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Abstract. Let u be the union of two unit circles whose centers have a distance at
most 2. Motivated by more general problems it is proved that the density of a
packing of translates of u never exceeds the density of the densest lattice-packing,.

In the Euclidean plane let wbe a domain. Let d(w) be the density of the densest
packing of translates of w. Let d(w) be the density of the densest lattice-packing
of translates of w. It is known [1], [2], [3] that if w is convex then

d(w)=d(w). (1)

An interesting field of research arises by trying to extend (1) to more general
domains [4]. From some wider families of domains, which presumably share
property (1) with the convex domains, we emphasize

Conjecture 1.  Let u be the union of two convex domains having a point in common.
Then d(u)=d(u).
As a modest step in this direction we shall prove the following:

Theorem. Let u be the union of two unit circles centered at a distance at most 2
Sfrom one another. Then d{u)=d(u).

Let u, and u, be translates of u such that # and u, have three points of contact,
and u, has one point of contact with both u and u,. The densest lattice-packing
of translates of u is generated by the translations u - u, and u-> u,. Let 2t be
the distance of the centers of the two unit circles contained in u. Then d(u) is
given in terms of ¢ by the function
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For 0<t<1 we have f(£)>f(0)=f(1)= ﬂ/s/ﬁ. The maximum of f(¢) is
attained at a value #,~0.582. Since translates of the union of two disjoint circles
cannot be packed with a density greater than =/ V12 the theorem implies that
the density of a packing of translates of the union of two equal circles is at most
f(t)=0.936599....

What can be said about the supremum of d(u) extended over the set S, of
all unions u of n unit circles? We shall return to this question after the proof of
the theorem.

The proof of the theorem is based on an idea used in a proof of Thue's
well-known theorem which claims that for a circle ¢ we have d(c¢) = d(c) =/ J12.
First we will reproduce this proof [5] in a slightly modified form. We shall denote
the area of a domain w by |w|. By a circle we shall mean an open circular disc.

Let the unit circles ¢;, c,, ... with centers C,, C,, ... form a packing. Let z
be the Dirichlet cell of ¢; defined as the set of those points which are nearer to
C, than to the center of any other circle. We shall show that the density |c;|/|z]
of any circle ¢; in its Dirichlet cell is at most w/ J12. Writing ¢;=c¢ and z,=z,
this means that |z| = |h| where h is a regular hexagon circumscribed about c.

We shall prove a sharper inequality: If k is the circumcircle of h then

|z k| =|h|.

Let sy, ..., s, be the segments cut off from k by thesidesof z. Let F,,..., F,
be the orthogonal projections of C to the respective sides of z. Since the distance
between any two of the C;’s is at least 2, the distance between the F;’s is at least
1. It follows that the s;’s do not overlap. Therefore

|z k| =kl =[si| = - - = sa| = k| - nls],

where s is a segment cut off from k by a tangent of ¢. For n =6 this implies the
desired inequality

|z k| =|k|—6|s| =|h.

The case when n = 7 can be settled by a very rough estimate which automatically
rules out the possibility that n>>7. Since the length

%sin-§= 1.00201 - - -
of a side of a regular heptagon inscribed into k is close to 1, it is clear that the
points F,, ..., F, must lie close to the boundary bd k of k, suggesting that the
s;’s are very small. Though this is sufficiently convincing, we present the details.

The distance CF, attains its minimum m=1.1383 -+ if CF;=--+=CFs=
2/+/3=1.1547...,and all sides of the heptagon F, * - - F; are equal to 1. It follows
that

2
Isalﬂ—zl-(%) 2w —sin 2w) =0.00424 - - -, i=1,...,7,
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where w = arc cos v3 m/w. Hence
Isil++ - - +]5,] <0.0207 <6s|=0.724 . ...

Turning to the proof of the theorem, we consider a rectangular coordinate
system (x, y) in which the centers of the two unit circles contained in u coincide
with (—1,0) and (1, 0). Let ¢~ and ¢* be the left- and right-sided circles, and C~
and C™ their centers. Let the translates u;, u,,... of u form a packing. Let ¢j,
¢, ¢3, c3,... be the set of pertaining circles. In this set let z; and z; be the
Dirichlet cells of ¢; and ¢;. We define the Dirichlet cell of u; by z;=2z; U z/. In
order to simplify the notations we suppose that u is an arbitrary member of the
packing, and denote its Dirichlet cell by z.

We shall prove the theorem by showing that

(ul/|z|= d(u).

We shall prove a sharper inequality: If K~ and k™ are circles concentric with ¢~
and ¢* of radius 2/v/3 and k=k™ U k™ then

|z k| = |ul/d(u) =z, (2)

where 7 is a Dirichlet cell in the densest lattice-packing.

Let u,, ..., u, be those domains other than u whose Dirichlet cells intersect
k. Let the respective intersections be s, ..., s,. Since the Dirichlet cells do not
overlap neither do the s;’s. Therefore

|z vkl =[k| = si] - - - =sl. 3)

We claim that among s,, ..., s, there are at most two whose areas are greater
than |s|. We shall prove this by showing that, with the exception of at most two,
the sets s,,..., s, are circular segments.

Let u, be a translate of u not necessarily disjoint of u. Let C5 and Cj be the
corresponding translates of C~ and C™. In the arrangement of translates of u,
consisting only of 1 and u,, let z, be the Dirichlet cell of u,. We say that the
intersection s, = k N z, is exceptional if it is not empty and not a circular segment.
Let p be the set of points defined by the following property: If either C" € p or
C™ e p then s, is exceptional.

Let a and b be circles of radius 2/ 3 centered at the points of intersection of
bd k™ and bd k* (Fig. 1). The difference 2k~ ~2k")\(au b) consists of four
arc-sided triangles. Let v and w be the triangles bisected by the y-axis. We claim
that p=aubuvuw. This can easily be seen by the following alternative
definition of p: The set p consists of the centers of those circles of radius 2/ V3
whose boundaries intersect both arcs constituting bd k.

Presently we are only interested in the part of p which lies in the ring r defined
by r={(2k" U2k I\(2c w2c). This part consists of two disjoint components
whose diameter is less than or equal to 2 with equality only in the limiting case
as ¢t 0. Since the distance between centers C; or C7 belonging to different u;’s
is at least 2, the assertion is proved.
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Fig. 1

Now we make use of the easily seen fact that under the sole condition that u
and u, are disjoint |so| attains its maximum if u, and u have three points of
contact. Denoting s, in this position by §, and assuming that n =6, we have, by
(3), in accordance with (2),

|z~ k| = |k|-4]s| - 2|8] = |z].

Now we consider seven pairs of centers (Cy, C1),...,(C7, C7) such that of
each pair at least one center is in r. Let (C;, C7) be a pair of centers such that
C; lies in the half-plane x <0 and C7 lies in the half-plane x =0. We assume
that among the seven pairs of centers there are (i) two such pairs, or (ii) one
such pair, or (iii) none.

Case (i). Let C7, C7, C5, C3 be in x=0, and let C5, C;, Ci, C¢, C7 bein
x=0. Translating C;, C%, and C{ through the vector C"C” we obtain, along
with C3, C7, C5, and C7 seven points in the ring 2k*\2¢” with a distance at
least 2 from one another. Referring to the above proof of Thue’s theorem we see
that these points must be close to bd 2k*. Therefore the original points must be
close to bd (2k~ U 2k*) so that |z~ k] is, by far, greater than |2|.

Case (ii). We can translate the domains u,,..., u; continuously “outwards”
without overlapping each other until, of each pair of centers, one center lies on
bd(2k~w2k™), and the other lies either on bd(2k™ U 2k™) or outside 2k~ U 2k™.
We number the centers so that C;, C5, C5, Ci, C3, C¢, C7, and C7 lie, in
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Fig.2

this cyclic order, on bd(2k~u2k") (Fig. 2). Translate C? through the vector
C™C* and C; through C'C™ obtaining the points U and V. Let bd 2k~ and
bd 2k* intersect at the points F and G, G being in the same half-plane y >0 or
y<0as C; and C7. Let T and o be the length of the arcs on bd 2k subtended
by the chords of length 2 and 2, respectively. Using an obvious notation for the
length of an arc on bd 2k~ or bd 2k*, we have

87/V3+20=C-G+GC+CiC:+CSF+FCH+CICs
Pty — po— T P ——
=0+ C3C,+VF+o+FU+0o+CiC; =43 +30+ UF+FYV,

whence

A=UF+FV+o+43-87/V3=0.

For a given value of ¢, UF + EV attains its minimum if, in the inequalities
CiC;=2, C;U=C;Ci=2, C;V=C3C;=2, equality holds. Geometrical
considerations suggest, and numerical computations, support the conjecture that
in the extremal position either C; or C5 coincides with F. From the computed
values of A belonging to different values of t and different positions of C7 and
C3 we present, for a few values of ¢, only the smallest one which belong to the
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suggested position:

t 0 0.065 0.066 0.1 0.2 0.3 0.4
A —-0.0313 ~0.0002 0.0004 0.0156 0.0572 0.0944 0.1280
t 05 0.6 0.7 0.8 0.9 1

A 0.1588 0.1954 0.2140 0.2390 0.2626 0.2852

This table shows that there is a value = 0.065 - - - such that for ¢t > [ case (ii)
cannot occur.

The same argument shows that case (ii) (for t=<7) cannot occur either if,
from all seven pairs of centers, at least one center lies in Ac”u Ac* where
A =1/sin(1r/7) is the circumradius of a regular heptagon of side-length 2. But if
for some j=7 both ¢; and ¢; are outside Ac” U Ac” then |s;| is very small, more
exactly less than 3|w|=0.00067 - - - where w is a circular segment cut off from
k* by a tangent of (1/2)c”. On the other hand, u; prevents the rest of the centers
under consideration from getting close to bd 2k~ 2k”, so that inequality (2) is
again amply fulfilled.

Case (iii) can be settled in a similar manner to (ii). Without going into details
we mention that there is a constant 7=0.034 - - - such that for > f case (iii)
cannot occur.

This ends the proof of the theorem.

We still make some remarks about d, =sup,.s, d(u), where S, is the set of
all possible unions of n unit circles.

Let u be the union of n unit circles with centers on a line equally spaced at
a distance 2t <2. Then d(u) is given in terms of ¢ by the function

£.(0) _2(n—1)(arcsin t+ Ni-)+a
' An—NNa-£+V12

As we have seen, we have d, = maXe< <, (). Now we can phrase

Conjecture 2. Forn=3, 4, and 5 we have d, = maXy<,=; f,(1).

However, passing from n=5 to n=6 the extremal configuration seems to
change drastically. Let v be the union of six unit circles centered at the vertices
of a regular hexagon of side-length 1. Then we have

- +
(o) =—2F27T __9660s....
3/2)(7+3V5)
whilst maxg-,<, fs(t) = 0.96686 . ... This phenomenon is similar to the “sausage

catastrophe” observed by Wills [6].
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Improving a construction suggested by J. Pach we now shall show that

mu-d,,)nsﬁ/—;%i’. (4)

Let k>1 and /=0 be integers. In the thinnest lattice-covering of the plane
with unit circles the centers of the circles form a lattice generated by the vertices
of a regular triangle of side-length v3. Let H be a closed regular hexagon of
side-length v3 k containing 3k(k+ 1)+ 1 lattice-points. On bd H we put, on each
segment determined by consecutive lattice-points I, new points so as to divide
the segment into /+ 1 parts of length 2t =+v/3/(I+1). Now we have in H altogether

n=1+3k(k+1)+6kl
points. Let U be the union of the unit circles centered at these points. We have

|U|=|conv U|—|conv U\ U]

z?"? k2+6\/§ k+77""6k(1+1)(2t——arcsin t—t /l_tZ)’

where conv U denotes the convex hull of Ul

In the densest lattice-packing of translates of U each domain is touched by
six others so that adjacent domains have 2kl —1 points of contact. A unit cell C
of this lattice is given by joining to H along three consecutive sides parallelograms
of side-length 2 and V3 k including an angle arc sin(3v4 — ¢*) and two equilateral
triangles of side-length 2 between the parallelograms. Thus we have

lc|= 9fk2+3kaTT+2f
and
]C!—]U|=3J§k( 4—t2—%arcsint—m)+2x/§~m
Since

lim = ( —t-~—-arcsmt 1~t)=%

there is a positive constant ¢ such that for 0<¢=+3/2 we have

1 .
\/4-—t2~-t-arcs1n t=J1-<cf’
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It follows that

1c]—]U|<3J§ ckt*+2/3 -7
cl 93
2

1-d,=

k2

Let p be a positive number less than 1/8. Letting n tend to infinity and choosing
I so that n? <1< m"*>? we have lim,.« n/k*=3 and lim,_ k/I* = 0. Therefore
multiplying the last inequality by n and going over to the limiting value as n-> o
we obtain inequality (4).

It is conjectured that in (4) the sign of equality holds. We formulate the
following sharper

Conjecture 3. Let D(u) be the density of the densest packing of congruent copies
of a domain u. Then

4/3-27
D{u)~1———
sup D(w) Win
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