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Abstract

Tasks that involve high-resolution dense prediction re-

quire a modeling of both local and global patterns in a large

input field. Although the local and global structures of-

ten depend on each other and their simultaneous modeling

is important, many convolutional neural network (CNN)-

based approaches interchange representations in different

resolutions only a few times. In this paper, we claim the im-

portance of a dense simultaneous modeling of multiresolu-

tion representation and propose a novel CNN architecture

called densely connected multidilated DenseNet (D3Net).

D3Net involves a novel multidilated convolution that has

different dilation factors in a single layer to model differ-

ent resolutions simultaneously. By combining the multidi-

lated convolution with the DenseNet architecture, D3Net

incorporates multiresolution learning with an exponentially

growing receptive field in almost all layers, while avoiding

the aliasing problem that occurs when we naively incorpo-

rate the dilated convolution in DenseNet. Experiments on

the image semantic segmentation task using Cityscapes and

the audio source separation task using MUSDB18 show that

the proposed method has superior performance over state-

of-the-art methods.

1. Introduction

Dense prediction tasks such as semantic segmenta-

tion and audio source separation typically accept high-

dimensional input data and produce predictions with the

same (or similar) dimensions. To efficiently handle high-

dimensional data and model the context that lies in a large

field, various neural network architectures have been pro-

posed [24, 38, 47, 44]. In particular, convolutional neu-

ral networks (CNNs) have become an essential component,

and a variety of advanced CNN architectures have been pro-

posed to improve performance on the basis of motivations

such as making the networks deeper while improving a gra-

dient flow [13, 16, 18], multibranch convolution [40, 39]

and explicitly modeling interchannel dependences of con-

volutional features [14]. One key component of these archi-

tectures is a skip connection that creates short paths from

early layers to later layers. In [16], a simple yet power-

ful skip connectivity pattern that connects all preceding lay-

ers, called DenseNet, is proposed. Such dense connectivity

allows maximum information flow, making CNNs deeper

while keeping the model size small by efficiently reusing

intermediate representations of preceding layers.

One of the benefits of a deeper CNN is its larger recep-

tive field that allows a large context to be modeled, which is

important for tasks that require the utilization of a wide-

area or long-term dependence in a high-resolution input.

For example, sufficiently large parts of objects have to be

modeled for semantic segmentation [2, 50, 1, 55, 56, 33,

47, 8, 52, 57], whereas modeling a long-term dependence is

shown to be important for various audio tasks such as audio

event recognition and source separation [43, 42, 41]. Al-

though the receptive field grows linearly with respect to the

number of layers stacked, the simple stacking of convolu-

tion layers is not the optimal way to increase it, as too many

layers are required to cover a sufficiently large input, which

makes the network training difficult. A popular approach

to incorporate a large context with a reasonable model size

is to repeatedly downsample intermediate network outputs

and apply operations in lower resolution representations. In

dense prediction tasks, the low-resolution representations

are again upsampled to recover the resolution lost while car-

rying over the global perspective from downsampled layers

[28, 29, 24, 47, 41]. Another approach is dilated convo-

lution, where dilation factors are set to grow exponentially

as layers are stacked; and therefore, the networks cover a

large receptive field with a small number of layers. Dilated

convolution is shown to be effective for many tasks that re-

quire high-resolution dense predictions [50, 3, 46]. Most

previously proposed CNN architectures interchange infor-

mation in different resolutions only a few times, e.g., once

or a few times at the end of the network [24, 55, 56], or once

at the beginning or end of each module [29, 47]. However,

since the local and global patterns can depend on each other,

i.e., a local structure can be more accurately estimated by

knowing a global structure and vice versa, a more frequent

(dense) interchange of information among representations

in multiple resolutions could be beneficial.

In this work, we propose a novel CNN architecture for
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Figure 1. Illustration of D2 block. (a) The connectivity pattern is the same as that in DenseNet except that the D2 block involves the

multidilated convolution. (b) Illustration of the multidilated convolution at the third layer. The production of a single feature map involves

multiple dilation factors depending on the input channel. For clarity, we omit the normalization and nonlinearity from the illustration.

densely incorporating representations in multiple resolu-

tions. We combine advantages of the dense skip connec-

tions and dilated convolution, and propose a novel net-

work architecture called the multidilated dense block (D2

block). To appropriately combine them, we propose a mul-

tidilated convolution layer that has multiple dilation factors

within a single layer. A dilation factor depends on which

skip connection the feature maps come from, as shown in

Fig.1. Multidilated convolution can prevent the occurrence

of aliasing that occurs when a standard dilated convolution

is applied to feature maps whose receptive field is smaller

than the dilation factor. Furthermore, we propose a nested

architecture of multidilated dense blocks to effectively re-

peat dilation factors multiple times with dense connections

that ensure sufficient depth, which is required for model-

ing each resolution. We call the nested architecture densely

connected multidilated DenseNet (D3Net) 1.

Although neural network architecture search (NAS) has

been actively investigated to automatically find a suitable

network architecture [21, 26], it is often difficult to identify

the key element for achieving good performance from the

learnt architecture. We believe that this work provides an-

other insight into the design of CNN architectures for dense

prediction tasks, namely, the frequent interchange of infor-

mation in multiple resolutions.

The contributions of this work are as follows: (i) We

claim the importance of the dense multiresolution repre-

sentation learning and propose the D2 block that combines

dense skip connections with dilated convolution. The D2

block incorporates a novel multidilated convolution that en-

ables multiresolution information interchange in most of the

layers while avoiding the aliasing problem that occurs in a

naive way of incorporating dilation in DenseNet. (ii) We

further introduce a nested architecture of multidilated dense

blocks called the D3 block to effectively apply different di-

lation factors multiple times to provide a sufficient model-

ing capacity in each resolution. (iii) We conduct intensive

1Code is available at https://github.com/sony/ai-

research-code/tree/master/d3net

experiments on two dense prediction tasks in different do-

mains (image semantic segmentation and audio source sep-

aration) and show the effectiveness of the proposed meth-

ods. The proposed architecture exhibits superior perfor-

mance over state-of-the-art baselines in both tasks, demon-

strating its generality against the task type and data domain.

2. Related works

The motivation of our work is to combine the advantages

of dense skip connectivity and dilated convolution to enable

multiresolution modeling with an exponentially growing re-

ceptive field while appropriately avoiding the aliasing prob-

lem. Here, we review related works on these aspects.

Dense skip connection Dense skip connections from early

layers promote the reuse of feature maps, efficient parame-

ter usage, and gradient information flow. DenseNet has the

most dense connectivity pattern (i.e., all layers with same

feature-map size are connected to each other) and shows

excellent performance in image classification tasks [16].

Larsson et al. proposed another simple connectivity pattern

called FractalNet, in which layers are connected in fractal

manner [18]. Dual path networks combine DenseNet and

ResNet to enjoy the advantage of the dense connectivity

with the concatenation of feature maps and residual blocks,

which involve the addition of feature maps [5].

Large receptive field The importance of a large recep-

tive field was addressed in many tasks that involve high-

dimensional data including image super-resolution [34], se-

mantic segmentation [1, 55, 56, 2, 50], and audio source

separation [41]. The theoretical receptive field size of CNNs

does not directly represent the context size that CNNs use.

Zhou et al. showed that the empirical receptive field of

CNNs is much smaller than the theoretical one, especially

in deeper layers [58]. Therefore, network architectures that

efficiently incorporate context information in a large field

attract great interest and many approaches have been pro-

posed including the incorporation of the dilated convolution

[50, 3], the aggregating of downsized feature maps [55], and
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(a)                                                                        (b) (c)

Figure 2. Strategies for multiscale representation integration. The yellow box indicates a composition of convolution layers, which operates

in a single resolution. The green box depicts a layer that integrates feature maps from different resolutions. (a) Feature maps in multiple

scales are integrated at the end [24]. (b) Feature maps in the lower scale are sequentially recover a higher scale by integrating the feature

maps from the higher scale in the early layer [29, 27]. (c) Features in different resolutions are first processed in parallel and integrated at

the end of each stage [38, 47].

the use of the attention mechanism [56, 8, 57, 54].

Dilated convolution and aliasing Aliasing is a well-

known effect in signal processing, in which the signal

over the Nyquist frequency becomes indistinguishable with

lower frequency after (sub-)sampling. The aliasing causes

artifacts such as the Moiré pattern in the image domain or

audible noise in the audio domain. Therefore, a low-pass fil-

ter for anti-aliasing is typically applied before sampling to

remove the signal with a frequency higher than the Nyquist

frequency. The effect of pooling-based subsampling in

CNN-based speech recognition was studied and a perfor-

mance drop caused by aliasing was observed [12]. The di-

lated convolution involves the subsampling of input feature

maps and can cause aliasing [48]. To avoid this problem,

most CNN architectures that involve dilated convolution are

carefully designed to allow earlier layers to learn appropri-

ate anti-aliasing filter if necessary, i.e., standard convolu-

tions are applied before dilated convolutions with fixed dila-

tion factor [1, 49, 48, 19], or the dilation factors is gradually

increased as the layer goes deeper [50, 46]. A naive combi-

nation of DenseNet with dilation has already been proposed

[10], where dilated convolutions are used and the dilation

factor was set to one at the initial layer and doubled as the

layer goes deeper. However, this approach has significant

aliasing due to skip connections, as discussed in Sec. 3.

Multiresolution modeling Fusing local and global infor-

mation is important especially for dense prediction tasks,

since both local and global structures have to be recovered.

In the fully convolutional network (FCN) [24], feature maps

in different resolutions from early layers are aggregated at

the end of the network (Fig. 2(a)). Another common strat-

egy used in, for instance, UNet [29] and Hourglass[27], is

the sequential upsampling of feature maps while combining

the feature maps from early downsampling paths with skip

connection, as shown in Fig. 2(b), which aggregates mul-

tiresolution information at few concatenation points. HR-

Net [38, 47] involves another strategy for the aggregation of

feature maps (Fig. 2(c)). It is composed of several stages:

in each stage, feature maps in different resolutions are first

processed by CNNs individually and then aggregated by

matching the resolution with other resolutions with up- or

downsampling at the end of each stage. In these approaches,

feature maps in different resolutions are fused only a few

times. Another stage-wise aggregation was proposed in

[51], where the feature maps in different resolutions are

aggregated iteratively and hierarchically. In contrast, our

method fuses feature maps with multiple resolutions in al-

most all layers (except the first layer of D2 blocks and few

other layers such as 1× 1 convolution layers). Multibranch

convolution can also be considered as multiresolution mod-

eling when the convolution in each branch operates in a dif-

ferent resolution. In [35, 3, 49, 32], dilated convolutions

with different dilation factors are applied in parallel to the

same feature maps and combined in a multibranch convolu-

tion module called the dilated inception (DI) or SDC layer.

The set of dilation factors is the same for all modules. In

[19], PSConv arrange multiple dilation factors periodically

along with input channels. In contrast, the dilation factors

in multidilated convolution depends on the skip connection

as shown in Fig. 1, and their range grows exponentially

as the layer goes deeper. Moreover, DI, SDC, and PSConv

themselves cannot solve the aliasing problem and they re-

quire several layers before these modules to circumvent it.

Therefore, they cannot fuse very local information in the

first few layers, and multiresolution modeling can be per-

formed only on the feature maps that are anti-aliased by

the first several layers that possibly remove high-frequency

components. In contrast, proposed D3 block can be directly

applied to the input, which enables to fuse very local and

global information. MSDenseNet [15] also involves a fre-

quent two resolution fusion. However, the architecture is

not suitable for dense prediction tasks as there is no infor-

mation flow from low- to high-resolution feature maps. In

Res2Net [11], multi-scale feature maps in a single resolu-

tion are aggregated.

3. Multidilated convolution for DenseNet

In DenseNet, the outputs of the lth convolutional layer xl
are computed using 3× 3 convolution filters wl and outputs
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(a) Naïve dilated convolution (b) Multidilated convolution

Figure 3. Visualization of receptive fields at the third layer of (a)

naive integration of dilated convolution and (b) proposed multidi-

lated convolution (in the case of one dimension). The filter size is

3. Red dots denote the points on which filters are applied, and the

colored background shows the receptive field covered by the red

dots. In (a), convolution kernels for skip connections have blind

spots in their receptive fields, while the multidilated convolution

(b) appropriately changes the dilation factor to avoid them.

of all preceding layers as

xl = ψ([x0, x1, · · · , xl−1])⊛ wl, (1)

where ψ() denotes the composite operation of batch nor-

malization and ReLU nonlinearity, [x0, x1, · · · , xl−1] the

concatenation of feature maps from 0, · · · , l − 1 layers (x0
is the input), and ⊛ the convolution. xl>0 has k feature

maps and k is the growth rate. A naive way of incor-

porating dilated convolution is to replace the convolution

⊛ with the dilated convolution ⊛d with the dilation factor

d = 2l−1. However, this causes a severe aliasing prob-

lem; for instance, at the third layer, input is subsampled

at four sample intervals without any anti-aliasing filtering

because of the skip connections. Only the path that passes

through all convolution operations without any skip connec-

tion covers the input field without omission, and all other

paths from skip connections have blind spots in their recep-

tive fields that inherently make it impossible for appropri-

ate ant-aliasing filters to be learned in the preceding layers

(Fig. 3(a)). To overcome this problem, we propose the mul-

tidilated convolution ⊛
m
l

defined as

Yl ⊛
m
l kl =

l−1∑

i=0

yi ⊛di
wi

l , (2)

where Yl = [y0, · · · , yl−1] = ψ([x0, · · · , xl−1]) is the

composite layer output, wi
l

the subset of filters that corre-

sponds to the ith skip connection, and di = 2i. As depicted

in Fig. 3(b), DenseNet with the proposed multidilated con-

volution has different dilation factors depending on which

layer the channel comes from. This allows the receptive

field to cover the input field without the loss of coverage
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Figure 4. D3 block densely connects D2 blocks with repeated di-

lation patterns.

between the samples to which the filters are to be applied

and, hence, to learn proper filters to prevent aliasing.

One advantage of the multidilated convolution is its ca-

pability to integrate information from the very local to

global information of an exponentially large receptive field

within a single layer. Combined with the dense skip con-

nection topology, D2 blocks can perform multiresolution

modeling in all layers (except the first layer). This fast in-

formation flow with dense skip connections and the dense

(frequent) information interchange among representations

in a wide range of resolutions provide a more flexible capa-

bility of modeling a relationship between local and global

structures.

Note that the multidilation convolution is not equivalent

to the multibranch convolution, where convolutions with

different dilation factors are applied to the same input fea-

ture maps, similar to the Inception block [40, 39], as it again

causes the aliasing problem when combined with the dense

skip connection topology.

4. D3Net

Although the D2 block provides an exponentially large

receptive field as the number of layers increases, it is also

worthwhile to provide sufficient flexibility to transform fea-

ture maps in each resolution. In WaveNet [46], dilation fac-

tors are reset to one after several layers are stacked and re-

peated; that is, the dilation factor in the lth layer is given

by dl = 2l−1 mod M , where mod is the modulo operation

andM is the number of layers at which the dilation factor is

doubled. Inspired by this work, we propose a nested archi-

tecture of D2 blocks, as shown in Fig. 4. D2 blocks are con-

sidered single composite layers and are densely connected

in the same way as within the D2 block itself. With the M

D2 blocks nested, the multidilated convolution operates at

each resolution at least M times, providing a flexible mod-

eling capability at each resolution. We refer to this nested

architecture as the D3 block.

Inspired by the DenseNet-BC architecture [16], we also

employ two channel-reduction mechanisms to mitigate the

excessive increase in the number of channels and thus im-

prove computational efficiency. First, we adopt bottleneck

layers that reduce the number of input channels using 1× 1
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convolution at the beginning of each D2 block. In our ex-

periment, bottleneck layers were set to produce 4k feature

maps, where k is the growth rate, and such layers are placed

only when the input channel to the D2 block is greater than

4k. Second, we compress the output channels at the end of

each D2 block by 1 × 1 convolution to produce cm chan-

nels, where 0 < c < 1 is the compression rate and m is

the number of channels before the compression. Alterna-

tively, we can simply pass the outputs of the last N layers

to the next D2 block. In our experiment, we used the former

approach for semantic segmentation and the latter approach

for audio source separation. Note that without the channel

reduction layer, the D3 architecture is reduced to standard

dense connections with repeated multidilation factors.

5. Implementation details

Our proposed D3 block can be integrated with CNN

architectures commonly used in image classification (e.g.,

VGG [36], ResNet [13]), image segmentation (e.g., FCN

[24] and deconvolution-based approaches [28, 29, 9]), and

audio tasks [44] by replacing the series of convolution lay-

ers in the same resolution with a D3 block. We call a CNN

architecture that uses D3 blocks as D3Net. When D3Net in-

volves downsampling between D3 blocks, we adopt a tran-

sition layer which is composed of a 1× 1 convolution layer

followed by 2 × 2 average pooling. In the transition layer,

the number of output channels is compressed to half of the

input channels, as performed in DenseNet [16]. In sum-

mary, a D3 block is characterized with a set of parameters

(M,L, k,B, c), where M denotes the number of D2 blocks

in a D3 block (Fig. 4), L the number of layers in each D2

block, k the growth rate, B the number of bottleneck layer

channels (which is set to 4k in our experiments), and c the

compression rate.

6. Experiments

We evaluate the proposed method on two dense predic-

tion tasks, namely, image semantic segmentation and audio

source separation, to show the generality of the proposed

approach against the task and data domain.

6.1. Semantic segmentation

The goal of semantic segmentation is to assign a class

label to each pixel, as shown in Fig. 5. Since our con-

tribution is the CNN architecture, we mainly focus on the

evaluation of backbone networks. To this end, unless oth-

erwise noted, all experiments including baselines are con-

ducted under the same training/testing setup using the MM-

Segmentation2 framework.

Dataset. We use the Cityscapes dataset [6], which con-

2https://github.com/open-mmlab/mmsegmentation

(a) Image                               (b) Ground truth                            (c) D3Net

Figure 5. Qualitative examples of Cityscapes results on val set.

tains 5,000 images collected from street scenes in 50 dif-

ferent cities with high quality pixel-level annotation. The

images are divided into 2,975, 500, 1,525 for training, val-

idation, and testing, respectively. We did not use coarsely

annotated images. Following the evaluation protocol in [6],

19 categories are used for evaluation and we report the mean

of class-wise intersection over union (mIoU).

Model architecture D3Net consists of two 3 × 3 con-

volution layers followed by four D3 blocks with transition

layers in between. Here, we refer to the downsample ra-

tio as “scale”; therefore D3 blocks operate in four different

scales. Outputs of D3 blocks in each scale are combined

and passed to a decode head in the same way as in [24, 47],

i.e., feature extraction layers formed by 1 × 1 convolution

are applied to the outputs of each D3 block to collect fea-

tures from all scales, and the features in a lower scale are

rescaled by bilinear upsampling to match the highest scale.

Finally, another 1× 1 convolution is performed on the con-

catenation of the rescaled features to mix the information in

four representations.

We consider two D3Nets. The smaller architecture, de-

noted as D3Net-S, employs D3 blocks of (M,L, k, c) =
(4, 8, 36, 0.2), while the larger architecture, D3Net-L, uses

D3 blocks of (M,L, k, c) = (4, 10, 64, 0.2). The number

of feature maps extracted from each scale using the fea-

ture extraction layers are (32, 40, 64, 128) for D3Net-S, and

(32, 48, 96, 192) for D3Net-L.

Training We follow the same training protocol as in

[55, 56]. The data augmentation of random horizontal flip,

random cropping (from 1024 × 2048 to 512 × 1024), and

random scaling in the range of [0.5, 2] are performed. The

stochastic gradient descent with a momentum of 0.9 and a

weight decay of 0.0005 is used for optimization. The “poly”

learning rate policy with a base learning rate of 0.01 and a

power of 0.9 is used for dropping the learning rate. All the
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Table 1. Ablation study on Cityscapes val set. D-ResNet stands

for Dilated-ResNet
Backbone #param. mIoU

D-ResNet-50 [13] 49.5M 59.7

D-ResNet-101 [13] 68.5M 62.4

HRNetV2-W18 [47] 9.6M 62.7

HRNetV2-W48 [47] 65.9M 67.7

D3Net-S without dilation 9.7M 62.3

D3Net-S standard dilation 9.7M 57.9

DenseNet-133 (k = 36) 10.2M 57.6

DenseNet-189 (k = 23) 10.0M 54.9

D3Net-S 9.7M 65.1

D3Net-L 38.7M 68.1

models are trained on the training set with a batch size of 8

and the synchronized batch normalization [53].

Ablation study First, we focus on the evaluation of the

proposed multidilated convolution with dense connections

(D2 block) and the nested architecture (D3 block). To this

end, we consider four baselines. To highlight the effect

of the multidilated convolution, we consider models with

the same architecture as D3Net-S but replace the multidi-

lated convolution with a standard convolution (without dila-

tion) and a standard dilated convolution, whose dilation fac-

tors d are equal to the maximum dilation factor in the cor-

responding multidilated convolution layer in D3Net, e.g.,

d = (1, 2, 4, 8, 1, 2, 4, · · · ). For the evaluation of the nested

architecture, we consider a model that replaces the D3 block

with a standard dense block (with BC layers) [16]. For a fair

comparison, we design the dense block to have a similar pa-

rameter size to D3Net-S by either keeping the growth rate

and fitting the number of layers, or keeping the number of

layers nearly the same and fitting the growth rate. This re-

sults in two DenseNet baselines, DenseNet-133 that has 16

layers for each Dense block with the growth rate of 36, and

DenseNet-189 that has 23 layers for each dense block with

the growth rate of 23 (the number after DenseNet- indicates

the total number of layers). For reference, we also evalu-

ate commonly used backbone networks. All networks are

trained from scratch for 40,000 iterations. Table 1 shows

the mIoU scores on the validation set.

D3Net-S (with the proposed multidilated convolution)

performs significantly better than D3Net-S without dilation

and D3Net-S with the standard dilation, improving mIoU

by 2.8 points. This highlights the effectiveness of the mul-

tidilated convolution in dense connections. Interestingly,

D3Net-S with the standard dilation performs significantly

worse than the model without dilation. This is probably

due to the aliasing problem since a large dilation factor is

applied directly to the initial feature map, as discussed in

Sec. 3. D3Net-S without dilation outperforms DenseNet-

133 by 4.7 points, where both models have the same growth

rate and no dilation. This could be because the receptive

Table 2. Cityscapes val set results. No test-time augmentation

(multiscale, flipping) is applied. † denotes results reported in ref-

erence papers.

Method Backbone #param. mIoU

DeepLabV3 [1] D-ResNet-50 68.1M 79.3

DeepLabV3 [1] D-ResNet-101 87.1M 80.2

DeepLabV3 [1] ResNeSt-101 [54] 90.8M 79.7

DeepLabV3+† [4] Xception-71 43.5M 79.6

PSPNet [55] D-ResNet-101 68.0M 79.8

PSANet [56] D-ResNet-101 78.1M 79.3

Auto-DeepLab-L† [21] - 44.4M 80.3

FCN D-ResNet-50 49.5M 73.6

FCN D-ResNet-101 68.5M 75.1

FCN HRNetV2-W18 [47] 9.6M 78.7

FCN HRNetV2-W48 [47] 65.9M 79.9

OCRNet HRNetV2-W48 [47] 70.3M 80.7

FCN D3Net-S 9.7M 79.5

FCN D3Net-L 38.7M 80.6

OCRNet D3Net-L 42.3M 81.2

Table 3. Results on Cityscapes test set. Baseline results are from

original papers. All models are trained on the train set without

using coarse data.

Backbone mIoU

PSPNet [55] D-ResNet-101 78.4

PSANet [56] D-ResNet-101 78.6

PAN [20] D-ResNet-101 78.6

AAF [17] D-ResNet-101 79.1

HRNetV2 [47] HRNetV2-W48 80.4

D3Net (FCN) D3Net-L 80.8

field of DenseNet-133 covers the entire input only in the

last few layers, which did not provide a sufficient capacity

to model global information. On the other hand, D3Net-

S without dilation still largely outperforms DensNet-189,

which has almost the same number of layers as D3Net-

S. This is probably due to followings: the growth rate in

DenseNet-189 had to be a smaller to have the similar pa-

rameter size and the receptive field of DenseNet-189 is

still smaller than D3Net-S without dilation as DenseNet in-

volves more 1×1 convolutions, which does not increase the

receptive field. These results highlight the efficiency of the

proposed nested architecture, the D3 block.

D3Nets-L exhibits the best performance among all base-

lines with a much smaller number of parameters than cur-

rent state-of-the-art backbone networks, such as HRNetV2-

W48. D3Net-S outperforms dilated ResNet101 with nearly

a seven times smaller parameter size, showing the parame-

ter efficiency of the proposed architecture.

Comparison with state-of-the-art approaches Next, we

compare D3Net with state-of-the-art approaches in Table

2. Again, our focus is on the evaluation of D3Net as a

backbone, and we train all models in the same setup (ex-

pect methods denoted with †) to eliminate the effect of hy-

perparameter difference that mainly comes from computa-

tional resources such as the batch size. We initialize all
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backbone networks with weights pretrained on ImageNet

[30] and trained 80K iterations. Among backbone net-

works in the FCN approach, D3Net-L shows superior per-

formance over all baselines with a much smaller number of

parameters than HRNetV2p-W48[47], D-ResNet101, or D-

ResNet50. By combining with the object-contextual repre-

sentation (OCR) scheme [52], D3Net further improves the

performance, obtaining the best result of 81.2% in this ex-

periment. In Table 3, we also show the results for the test

set. All results are with six scales and flipping. For this

experiment, we train D3Net-L for 160K iterations with a

batch size of 12. All other settings are the same as those in

previous experiments. Baseline results are from the original

papers. The proposed method again outperforms all base-

lines that were trained on the train set.

6.2. Audio source separation

To show the generality of the proposed method in a dif-

ferent domain, we conduct experiments on an audio source

separation task, where the goal is to separate source signals

from their mixture. Recently, CNN-based methods have

been intensively studied [25, 22, 37, 31, 7, 41]. In most

methods, a time domain signal is transformed by short-

time Fourier transform (STFT) and source separation is per-

formed in the magnitude STFT domain. In this case, the

audio source separation problem is similar to an image seg-

mentation problem, i.e., a model accepts two-dimensional

magnitude STFT maps and predicts the source magnitude

for each time-frequency bin (cf. pixels in an image), as

shown in Fig. 6. However, there are three major differences.

First, source separation is a regression problem rather than

a pixel-wise classification problem, as the model is trained

to estimate the source magnitude STFT. Second, when mul-

tiple sources are in the same time-frequency bin, they are

summed in a complex STFT domain, unlike objects in an

image, where a front object can hide an object at the back

(occlusion). Since only magnitude is considered in complex

STFT, the mixing behavior becomes more complex. Third,

in the STFT domain, the translation invariant property is not

globally satisfied along with the frequency axis, although

local translation along with frequency and translation along

the time axis are invariant.

Dataset We use the MUSDB18 dataset prepared for the

SiSEC 2018 challenge [23]. In this dataset, approximately

10 hours of professionally recorded 150 songs in the stereo

format at 44.1kHz are available. For each song, a mixture

and its four sources, bass, drums, other, and vocals, are pro-

vided; thus, the task is to separate the four sources from the

mixture. We adopted the official split of 100 and 50 songs

for the Dev and Test sets, respectively. STFT magnitude

frames of the mixture, windowed at 4096 samples with 75%

overlap, with data augmentation [45] are used as inputs.

Mixture

Source separation

Source 2

Source N

…

Source 1

high

low

full

Figure 6. Illustration of audio source separation in STFT domain.

Table 4. SDRs for MUSDB18 dataset. ’*’ denotes the method

operating in the time domain.

SDR in dB

Method Vocals Drums Bass Other Acco. Avg.

TAK1 (MMDenseLSTM) [41] 6.60 6.43 5.16 4.15 12.83 5.59

UHL2 (BLSTM ensemble) [45] 5.93 5.92 5.03 4.19 12.23 5.27

GRU dilation 1 [22] 6.85 5.86 4.86 4.65 13.40 5.56

UMX [37] 6.32 5.73 5.23 4.02 - 5.33

demucs* [7] 6.29 6.08 5.83 4.12 - 5.58

Meta-TasNet* [31] 6.40 5.91 5.58 4.19 - 5.52

Nachmani et al. * [25] 6.92 6.15 5.88 4.32 - 5.82

D3Net without dilation 6.86 6.37 4.97 4.21 13.19 5.60

D3Net standard dilation 7.12 6.61 5.19 4.53 13.39 5.86

D3Net (proposed) 7.24 7.01 5.25 4.53 13.52 6.01

Training The four networks for each source instrument

are trained to estimate the source spectrogram by minimiz-

ing the mean square error with the Adam optimizer for 50

epochs. The patch length is set to 256 frames; thus, the di-

mensions of input were 2×256×2049. The batch size is set

to 6. The learning rate is initially set to 0.001 and annealed

to 0.0001 at 40 epochs.

Model architecture Following [44, 41], in which the best

results obtained in SiSEC 2018 were reported, we use the

multiscale multiband architecture in which band-dedicated

modules and a full band module, each with a bottleneck

encoder–decoder architecture with skip connections, are

placed. The network configuration is shown in Table 5.

The network outputs are used to calculate the multichannel

Wiener filter (MWF) to obtain the final separations, as com-

monly performed in frequency domain audio source separa-

tion methods [41, 45, 22, 31].

Results The signal-to-distortion ratios (SDRs) of the pro-

posed method and existing state-of-the-art methods are

shown in Table 4. The SDRs are computed using the mu-

seval package [23] and median SDRs are reported as in the

SiSEC 2018 challenge [23]. TAK1 [41] and UHL2 [45] are

the two best performing methods in SiSEC 2018 (among

submissions that do not use external data). The proposed

D3Net exhibited the best performance for vocals, drums

and accompaniment (the summation of drums, bass, and
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Table 5. Proposed architectures. All D3 blocks have 3×3 kernels with growth rate k, L layers, and M D2 blocks.

Layer scale
Vocals, Other Drums Bass

low high full low high full low high full

band split index

1

1-256 257-1600 - 1-128 128-1600 - 1-192 192-1600 -

conv (t×f,ch) 3×3, 32 3×3, 8 3×3, 32 3×3, 32 3×3, 8 3×3, 32 3×3, 32 3×3, 8 3×3, 32

D3 block 1 (k,L,M) 16, 5, 2 2, 1, 1 13, 4, 2 16, 5, 2 2, 1, 1 13, 4, 2 16, 5, 2 2, 1, 1 10, 4, 2

down sample 1

2

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2

D3 block 2 (k,L,M) 18, 5, 2 2, 1, 1 14, 5, 2 18, 5, 2 2, 1, 1 14, 5, 2 18, 5, 2 2, 1, 1 10, 5, 2

down sample 1

4

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2

D3 block 3 (k,L,M) 20, 5, 2 2, 1, 1 15, 6, 2 20, 5, 2 2, 1, 1 15, 6, 2 18, 5, 2 2, 1, 1 12, 6, 2

down sample 1

8

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2

D3 block 4 (k,L,M) 22, 5, 2 2, 1, 1 16, 7, 2 22, 4, 2 2, 1, 1 16, 7, 2 20, 5, 2 2, 1, 1 14, 7, 2

down sample 1

16

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2

D3 block 5 (k,L,M) - - 17, 8, 2 - - 16, 8, 2 - - 16, 8, 2

up sample
1

8

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2

concat. - - D3 block 4 - - D3 block 4 - - D3 block 4

D3 block 6 (k,L,M) - - 16, 6, 2 - - 16, 6, 2 - - 14, 6, 2

up sample
1

4

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2

concat. D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3

D3 block 7 (k,L,M) 20, 4, 2 2, 1, 1 14, 5, 2 20, 4, 2 2, 1, 1 14, 6, 2 18, 4, 2 2, 1, 1 12, 6, 2

up sample
1

2

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2

concat. D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2

D3 block 8 (k,L,M) 18, 4, 2 2, 1, 1 12, 4, 2 18, 4, 2 2, 1, 1 12, 4, 2 16, 4, 2 2, 1, 1 8, 4, 2

up sample

1

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2

concat. D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1

D3 block 9 (k,L,M) 16, 4, 2 2, 1, 1 11, 4, 2 16, 4, 2 2, 1, 1 11, 4, 2 16, 4, 2 2, 1, 1 8, 4, 2

concat. (axis)

1

freq - freq - freq -

concat. (axis) channel channel channel

d2 block (k,L) 12, 3 12, 3 12, 3

gate conv (t×f,ch) 3× 3, 2 3× 3, 2 3× 3, 2

other) and performed comparably to the best method for

other. The average SDR of four instruments is 6.01dB,

which is significantly better than all baselines. To the best of

our knowledge, this is the best result reported to date. The

primaly difference between MMDenseLSTM (TAK1) and

the proposed method is that MMDenseLSTM incorporates

LSTM units to further expand the receptive field, whereas

the proposed method uses the multidilated convolution and

the nested architecture. A comparison of these methods in-

dicates the effectiveness of the D3 block. On the other hand,

GRU dilation 1 [22] consists of dilated convolution and di-

lated GRU units without a down–up-sampling path. This

also highlights the effectiveness of the dense multiresolu-

tion modeling of D3Net. For bass, approaches that operate

in the time domain perform better, as they are capable of

recovering the target phase, which is easier in the low fre-

quency range. Among the frequency domain approaches,

D3Net performs the best.

We also conduct an ablation study to validate the ef-

fectiveness of the multidilated convolution. By replac-

ing the multidilated convolution with the standard convo-

lution, we obtain comparable results to the best performing

model in SiSEC2018, TAK1. When we replace the mul-

tidilated convolution with the standard dilated convolution,

we obtain a decent improvement over D3Net without di-

lation even though the aliasing problem arises. However,

the proposed multidilated convolution clearly outperforms

the standard dilated convolution, showing the importance

of handling the aliasing problem in order to incorporate di-

lation in DenseNet.

7. Conclusion

In this paper, we showed the importance of a dense

multiresolution representation learning in dense prediction

tasks and proposed a novel CNN architecture called D3Net.

A novel multidiated convolution is introduced to enable

the dense multiresolution modeling by combining with a

dense skip connection topology while avoiding the alias-

ing problem that occurs when a standard dilated convolu-

tion is applied. We further propose a nested architecture

of the densely connected multidilated convolution block to

improve the parameter efficiency and provide a sufficient

capacity to learn representation in each resolution. Exten-

sive experiments in image semantic segmentation and au-

dio source separation tasks confirm the effectiveness and

generality of the proposed method in different types of task

and domain. D3Net outperforms state-of-the-art backbones

on Cityscapes with a much smaller number of parameters.

In audio source separation on MUSDB18, D3Net achieved

state-of-the-art performance. We believe that this work pro-

vides an insight into another important property for design-

ing CNNs: the frequency of interchanging local and global

information in multiple resolutions.
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