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Abstract

We propose a densely semantically aligned person re-

identification framework. It fundamentally addresses the

body misalignment problem caused by pose/viewpoint vari-

ations, imperfect person detection, occlusion, etc. By lever-

aging the estimation of the dense semantics of a person im-

age, we construct a set of densely semantically aligned part

images (DSAP-images), where the same spatial positions

have the same semantics across different images. We de-

sign a two-stream network that consists of a main full image

stream (MF-Stream) and a densely semantically-aligned

guiding stream (DSAG-Stream). The DSAG-Stream, with

the DSAP-images as input, acts as a regulator to guide

the MF-Stream to learn densely semantically aligned fea-

tures from the original image. In the inference, the DSAG-

Stream is discarded and only the MF-Stream is needed,

which makes the inference system computationally efficient

and robust. To the best of our knowledge, we are the first

to make use of fine grained semantics to address the mis-

alignment problems for re-ID. Our method achieves rank-1

accuracy of 78.9% (new protocol) on the CUHK03 dataset,

90.4% on the CUHK01 dataset, and 95.7% on the Mar-

ket1501 dataset, outperforming state-of-the-art methods.

1. Introduction

Person re-identification (re-ID) aims to match a specific

person across multiple camera views or in different occa-

sions from the same camera view. It facilitates many im-

portant applications, such as cross-camera tracking [40].

This task is challenging due to large variations on person

pose and viewpoint, imperfect person detection, cluttered

background, occlusion, and lighting differences, etc. Many

of these factors result in spatial misalignment of the human

body as shown in Fig. 1, where the same spatial positions do

not correspond to the same semantics. The misalignment is

one of the key challenges [30, 33, 53, 37, 48, 34, 57], which

compromises performance.
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Figure 1. Examples to illustrate the challenges of spatial misalign-

ment in person re-ID caused by (a) different camera viewpoints,

(b) different poses, (c) imperfect person detection, (d) misalign-

ment within a local part, (e) cluttered background, (f) occlusion.

Some paradigms employ the convolutional neural net-

works to learn global feature representation in an end-to-

end manner [1, 43, 8, 4, 2]. However, the capability of the

global representations is limited by: 1) the lack of emphasis

on local differences [48], and 2) the absence of any explicit

mechanism to tackle the misalignment [2].

In recent years, many efforts have been made to alleviate

these problems [33, 53, 37, 48, 34, 19]. To make the features

focus on some local details, some works make a straightfor-

ward partition of the person image into a few fixed rigid

parts (e.g., horizontal stripes) and learn detailed local fea-

tures [5, 37, 18, 3, 35, 39]. However, such a partition can-

not well align the human body parts. Some works have at-

tempted the use of pose (which identifies different types of

parts, e.g., head, arm, etc.) to localize body parts for learn-

ing part-aligned features [47, 15, 49, 33, 53, 42]. However,

the body part alignment based on pose is too coarse to have

satisfactory alignment. As shown in Fig. 1 (d), even for the

same type of parts, there is still spatial misalignment within

the parts, where the human semantics are different for the

same spatial positions. It becomes critical to design an ar-

chitecture which enables the efficient learning of densely
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Figure 2. Illustration of the dense correspondences between a 2D

person image and a surface-based canonical representation in the

UV space. The person surface is partitioned into 24 body regions.

Each region can be warped to a DSAP-image and the fine-grained

(dense) semantics are spatially aligned for different person images.

semantically aligned features for re-ID.

In this paper, we propose a novel densely semanti-

cally aligned person re-ID framework, which fundamentally

enables fine-grained semantic alignment and semantically

aligned feature learning in re-ID.

First, we propose performing dense semantic alignment

of the human body on a canonical space to address the

misalignment challenges in person re-ID. We are inspired

by the dense semantics estimation work of DensePose [9],

which is capable of predicting the fine-grained pixel-level

semantics of a person. Different from pose with only a

limited number of coarse key joints, dense semantics estab-

lishes dense correspondences between a 2D person image

and a 3D surface-based canonical representation of the hu-

man body [9, 10]. As illustrated in Fig. 2, the 3D surface

of a person is segmented into 24 semantic body regions.

Within a region, the semantics of each position is identified

by a two-dimensional UV coordinate. Based on the esti-

mated dense semantics in terms of UV coordinate values

(on the U,V map), the original input image is warped to 24

densely semantically aligned part images (DSAP-images)

in the UV space. In this way, person images with different

viewpoints, poses, and backgrounds are semantically well

aligned. Thus, such representation has the inherent merits

for addressing misalignment challenges. Note that not only

the coarse body part regions are aligned, but also the con-

tents within a part are densely aligned at the pixel level.

Second, we propose a new framework intending to fully

exploit the densely semantically aligned representations for

person re-ID. For dense semantics estimation, since the

person in a 2D image is a projection from a 3D person,

nearly half of the 3D surface is invisible and thus cannot

be detected from the 2D image (see the examples of the 24

DSAP-images in Fig. 2, where many of the DSAP-images

do not have valid information). Besides, there are usually

estimation errors, including missing detection, especially

on the images of the re-ID dataset which usually have low

resolution and blurring artifacts. It remains challenging to

design an effective network to fully exploit the semanti-

cally aligned information as there are loss of information

and noise there.

In our design, we leverage the densely semantically

aligned information to drive the main network to learn se-

mantically aligned features from the original image. As

shown in Fig. 3, our network consists of a main full im-

age stream (MF-Stream) and a densely semantically aligned

guiding stream (DSAG-Stream). For the MF-Stream, the

full image is taken as the input. For the DSAG-Stream, the

24 DSAP-images obtained from the dense semantic align-

ment module are taken as the input. Rather than mak-

ing the features of the two streams both have re-ID abil-

ity, the DSAG-Stream acts as a regulator to guide the MF-

Stream to learn semantically aligned features. We achieve

this by element-wise fusing of the MF-Stream features and

the DSAG-Stream features, with supervisions added on the

fused features. End-to-end joint training enables the inter-

action and joint optimization of the two streams.

In summary, we have made three main contributions.

• We propose making use of dense semantic alignment for

person re-ID, addressing the misalignment challenges.

• A densely semantically aligned deep learning based

framework is proposed for person re-ID. To the best of

our knowledge, our proposed framework is the first one

to make use of fine grained semantics to address the mis-

alignment problems for effective person re-ID. We pro-

pose an effective fusion and supervision design to fa-

cilitate semantically aligned feature learning. It enables

the interaction between the DSAG-Stream and the MF-

Stream during the learning process. This greatly en-

hances the power of the MF-Stream even though its input

images are not semantically aligned.

• The DSAG-Stream, as a regulator, can be removed during

the inference without sacrificing the performance. This

also removes the dependency on the performance of the

dense semantics estimator during interference, making

the inference model more computationally efficient and

robust to dense semantics estimation errors.

We perform extensive ablation studies and the experi-

mental results demonstrate that our proposed architecture

with the dense semantic alignment are very powerful. We

achieve state-of-the art performance on the Market-1501,

CUHK03, and CUHK01 datasets, and competitive perfor-

mance on DukeMTMC-reID. On the CUHK03 dataset, our

performance significantly outperforms the previous meth-

ods, by at least +10.9%/+7.8% in Rank-1/mAP accuracy.
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2. Related Work

Body part/pose-aligned approaches. Spatial misalign-

ment is ubiquitous and is one of the key challenges in re-

ID. In the early works, some patch-based methods perform

patch-level matching to address patch-wise misalignment

[23, 51, 52]. To avoid mismatched patches with similar ap-

pearances [30], human semantics of part/pose is introduced

so that the similarity matching is performed between the

semantically corresponding parts [6, 46]. In recent years,

human semantics in terms of part/pose is widely used to lo-

calize body parts for part-aligned deep feature learning and

matching [47, 15, 49, 33, 53, 42]. In [42], body poses/parts

are first detected and deep neural networks are designed for

representation learning on both the local parts and global

region. Some works rely on constrained attention selection

mechanisms from human mask/part/pose to implicitly cali-

brate misaligned images [32, 25, 45, 14, 34].

All the above works aim to address misalignment at the

coarse body part level. However, there is still misalignment

within each part. Our work intends to fundamentally ad-

dress the misalignment problem. It differs from previous

works in three main aspects. First, our approach intends to

fully exploit the fine-grained semantically aligned represen-

tations. Second, we leverage the semantically aligned rep-

resentations, which play the role of regulators, to guide the

semantic feature learning from the original image. Third,

during inference, we do not need the DSAG-Stream, mak-

ing our model computationally efficient and robust.

Local and global based approaches. Many approaches

make use of both the global and local feature to simultane-

ously exploit their advantages [3, 39, 18, 42, 33, 49, 48].

Global features learned from the full image intend to cap-

ture the most discriminative clues of appearance but may

fail to capture discriminative local details. Thus, part-based

features are exploited as a remedy. Wang et al. design a

multiple granularity network, which consists of one branch

for global features and two branches for local feature repre-

sentations [39]. In [48], the image feature map is rigidly di-

vided into local stripes and a shortest path loss is introduced

to align local stripes. This aids the global feature learn-

ing by means of sharing weights of the backbone network.

However, the alignment is still too coarse without consid-

ering person dense semantics. We leverage the densely se-

mantically aligned representation to guide the learning of

both the global features and part-aware features.

Approaches based on joint multi-loss learning. Zheng

et al. suggest that person re-ID lies in between image clas-

sification and instance retrieval [55]. The classification task

and ranking task are complementary to each other. Re-

cently, some approaches [43, 21, 4, 39] optimize the net-

work simultaneously with both classification loss and rank-

ing loss, e.g., triplet loss [29, 13]. Similarly, we leverage

the complementary advantages of the two tasks.

3. Densely Semantically Aligned Person Re-ID

We propose a new framework aiming to fully exploit

the densely semantically aligned representations for ro-

bust person re-ID. Fig. 3 shows the flowchat. The net-

work consists of two streams: the main full image stream

(MF-Stream), and the densely semantically aligned guiding

stream (DSAG-Stream). Based on the dense semantic align-

ment module, from the input person image, we construct 24

densely semantically aligned part images (DSAP-images)

as the input to the DSAG-Stream. Having the merits of be-

ing semantically aligned, the DSAG-Stream acts as a regula-

tor to regularize the feature learning of the MF-Stream from

the original image, through our fusion and loss designs. The

entire network is trained in an end-to-end manner. We dis-

cuss the details in the following subsections.

3.1. Construction of DSAPimages

Dense semantics annotation/estimation on 2D images

[9] establishes dense correspondences from 2D images to

the human body surface. Each position on the surface

has a different semantic meaning, which can be parameter-

ized/represented by a two-dimensional UV coordinate value

[10, 9]. The same UV coordinate value corresponds to the

same semantics. Thus, in the UV space, the dense seman-

tics are inherently aligned.

For the dense semantic alignment module, the original

RGB image is warped to the representation in UV space

to obtain 24 DSAP-images based on the estimated dense

semantics.

Dense semantics estimation. We adopt the off-the-

shelf DensePose model (trained on the DensePose-COCO

dataset) [9] to estimate the dense semantics of a 2D image.

It segments a person to 24 surface-based body part regions.

For each detected body part, the semantics for each pixel

is provided in terms of a coordinate value (u,v) in the UV

space, where u,v ∈[0,1]. Please refer to [9] for more details.

Warping. For the i-th body part region, as illustrated in

Fig. 2, based on the semantics, the pixel values on the per-

son can be warped onto a DSAP-image of size S×S in the

deformation-free UV space, where the rows and columns

represent the U and V, respectively. The DSAP-images are

initialized by the mean values of images before the warping.

Note that the background and not detected semantic posi-

tions are not warped. We simply copy the pixel value (r,g,b)

of the body parts with its semantics estimated as (u,v) to the

(⌊u × S⌋, ⌊v × S⌋) position of the corresponding DSAP-

image. ⌊x⌋ is the function to get the greatest integer less

than or equal to x and we set S to 32 in our experiments.

Discussion. For the DSAP-images of the i-th body part,

the semantic identities on the same spatial positions are al-

ways the same. They are densely semantically aligned.

Such representations have three major advantages. 1) It

overcomes spatial misalignment challenges resulting from
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Figure 3. Flowchat of the proposed densely semantically aligned person re-ID (DSA-reID). It consists of two streams: MF-Stream and

DSAG-Stream, which are jointly trained through our fusion and supervision design. The DSAG-Stream, with the input DSAP-images that

are densely semantically aligned, plays the role of a regulator which facilitates the joint optimization of the entire network. In the inference,

to be computationally efficient, the DSAG-Stream is discarded. The global features fG and part-aware features fL = fL,i|
8

i=1 are used as

the final features for re-ID. They are simultaneously exploited to make use of the global information and local detailed information.

diverse viewpoints and poses, and imperfect person de-

tection. 2) It avoids the interference from diverse back-

ground clutters since only human body regions are warped

to DSAP-images. 3) It is free from the appearance interfer-

ence from occlusion since the semantics are not estimated

over the occluding objects.

DSAP-images, however, have three limitations with re-

spect to its roles in the person re-ID task. 1) The valid

contents on the DSAP-images are very sparse (see Fig. 2).

As a 2D projection from the 3D surface, nearly half of the

body regions are invisible on the 2D image and thus cannot

be detected by DensePose. Besides, there are usually esti-

mation errors, including missing detections, especially on

images with low resolution and blurring artifacts. 2) The

dense semantics estimator is not optimal. Since there is no

labeled dense semantics for the re-ID datasets, we lever-

age the DensePose model trained on the COCO-DesenPose

dataset. However, there is a gap between these datasets in

resolutions, image quality, and pose distributions. 3) Since

the background is removed, some discriminative contents,

such as a red backpack, are also removed.

3.2. Joint Learning of Our Network

Due to the sparsity of valid contents and potential seman-

tics estimation errors on the DSAP-images (as discussed in

subsection 3.1), it is very challenging to design an effec-

tive network to exploit the semantically aligned information

from the DSAP-images alone. In fact, a few of our early

attempts along this line (with only the DSAP-images as in-

put) have failed to deliver good results. To exploit the mer-

its of the DSAP-images while addressing the above men-

tioned challenges, in our design, we propose treating them

as regulators in an end-to-end network to drive the semanti-

cally aligned feature learning from the original full image.

One important advantage of this design is that during the

inference, the regulators are not needed, making it compu-

tationally efficient. This also removes the dependency of

the inference on the performance of the dense semantics es-

timator, making the system practically more robust.

Fig. 3 shows the flowchat. The DSAG-Stream plays the

role of a regulator to assist the training of the MF-Stream.

We achieve this through the corresponding feature fusion

between the DSAG-Stream and the MF-Stream, and the su-

pervision on the fused features. For the DSAG-Stream,

the input DSAP-images are densely semantically aligned

and thus the output features inherit the merits. We intend

to leverage the DSAG-Stream to drive the MF-Stream to

learn both global features and part-aware features. For each

stream, a small head network with two branches are de-

signed to focus on global and local information respectively.
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3.2.1 DSAG-Stream

The DSAG-Stream consists of the multi-branch sub-

networks (MB-Ns) and a small Head network formed by

a global branch and a part branch as shown in Fig. 3. We

show the detailed architectures in Table 1.

Multi-branch sub-networks (MB-Ns). Both global in-

formation and local details are important and complemen-

tary for re-ID [3, 39, 18, 42, 33, 49]. In order to learn local

detailed features of the separate region part rather than mix-

ing all parts together, we adopt multi-branch sub-networks

(MB-Ns) to learn local feature maps Di ∈ R
h×w×c of size

h × w with c channels, i = 1, 2, · · · , N , for N merged

body part regions, respectively. Note that the N body part

regions have no overlap. The N feature maps are con-

catenated along channels and we have D = Di|
N
i=1

=
[D1,D2, · · · ,DN ] ∈ R

h×w×cA , where cA = N×c.

For the MB-Ns, we have two levels of merging to pro-

gressively merge features from correlated body parts, in

order to exploit the symmetry of human body to be bet-

ter viewpoint robust and to reduce the number of branches.

We obtain 8 separate feature maps from MB-Ns as Di|
N
i=1

,

where N = 8. The semantics for a pair of left-right sym-

metric parts, are semantically aligned in the UV space and

we element-wisely add the features in the first level merg-

ing. At the second level merging, similarly, we merge the

two branches corresponding to the front-back symmetric

parts and finally obtain 8 branches as illustrated in Fig. 4.

Head network. It consists of two separate branches

which focus on global and local information respectively.

For the global branch, the output feature vector dG ∈
R

2048 are obtained by

dG = P(H(D)), (1)

where H(·) denotes an underlying mapping consisting of a

few stacked layers; P(·) denotes the average spatial pooling

operation. We take the network architecture of conv5 g as

shown in Table 1 for this mapping of P(H(·)).
For the part branch, the output feature vector dL∈R

2048

is a concatenation of the feature vectors dL,i ∈ R
256 of the

8 merged parts, i.e., dL = [dL,1,dL,2, · · · ,dL,8], with dL,i

obtained by

dL,i = P(F(Di)), (2)

where F(X) denotes an underlying mapping consisting of

a few stacked layers. We take the network architecture of

conv5 l as shown in Table 1 for this mapping of P(F(·)).

3.2.2 MF-Stream

We use the sub-network of ResNet-50 (conv1, conv2 x,

conv3 x, and conv4 x) [11] to get the feature map F ∈
R

h×w×cA . To facilitate the joint learning with the corre-

sponding features from the DSAG-Stream, with the feature

map F as input (see Fig. 3), the global features fG and

the part-aware features fL are learned by the two separate

branches of a small Head network. This Head network

architecture is similar to the Head network of the DSAG-

Stream. Note that the features fG and fL are used for re-ID

in our final scheme.

3.2.3 Two-Stream Fusion

We fuse the global features from the two streams by

element-wise adding, i.e., zG = fG + dG, which enables

the joint optimization of the two streams. Similarly, the

part-aware features and part features from the two streams

are fused as zL = fL + dL.

3.2.4 Loss Designs

To train the network, we use the widely-used identification

loss (ID Loss), i.e., the cross entropy loss for identification

classification, and the ranking loss of triplet loss with batch

hard mining [13] (Triplet Loss) as our loss functions.

Considering the noises in the DSAP-images due to se-

mantics estimation errors, and the high complexity of the

DensePose model, in our design, we treat the DSAP-images

as regulators to drive the semantically aligned feature learn-

ing from the original full image, expecting the MF-Stream

alone to work in inference. We add supervision to the fea-

tures fG, fL from the MF-Stream and to the fused features

zG, zL, respectively as illustrated in Fig. 3. Specifically,

for the MF-Stream, we add the ID loss for the global fea-

ture vector fG, and each part-aware feature vector fL,i, i =
1, 2, · · · , 8. For the fused features zG, zL, both the ID

loss and triplet loss are added. The loss computed using

the fused features makes the gradient back-propagated to

the MF-Stream be also influenced by the DSAG-Stream fea-

tures, since they contribute to the fused features and the re-

sulting loss. In this way, the DSAG-Stream plays the role

of regularization by impacting the feature learning of the

MF-Stream in the training.

To calculate each identification loss, a classifier con-

structed by two fully connected (FC) layers followed by a

SoftMax function is applied to the feature vector to output

the classification probability.

4. Experiments

4.1. Datasets and Evaluation Metrics

Market1501 [54] has 32,668 DPM-detected pedestrain

image boxes of 1,501 identities, with 12,936 training, 3,368

query and 19,732 gallery images. 751 identities are used for

training while the remaining 750 for testing.

CUHK03 [17] consists of 1,467 pedestrians. This

dataset provides both manually labeled bounding boxes

from 14,096 images and DPM-detected bounding boxes

from 14,097 images. We adopt the new training/testing pro-

tocol following [58, 57, 12]. In this protocol, 767 identities

are used for training and the remaining for testing.
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Figure 4. Illustration of two level merging corresponding to the 24 body parts.

Table 1. Detailed architecture of our DSAG-Stream. We construct

it using similar convolutional layers and building blocks as in

ResNet-18 [11]. For conv1, 5×5,32 denotes the convolutional ker-

nel size is 5×5 and output channel number is 32. Following the

representation style in [11], building blocks are shown in brackets,

with the numbers of blocks stacked. Downsampling is performed

by conv3 1 and conv4 1 with a stride of 2. #Bran. denotes the

number of sub-branches.
Layer name Parameters Output size #Bran.

MB-Ns

conv1 5× 5, 32 32× 32 24

conv2 3× 3, 64 32× 32 24

conv3 x

[

3× 3, 64

3× 3, 64

]

× 2 16× 16 24

merging element-wise add 16× 16 24→13

conv4 x

[

3× 3, 128

3× 3, 128

]

× 2 8× 8 13

merging element-wise add 8× 8 13→8

Head

conv5 g

[

3× 3, 2048

3× 3, 2048

]

× 2 8× 8
1

Average Pooling 1× 1

conv5 l

[

3× 3, 256

3× 3, 256

]

× 2 8× 8
8

Average Pooling 1× 1

CUHK01 [16] comprises 3884 images of 971 identities,

captured in two disjoint camera views. We adopt the com-

mon experimental setting following [1, 5, 50].

DukeMTMC-reID [56] is a subset of Duke Dataset [27]

for image-based re-ID. We use the standard training/testing

split and evaluation setting following [56, 20]. It contains

16,522 training images of 702 identities, 2,228 query im-

ages of the other 702 identities and 17,661 gallery images.

Evaluation Metrics. Following the common practices,

we use the cumulative matching characteristics (CMC) at

Rank-1 (at least), Rank-5, Rank-10, and mean average pre-

cision (mAP) to evaluate the accuracy.

4.2. Implementation Details

Network settings. We take ResNet-50 [11] to build our

baseline networks as in some re-ID systems [3, 35, 48, 2].

Similar to [35], the last spatial down-sample operation in

the Conv5 layer is removed.

For the MF-Stream, we use a part of the ResNet-50 archi-

tecture (i.e., conv1, conv2 x to conv4 x) as the sub-network

to obtain the feature map F. The weights pretrained on Im-

ageNet [7] are used for initialization. The Head network

architecture is similar to the Head network of the DSAG-

Stream and is randomly initialized. The difference is that

the architecture of the global branch in the MF-Stream is

the same as the network architecture of the conv5 x block in

ResNet-50 rather than that in ResNet-18. Each local branch

of the MF-Stream uses an architecture similar to the global

branch but has only 1/8 of the number of channels on each

layer. For the DSAG-Stream, the network is randomly ini-

tialized and trained from scratch.

Data augmentation. We use the commonly used data

augmentation strategies of random cropping [41], horizon-

tal flipping and random erasing [59, 41, 38] (with a proba-

bility of 0.5) in both the baseline schemes and our schemes.

Optimization. For the triplet loss with batch hard min-

ing [13], we sample P = 16 identities and K = 4 images

[39] for each identity as a mini-batch and the margin pa-

rameter is set to 0.3. The ID loss for the MF-Stream fea-

tures, the triplet loss, and ID loss for the fused features are

weighed by 0.5, 1.5 and 1.0 respectively. We adopt Adam

optimizer with a weight decay of 5×10−4 to train our mod-

els. We warm up the models for 20 epochs with a linear

growth learning rate from 8 × 10−6 to 8 × 10−4. Then,

the learning rate is decayed by a factor of 0.5 for every 40

epochs. We observe that the models converge after training

of 320 epochs. All our models are implemented on PyTorch

and trained in an end-to-end manner.

4.3. Comparison with StateoftheArt

We compare our proposed Densely Semantically

Aligned re-ID scheme (DSA-reID) with current state-of-

the-art methods of four categories in Table 2. Basic-CNN

methods have similar network structures with a commonly

used baseline in deep re-ID systems [53, 48, 3, 39, 38],

which learns a global descriptor. Pose/Part-related meth-

ods leverage the coarse pose/part semantic information to

assist re-ID. Stripe-based methods divide the full RGB im-

age/feature map into several horizontal stripes to exploit lo-

cal details. MGN [39] combines the local features of mul-

tiple granularities and the global features. Attention-based

methods [50, 19, 31, 38] jointly learn attention selection and

feature representation. Note that we do not implement re-

ranking [58] in all our models for clear comparisons.
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Table 2. Performance (%) comparisons with the state of the art methods. Bold numbers denote the best performance, while numbers with

underlines denote the second best. Superscript ∗ indicates that model is pre-trained on CUHK03 and fine-tuned on CUHK01.

Method
Market1501 (SQ)

CUHK03
CUHK01 DukeMTMC-reID

Labeled Detected

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 Rank-5 Rank-1 mAP

Basic-CNN

(ResNet-50)

IDE(ECCV18) [35] 85.3 68.5 43.8 38.9 - - - - 73.2 52.8

Gp-reid(Arxiv18) [2] 92.2 81.2 - - - - - - 85.2 72.8

Pose/Part

-related

Spindle(CVPR17) [49] 76.9 - - - - - 79.9 94.4 - -

PIE(Arxiv17) [53] 78.7 53.9 - - - - - - - -

MSCAN(CVPR17) [15] 80.8 57.5 - - - - - - - -

PDC(ICCV17) [33] 84.1 63.4 - - - - - - - -

Pose Transfer(CVPR18) [22] 87.7 68.9 33.8 30.5 30.1 28.2 - - 68.6 48.1

PN-GAN(ECCV18) [26] 89.4 72.6 - - - - - - 73.6 53.2

PSE(CVPR18) [28] 87.7 69.0 - - 30.2 27.3 67.7 86.6 79.8 62.0

MGCAM(CVPR18) [32] 83.8 74.3 50.1 50.2 46.7 46.9 - - - -

MaskReID(Arxiv18) [25] 90.0 75.3 - - - - 84.3 - 78.9 61.9

Part-Aligned(ECCV18) [34] 91.7 79.6 - - - - 80.7∗ 94.4∗ 84.4 69.3

AACN(CVPR18) [45] 85.9 66.9 - - - - 88.1 96.7 76.8 59.3

SPReID(CVPR18) [14] 92.5 81.3 - - - - - - 84.4 71.0

Stripe

-based

AlignedReID(Arxiv17) [48] 91.8 79.3 - - - - - - - -

Deep-Person(Arxiv17) [3] 92.3 79.6 - - - - - - 80.9 64.8

PCB+RPP(ECCV18) [35] 93.8 81.6 63.7 57.5 - - - - 83.3 69.2

MGN(MM18) [39] 95.7 86.9 68.0 67.4 66.8 66.0 - - 88.7 78.4

Attention

-based

DLPAP(ICCV17) [50] 81.0 63.4 - - - - 76.5∗ 94.2∗ - -

HA-CNN(CVPR18) [19] 91.2 75.7 44.4 41.0 41.7 38.6 - - 80.5 63.8

DuATM(CVPR18) [31] 91.4 76.6 - - - - - - 81.8 64.6

Mancs(ECCV18) [38] 93.1 82.3 69.0 63.9 65.5 60.5 - - 84.9 71.8

Dense Semantics

-based (Ours)
DSA-reID 95.7 87.6 78.9 75.2 78.2 73.1 90.4∗ 97.8∗ 86.2 74.3

Market-1501. DSA-reID achieves the best performance.

Our method and the second best method MGN [39] have

similar performance and both outperform the other meth-

ods by at least +1.9%/+4.6% in Rank-1/mAP accuracy. We

only show the single query (SQ) results to save space, and

a similar trend is observed for the multiple query setting.

CUHK03. DSA-reID outperforms others by a large mar-

gin, at least +10.9%/+7.8% in Rank-1/mAP for the labeled

setting, and +11.4%/+7.1% in Rank-1/mAP for the de-

tected setting. The images are less blurred than those in

other datasets. The semantics estimation is more accurate

which greatly helps the training of our networks.

CUHK01. Our method outperforms the current best re-

sult by +2.3%/+1.1% in Rank-1/Rank-5 accuracy. Similar

to the methods in [5, 50, 34], this result is obtained with pre-

training on CUHK03 and fine-tuning on CUHK01. For fair

comparisons, we also test our model without a pre-training

on CUHK03, it achieves 88.6%/97.1% in Rank-1/Rank-5

respectively, which are also the best.

DukeMTMC-reID. DSA-reID achieves the second best

results. The semantics estimation on this dataset is er-

ror prone. More than 20% persons cannot be detected on

the training images. DSA-reID outperforms all the other

approaches except MGN [39] which ensembles local fea-

tures at multiple granularities. We believe training a better

DensePose estimator can further improve the performance.

4.4. Ablation Study

We perform comprehensive ablation studies on the

Market-1501 dataset (single query).

Ours vs. baselines. In Table 3, “Baseline” and “Base-

line(RE)” denote our baseline schemes without and with

random erasing (RE) [2, 38], respectively. Label smoothing

regularization [36], which acts as a mechanism to regularize

the classifier layer by changing the ground-truth label distri-

bution, has been demonstrated to be effective in recognition

[24, 44]. We add label smoothing (LS) to the classifica-

tion sub-task in the re-ID and denote this baseline as “Base-

line(RE+LS)”. It improves the Rank-1/mAP accuracy over

“Baseline(RE)” by +1.1%/+2.6%. Besides, we also take

our MF-Stream only scheme that is built based on “Base-

line(RE+LS)” but with a Head network of two branches as

our baseline, referred to as “Baseline (Two branches)”.

We denote the proposed densely semantically aligned

(DSA) re-ID schemes under different settings/designs with

the prefix of “DSA”. “DSA(Two streams fused)” denotes

our two stream scheme which takes zG and zL as the match-

ing features for inference. In inference, the DSAG-Stream

can be discarded and we refer to it as “DSA-reID(Only MF-

Stream)”, which takes fG and fL as the matching features

and is our final scheme, also named as “DSA-reID”.

We have the following observations/conclusions.

1) Our final scheme achieves significant performance
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Table 3. Performance (%) comparisons of baselines and our

schemes on the Market-1501 dataset.
Model mAP Rank-1 Rank-5 Rank-10

Baseline 76.4 91.2 96.5 97.9

Baseline (RE) 78.6 92.3 97.6 98.3

Baseline (RE+LS) 81.2 93.4 97.8 98.5

Baseline (Two branches) 83.4 94.0 98.0 98.7

DSA-Global(Single) 84.7 94.8 98.2 98.9

DSA-Local(Single) 83.2 94.0 97.9 98.6

DSA-Global(Joint) 87.4 95.6 98.6 99.1

DSA-Local(Joint) 86.5 95.2 98.4 99.0

DSA(Two streams fused) 87.5 95.8 98.4 99.1

DSA-reID(Only MF-Stream) 87.6 95.7 98.4 99.1

improvement, outperforming “Baseline (RE+LS)”

by +2.3%/+6.4% and “Baseline(Two branches)” by

+1.7%/+4.2% in Rank-1/mAP accuracy respectively. 2)

“DSA-reID(Only MF-Stream)” has very similar perfor-

mance as “DSA(Two streams fused)” but much lower

computational complexity.

Global and part-aware/part features. For each

stream, we have two branches which focus on global

features and part features resepctively. We show the

analysis in Table 3. 1) “DSA-Global(Single)”/“DSA-

Local(Single)” denotes the design with only the global/local

branch in our two stream framework for both training and

inferencing. “DSA-Global(Single)” outperforms “Base-

line(RE+LS)” by +1.4%/+3.5% in Rank-1/mAP accuracy.

“DSA-Local(Single)” outperforms “Baseline(RE+LS)” by

+0.6%/+2.0% in Rank-1/mAP accuracy. These demonstrate

that our semantic alignment design is very efficient. 2)

Since global and part-aware/part features are complemen-

tary, our scheme with both the global and part-aware/part

branches, “DSA(Two streams fused)”, achieves additional

+1.0%/+2.8%, and +1.8%/+4.3% gain in comparison with

“DSA-Global(Single)” and “DSA-Local(Single)” in Rank-

1/mAP accuracy respectively. 3) “DSA-Global(Joint)” or

“DSA-Local(Joint)” denotes that the inference is based on

the features of the global branch or part-aware branch of our

scheme “DSA(Two stream fused)”, i.e., zG or zL. Thanks

to the joint training, “DSA-Global/Local(Joint)” signifi-

cantly outperforms “DSA-Global/Local(Single)”.

Dense vs. coarse semantic alignment. Thanks to the

densely semantically aligned representation and our archi-

tecture design, our scheme achieves excellent performance.

We take the DSAP-images as input to the DSAG-Stream.

One may wonder about the performance if the cropped body

parts without internal fine grained alignment are taken as in-

put to our framework. We conduct an experiment by replac-

ing the 24 DSAP-images by 24 cropped part images (with-

out alignment within a part region) and refer to this scheme

as coarsely semantically aligned re-ID, CSA. Table 4 shows

the performance comparisons. 1) Our densely semanti-

cally aligned scheme significantly outperforms the coarsely

Table 4. Performance (%) comparisons between dense and coarse

semantic alignment in our framework on the Market-1501 dataset.

Model mAP Rank-1 Rank-5 Rank-10

Baseline (RE+LS) 81.2 93.4 97.8 98.5

CSA(Only MF-Stream) 84.1 94.1 98.1 98.8

DSA(Only MF-Stream) 87.6 95.7 98.4 99.1

semantically aligned scheme by +1.6%/+3.5% in Rank-

1/mAP accuracy. 2) Our coarsely semantically aligned

scheme still outperforms the baselines by a large margin,

demonstrating the effectiveness of our architecture design.

Two stream fusion designs. We investigate how to

make the MF-Stream and the DSAG-Stream interact effi-

ciently for joint training and show the comparisons in Ta-

ble 5. “Concatenation+fc” denotes that for either branch,

the features from the MF-Stream and the DSAG-Stream are

concatenated followed by a fully connected layer. “Elem-

add” denotes that the features from the MF-Stream and

the DSAG-Stream are element-wisely added. “Concatina-

tion+fc” has poor performance. In contrast, our fusion with

element-wise add achieves excellent performance.

Table 5. Performance (%) comparisons on the designs of the two-

stream fusion, on the Market-1501 dataset.

Fusion method mAP Rank-1 Rank-5 Rank-10

Concatenation+fc 81.6 93.0 97.6 98.6

Elem-add 87.6 95.7 98.4 99.1

5. Conclusion

In this paper, we propose a densely semantically aligned

person re-ID framework, intending to address the ubiqui-

tous misalignment problems. Thanks to the estimated dense

semantics, it becomes possible to construct the densely se-

mantically aligned part images (DSAP-images) from the

2D image. We design a two stream network consisting of

the MF-Stream and the DSAG-Stream. Considering that

the DSAP-images have the inherent densely semantically

aligned merits, but are noisy due to semantics estimation

error, we treat the DSAG-Stream as a regulator to assist the

feature learning of the MF-Stream, through our fusion and

supervision designs. In the inference, only the MF-Stream

is needed, making the system more computationally effi-

cient and robust. Our scheme achieves the best performance

on Market-1501, CUHK03, and CUHK01. On CUHK03,

our scheme significantly outperforms the previous methods,

by at least +10.9%/+7.8% in Rank-1/mAP accuracy.
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