual functions. Similar to 

ResNet, DenseNet solves this problem by connecting layers; 

however, they connect each layer to all the other layers in a 

feed-forward fashion to induce the network to reuse the 

information of previous feature maps. Combining the two 

methods, Zhang et al. proposed residual dense network for 

image restoration (RDN) [1]. Inspired by these methods, we 

organize our block and network structure using residual 

learning and dense connectivity.  

2.3. Self-ensemble and model ensemble methods 

The ensemble method is a technique that yields better 

output by combining more than one output. From among 

numerous methods, we apply the self-ensemble [20, 34] and 

model ensemble [35, 36] methods. In the self-ensemble 

method, the outputs of the transformed input images are 

averaged. It is a highly efficient ensemble method because 

it does not require any additional training process. In this 

study, we average eight output images of eight input images; 

these are generated by a combination of a flip and rotation 

of an input image. In the model ensemble method, the 

outputs of more than two separate networks are averaged. 

Unlike the self-ensemble method, it is necessary to train 

more than two networks to apply this method. In this study, 

we train two same models with training conditions that are 

identical except for the initialization of the parameters to 

apply the model ensemble method. 

3. Proposed network architecture 

Figure 2 shows the architecture of the proposed densely 

connected hierarchical image denoising network (DHDN). 

As mentioned above, the proposed network applies the 

hierarchical architecture of the modified U-Net [28]. As the 

input image comes in, the proposed network first executes 

a 1 × 1 convolution operation followed by a parametric 

rectified linear unit (PReLU) [41] to generate feature maps 

for our proposed densely connected residual block (DCR 

block). This initial convolution layer enables us to apply 

local residual learning in the DCR block. More importantly, 

we can use both grayscale and color images as the input of 

the proposed network without modifications because of the 

initial convolution layer. As mentioned in Figure 2, the 

initial convolution layer generates 128 feature maps for the 

DCR block. Then, there exist two DCR blocks in each level 

of our proposed network. The architecture of our proposed 

DCR block is discussed in Section 3.1. Next, the output 

feature maps of the two DCR blocks are downsampled by a 

factor of two by the downsampling block. When 

downsampling the feature maps, we double the number of 

output feature maps to prevent a severe decrease in the 

amount of information. The architecture of the 

downsampling block is discussed in Section 3.1. Our 

proposed network follows the above procedure three times 

along the contracting path; this causes our network to 

consider four resolution levels of feature maps. Then, our 

proposed network follows the expanding path, which is the 

 
 

Figure 2: Architecture of proposed DHDN. The size of the input image is set to 64 × 64 as an example. 

 



 

 

inverse process of the contracting path. After the operations 

of the two DCR blocks, the output feature maps of each 

level are upsampled by a factor of two by the upsampling 

block. When upsampling the feature maps, the number of 

feature maps is reduced to one-fourth because we apply the 

sub-pixel interpolation method [24] to our upsampling 

block. To prevent a severe decrease in the number of feature 

maps and induce our proposed network to use the 

information of the previous feature maps, the output of the 

upsampling block is connected to the input of the 

downsampling block which is located on the same level 

with the upsampling block by dense connectivity [26]. 

However, for the lowest level, we connect the input of the 

upsampling block to the output of the downsampling block. 

The architecture of the upsampling block is discussed in 

Section 3.1. Similarly, as in the contracting path, our 

network follows the above procedure three times along the 

expanding path. After the expansion procedure, the 

proposed network computes the final 1 ×  1 convolution 

followed by PReLU [41] to generate the final output. The 

number of feature maps is set to one when the input is a 

grayscale image and three when it is a color image. Finally, 

we apply global residual learning [27] to our proposed 

network for generating output images by applying learned 

residual information to the input images. 

3.1. Proposed block architectures 

The proposed network architecture consists of three 

types of blocks: DCR block, downsampling block, and 

upsampling block. Figure 3 shows a architecture of DCR 

block; here, conv3 denotes a 3 × 3 convolution layer, and 

𝑓  denotes the number of feature maps. The DCR block 

consists of three convolution layers followed by PReLU. 

Each feature map is connected by dense connectivity to 

induce our model to use the information of previous feature 

maps. The growth rate [26] of DCR block was set to half of 𝑓 ; Moreover, the final convolution layer generates 𝑓 

feature maps as an output so that the DCR block can apply 

local residual learning. By applying dense connectivity and 

local residual learning, we can improve the information 

flow so that our proposed network can circumvent the 

vanishing-gradient problem [40] through an accurate 

removal of the noise. 

Figure 4 (a) shows the architecture of the downsampling 

block.  The downsampling block consists of two layers: a 

2×2 max pooling layer, and a 3 ×  3 convolution layer 

followed by PReLU. As the feature maps enter as the input, 

a 2 × 2 max pooling operation with stride 2 decreases the 

size of the feature maps. Then, the 3 × 3 convolution layer 

doubles the number of feature maps to prevent severe 

decrease in the amount of information. Thus, the output 

feature maps of the downsampling block are of one-fourth 

the size of the input feature maps, with two times as many 

feature maps.  

Figure 4 (b) shows the architecture of the upsampling 

block. The upsampling block consists of two layers: a 3×3 

convolution layer with PReLU and a sub-pixel interpolation 

layer [24]. Unlike U-Net [28], which uses a 2 ×  2 

deconvolution layer, the proposed upsampling block uses a 

sub-pixel interpolation layer [24] to expand the size of the 

feature maps more efficiently and accurately. Before the 

sub-pixel interpolation layer expands the size of the feature 

maps, the 3 × 3 convolution layer refines the feature maps 

to enable the sub-pixel interpolation layer to interpolate the 

feature maps accurately. Thus, the output feature maps of 

the upsampling block are two times larger in size than the 

input feature maps, with one-fourth the number of channels 

of the input feature maps. 

3.2. Multiple noise level denoising 

Conventional CNN-based denoising solutions exhibit a 

critical limitation wherein they are required to train a model 

for each noise level [15, 16, 25]. Although there were 

attempts to overcome this limitation through certain 

methods [17, 18], they cannot completely circumvent the 

external noise level information. To solve this problem, we 

train our model with training data that has random noise 

level so that our model can handle a wide range of noise 

levels without external input information. As our proposed 

network has an adequate amount of learnable parameters 

that can remove the noise accurately regardless of the noise 

level, our proposed network can handle a wide range of 

noise levels without external information of the noise level. 

The experimental results demonstrate that our proposed 

model can handle a wide range of noise levels with better 

 
Figure 3: Architecture of DCR block. 

 

 
(a) 

 

 
(b) 

Figure 4: The architecture of the downsampling block and 

upsampling block: (a) Downsampling block and (b) Upsampling 

block. 



 

 

performance than the conventional methods. To illustrate 

the superiority of our proposed network, we also train our 

proposed network with a fixed noise level and demonstrate 

further improved results. 

4. Experiments 

4.1. Training details 

There are numerous training sets for CNN-based image 

processing methods. Recently, Timofte et al. released the 

DIV2K dataset [29] for image restoration. The DIV2K 

training dataset consists of 800 high quality images. The 

resolution of each of these images is similar to the FHD 

resolution (1920 × 1080). The DIV2K validation dataset 

consists of 100 images; the quality of each image is similar 

to that of the training dataset. As DIV2K training and 

validation datasets provide an adequate amount of high 

quality images, numerous state-of-the-art image processing 

solutions use the DIV2K dataset for their network [20, 23]. 

For a similar reason, we use the DIV2K training and 

validation datasets for our proposed network. When 

training our model, we extract patches from the training 

images; the width and height of each patch is set to 64 pixels. 

For the global noise level model, which is trained to handle 

a wide range of noise levels, we randomly add AWGN to 

our training patches with the noise level ranging from 5 to 

50. For the fixed noise level model, we train our model with 

noise levels of 10, 30, and 50. The input patches of the 

proposed network are randomly flipped and rotated for data 

augmentation, and the batch size of the training patches is 

set to 16. We use the Adam optimizer [42] with an initial 

learning rate of 1e-4. We halve the learning rate for every 

three epochs and we use L1 loss for the loss function [33]. 

For the test datasets, we use the Kodak dataset [30] and 

BSD68 dataset [31]; these are used by numerous state-of-

the-art denoising networks [18, 19]. The Kodak dataset 

consists of 24 images, each of which has a resolution of 

768×512. The BSD68 dataset consists of 68 images, each 

of which has a resolution of 321 × 481. 

4.2. Performance comparison 

We compare our proposed network with BM3D [13, 14], 

DnCNN [15], IRCNN [16], and FFDNet [17], which are 

state-of-the-art image denoising solutions. To compare the 

objective performance, we determined the peak-signal-to-

noise-ratio (PSNR) [44] and the structural similarity (SSIM) 

[43] of the result images. Table 1 lists the average PSNR 

and SSIM results of the conventional methods and the 

proposed method for color images. In Table 1, DHDN_g 

denotes the proposed model trained for the global noise 

level; moreover, DHDN_g+ denotes the result of applying 

the self-ensemble method to the DHDN_g model. Similarly, 

Method 

Kodak [30] BSD68 [31] σ = 10 σ = 30 σ = 50 σ = 10 σ = 30 σ = 50 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Noisy 28.24 0.6607 18.93 0.2755 14.87 0.1557 28.30 0.7128 19.03 0.3380 15.00 0.2007 

CBM3D [14] 36.57 0.9432 30.89 0.8459 28.62 0.7772 35.89 0.9512 29.71 0.8426 27.36 0.7632 

DnCNN [15] 36.58 0.9446 31.28 0.8579 28.94 0.7915 36.12 0.9536 30.32 0.8611 27.92 0.7882 

IRCNN [16] 36.70 0.9448 31.24 0.8581 28.92 0.7939 36.06 0.9533 30.22 0.8607 27.86 0.7889 

FFDNet [17] 36.80 0.9462 31.39 0.8596 29.10 0.7949 36.14 0.9540 30.31 0.8603 27.96 0.7881 

DHDN_g 37.30 0.9509 31.98 0.8743 29.72 0.8170 36.05 0.9532 30.12 0.8579 27.71 0.7874 

DHDN_g+ 37.31 0.9510 31.99 0.8744 29.73 0.8170 36.27 0.9556 30.41 0.8654 28.02 0.7965 

DHDN_f 37.33 0.9508 31.95 0.8736 29.67 0.8160 36.45 0.9572 30.41 0.8639 28.02 0.7961 

DHDN_f+ 37.37 0.9511 32.01 0.8744 29.74 0.8175 36.48 0.9574 30.54 0.8671 28.01 0.7950 
 

Table 1: Average PSNR (dB) and SSIM results of conventional methods and proposed method for color images. The best result is 

highlighted with red and the second best result is highlighted with blue. 
 

Method 

Kodak [30] BSD68 [31] σ = 10 σ = 30 σ = 50 σ = 10 σ = 30 σ = 50 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Noisy 28.22 0.6573 18.87 0.2729 14.78 0.1998 28.26 0.7094 18.97 0.3348 14.92 0.1984 

BM3D [13] 34.39 0.9127 29.12  0.7877  26.98  0.7140  33.32  0.9158  27.75  0.7731  25.60  0.6858  

DnCNN [15] 34.90  0.9223  29.62 0.8071  27.49  0.7368  33.88  0.9270  28.36  0.7999  26.23  0.7189  

IRCNN [16] 34.76  0.9215  29.52  0.8056  27.45  0.7342  33.74  0.9262  28.26  0.7989  26.19  0.7171  

FFDNet [17] 34.81  0.9226  29.69  0.8123  27.62  0.7437  33.76  0.9266  28.39  0.8032  26.29  0.7245  

DHDN_g 34.43  0.9153  29.93  0.8211  27.88  0.7528  33.42  0.9213  28.55 0.8110  26.44 0.7296  

DHDN_g+ 34.54 0.9174  30.00  0.8237  27.93  0.7546  33.50  0.9230  28.59 0.8120  26.47  0.7308  

DHDN_f 35.22  0.9278  30.06  0.8239  27.95  0.7579  34.02  0.9301  28.54  0.8103  26.38  0.7310  

DHDN_f+ 35.24  0.9281  30.11 0.8250  28.01 0.7591  34.04  0.9303  28.58  0.8116  26.43 0.7324  
 

Table 2: Average PSNR (dB) and SSIM results of conventional methods and proposed method for grayscale images. The best result is 

highlighted with red and the second best result is highlighted with blue. 

 



 

 

DHDN_f denotes the proposed model trained for the fixed 

noise level, and DHDN_f+ denotes the result of applying 

the self-ensemble method to the DHDN_f model. In Table 

1 and 2, the best result is highlighted with red, and the 

second best result is highlighted with blue. Note that we 

apply only the self-ensemble method [34] in the AWGN 

denoising experiment. The model ensemble method [35, 36] 

is applied only for the NTIRE 2019 denoising challenge [45] 

models. As illustrated in Table 1, the proposed network 

outperforms the conventional methods for all the conditions. 

For the Kodak [30] sequence, the proposed network 

outperforms the conventional methods by up to 0.74 dB for 

PSNR and 0.0078 for SSIM, when the noise level of the 

input image is 10. The proposed network outperforms the 

conventional methods by up to 1.1 dB for PSNR and 0.0285 

for SSIM when the noise level is 30, and 1.11 dB for PSNR 

and 0.1398 for SSIM when the noise level is 50. The 

proposed network exhibits further improvement in 

performance when it is trained for the fixed noise level. The 

proposed network trained with the fixed noise level 

outperforms the proposed network with the global noise 

level by up to 0.06dB for PSNR. For the BSD68, [31] the 

proposed network outperforms the conventional methods 

by up to 0.38 dB for PSNR and 0.0044 for SSIM when the 

noise level of the input image is 10. The proposed network 

outperforms the conventional methods by up to 0.7 dB for 

PSNR and 0.0228 for SSIM when the noise level is 30, and 

0.66 dB for PSNR and 0.0333 for SSIM when the noise 

level is 50. The proposed network exhibits further 

improvement in performance when it is trained for the fixed 

noise level. However, when the noise level is 50, the 

proposed network trained for the fixed noise level exhibits 

performance similar to that of the global noise level model. 

Moreover, the performance deteriorates when the self-

ensemble method is applied. There can be two reasons for 

this phenomenon. One is that the performance is completely 

saturated for the proposed network so that the ensemble 

method exhibits similar or lower performance. The other 

reason is that training the network with multiple noise 

levels enhanced the performance for the high noise levels. 

In [22], the authors demonstrate that training the model with 

multiple scales can enhance the performance for large 

scales. Similarly, training the model with multiple noise 

levels enhances the performance for high noise levels; 

moreover, the experimental results reveals higher 

performance improvement for the high noise levels than for 

the low noise level when comparing the global noise level 

model with the fixed noise level model. 

Table 2 presents the average PSNR and SSIM results of 

the conventional methods and of the proposed method for 

 

     
GT 

(PSNR(dB)/SSIM) 
Noisy 

(28.61 / 0.1991) 

BM3D [13] 

(35.39 / 0.8156) 

DnCNN [15] 

(35.61 / 0.8265) 

IRCNN [16] 

(35.53 / 0.8269) 

     
Sequence 15 from Kodak dataset [30] FFDNet [17] DHDN_g DHDN_g+ DHDN_f DHDN_f+ 

 (35.74 / 0.8318) (35.93 / 0.8359) (36.00 / 0.8383) (35.94 / 0.8420) (35.96 / 0.8426) 
 

Figure 5: Denoising results of conventional methods and proposed method on noise level σ = 30. 
 

 

     
GT 

(PSNR(dB)/SSIM) 
Noisy 

(28.19 / 0.2900) 

BM3D [13] 

(31.67 / 0.7345) 

DnCNN [15] 

(31.90 / 0.7723) 

IRCNN [16] 

(31.81 / 0.7711) 

     
Test011 from BSD68 dataset [31] FFDNet [17] DHDN_g DHDN_g+ DHDN_f DHDN_f+ 

 (32.04 / 0.7830) (32.62 / 0.7972) (32.66 / 0.8006) (32.50 / 0.8033) (32.51 / 0.8049) 
 

Figure 6: Denoising results of conventional methods and proposed method on noise level σ = 50. 

 



 

 

grayscale images. As illustrated in Table 2, the proposed 

network outperforms the conventional methods except for 

the case wherein the noise level is 10. The proposed 

network exhibited up to 0.38 dB lower PSNR and 0.0049 

lower SSIM when the noise level is 10. However, when the 

noise level is 30, the proposed network outperforms the 

conventional methods by up to 0.88 dB for PSNR and 0.036 

for SSIM for the Kodak dataset, and 0.84dB for PSNR and 

0.0389 for SSIM for the BSD68 dataset. When the noise 

level is 50, the proposed network outperforms the 

conventional methods by up to 0.95 dB for PSNR and 

0.0406 for SSIM for the Kodak dataset, and 0.87 dB for 

PSNR and 0.045 for SSIM for the BSD68 dataset. It is 

additional evidence that training the network with multiple 

noise levels enhances the performance for the high noise 

levels [22]. The effect of the enhancement is substantial 

enough for the global noise level model to outperform the 

fixed noise level model in certain cases when the noise level 

is high. In addition, FFDNet [17], which is trained with 

multiple noise levels, exhibits a similar phenomenon. 

FFDNet exhibits lower performance than the fixed noise 

level models such as DnCNN [15] and IRCNN [16] when 

the noise level is low. However, as the noise level increased, 

FFDNet exceeds the performance of the fixed noise level 

models. It also illustrates that training the model with 

multiple noise levels enhances the performance for the high 

noise levels. 

To compare the subjective performance, we compare the 

result images of each method. Figure 5 and 6 show the 

grayscale result images of the conventional methods and the 

proposed method. As shown in Figure 5, the conventional 

methods cannot restore the details of the clothe pattern, 

whereas the proposed method restores the patterns. In 

Figure 6, the conventional methods fail to restore the 

windows of the sequence. However, the proposed method 

restores the windows accurately for both the global noise 

level model and fixed noise level model. Figure 7 and 8 

show the color result images of the conventional methods 

and proposed method. As shown in Figure 7, the proposed 

method recovers the pattern accurately, whereas the 

conventional methods yield blurred results. Similarly, 

unlike the conventional methods, which are not able to 

restore the details of the window shutter, the proposed 

method restores the details irrespective of whether it is 

trained with multiple noise levels or the fixed noise level in 

Figure 8. 
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 (34.68 / 0.8547) (34.73 / 0.8537) (34.86 / 0.8593) (34.86 / 0.8602) (34.92 / 0.8627) 
 

Figure 7: Denoising results of the conventional methods and the proposed method on noise level σ = 30. 
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Figure 8: Denoising results of conventional methods and proposed method on noise level σ = 50. 

 



 

 

The proposed network ourperforms the conventional 

methods owing to a large number of the parameters, and it 

was possible by applying the hierarchical structure of the 

modified U-Net [28], which enabled our proposed network 

to use limited memory efficiently. For example, DnCNN, 

IRCNN, FFDNet, and DHDN have 558K, 188K, 851K, and 

168M of parameters, respectively. Notwithstanding the 

number of parameters, comparison of multiply-accumulate 

operation (Mac) exhibits that our proposed network has a 

competitive computational complexity. While RDN [1] has 

90.13G Macs with 22M parameters, our proposed network 

has 63.75G Macs with 168M parameters. 

4.3. NTIRE 2019 real image denoising challenge 

The proposed method is initially proposed to participate in 

NTIRE 2019 real image denoising challenge [45]. The 

purpose of the challenge is to remove unspecified noise 

from images. NTIRE 2019 real image denoising challenge 

consists of two tracks: raw-RGB track and sRGB track. As 

a team named Eraser, we submitted two denoising networks 

for each track: DHDN and deep iterative down-up network 

(DIDN), respectively. The results of the challenge establish 

the superiority of our proposed networks for removing 

unspecified noise from images. Table 3 illustrates the 

performance of the proposed models and the models of the 

other participants. As these tables illustrate, DHDN took the 

second place in the sRGB track and third place in the raw-

RGB track. DHDN was trained with smartphone image 

denoising dataset (SIDD) [32] while participating in the 

challenge. SIDD consists of 320 images, each of whose 

resolution is similar to the UHD  resolution (3840 × 2160). 

All the training condition was identical to that of the 

AWGN experiment except for the fact that we applied the 

model ensemble method [35, 36] while participating in the 

challenge. Figure 9 shows the challenge-result images of 

the proposed method on the validation dataset of SIDD. In 

Figure 9, DHDN++ denotes the result of the proposed 

method with the application of the model ensemble method. 

As shown in Figure 9, our proposed network successfully 

removes unspecified noise from noisy images. 

5. Conclusion 

In this study, we proposed a denoising network with a 

hierarchical structure. By applying the hierarchical 

structure of the modified U-Net, our proposed network 

efficiently used limited memory by decreasing the size of 

the feature maps. When upsampling the feature maps, we 

applied the sub-pixel interpolation method, enabling our 

model to interpolate the feature maps accurately and 

efficiently. Moreover, our proposed DCR block success-

fully removed the noise from the images and solved the 

vanishing-gradient problem by applying dense connectivity 

and residual learning. Finally, we applied the self-ensemble 

method and model ensemble method to improve the 

performance of the proposed network. As a result, our 

proposed network attained high ranks in NTIRE 2019 real 

image denoising challenge, establishing its superiority for 

removing unspecified noise from images. Additional 

experiments on AWGN demonstrated that our proposed 

network outperforms the conventional methods, handling a 

wide range of noise levels with a single set of trained 

parameters. The proposed network exhibited further higher 

performance when it was trained for the fixed noise level.  
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GT 
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(29.14 / 0.1657) 

DHDN++ 

(38.62 / 0.8922) 
 

Figure 9: NTIRE 2019 real image denoising challenge results of proposed method on validation dataset of SIDD with unspecified noise. 

 sRGB track Raw-RGB track 

Rank Team Model PSNR SSIM Team Model PSNR SSIM 

1 1st 1st 39.932 0.9736 1st 1st 52.114 0.9969 

2 Eraser DHDN 39.883 0.9731 Eraser DIDN 52.107 0.9969 

3 Eraser DIDN 39.818 0.9730 Eraser DHDN 52.092 0.9968 

4 4th 4th 39.675 0.9726 4th 4th 51.947 0.9967 

5 5th 5th 39.611 0.9726 5th 5th 51.939 0.9967 
 

Table 3: Result PSNR (dB) and SSIM of NTIRE 2019 real image 

denoising challenge. 
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