Discrete Comput Geom 1:307-314 (1986)

© 1986 Springer-Verlag New York Inc.

Densest Packing of Translates of the Union of Two Circles

L. Fejes Tóth

Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda 13-15, 1053 Budapest, Hungary

Abstract. Let u be the union of two unit circles whose centers have a distance at most 2. Motivated by more general problems it is proved that the density of a packing of translates of u never exceeds the density of the densest lattice-packing.

In the Euclidean plane let w be a domain. Let d(w) be the density of the densest packing of translates of w. Let $\overline{d}(w)$ be the density of the densest lattice-packing of translates of w. It is known [1], [2], [3] that if w is convex then

$$d(w) = \bar{d}(w). \tag{1}$$

An interesting field of research arises by trying to extend (1) to more general domains [4]. From some wider families of domains, which presumably share property (1) with the convex domains, we emphasize

Conjecture 1. Let u be the union of two convex domains having a point in common. Then $d(u) = \overline{d}(u)$.

As a modest step in this direction we shall prove the following:

Theorem. Let u be the union of two unit circles centered at a distance at most 2 from one another. Then $d(u) = \overline{d}(u)$.

Let u_1 and u_2 be translates of u such that u and u_1 have three points of contact, and u_2 has one point of contact with both u and u_1 . The densest lattice-packing of translates of u is generated by the translations $u \rightarrow u_1$ and $u \rightarrow u_2$. Let 2t be the distance of the centers of the two unit circles contained in u. Then $\overline{d}(u)$ is given in terms of t by the function

$$f(t) = \frac{2(\arcsin t + t\sqrt{1-t^2}) + \pi}{2t\sqrt{4-t^2} + \sqrt{12}}.$$

For 0 < t < 1 we have $f(t) > f(0) = f(1) = \pi/\sqrt{12}$. The maximum of f(t) is attained at a value $t_0 \approx 0.582$. Since translates of the union of two disjoint circles cannot be packed with a density greater than $\pi/\sqrt{12}$ the theorem implies that the density of a packing of translates of the union of two equal circles is at most $f(t_0) = 0.936599 \dots$

What can be said about the supremum of d(u) extended over the set S_n of all unions u of n unit circles? We shall return to this question after the proof of the theorem.

The proof of the theorem is based on an idea used in a proof of Thue's well-known theorem which claims that for a circle c we have $d(c) = \overline{d}(c) = \pi/\sqrt{12}$. First we will reproduce this proof [5] in a slightly modified form. We shall denote the area of a domain w by |w|. By a circle we shall mean an open circular disc.

Let the unit circles c_1, c_2, \ldots with centers C_1, C_2, \ldots form a packing. Let z_i be the Dirichlet cell of c_i defined as the set of those points which are nearer to C_i than to the center of any other circle. We shall show that the density $|c_i|/|z_i|$ of any circle c_i in its Dirichlet cell is at most $\pi/\sqrt{12}$. Writing $c_i = c$ and $z_i = z$, this means that $|z| \ge |h|$ where h is a regular hexagon circumscribed about c.

We shall prove a sharper inequality: If k is the circumcircle of h then

$$|z \cap k| \geq |h|.$$

Let s_1, \ldots, s_n be the segments cut off from k by the sides of z. Let F_1, \ldots, F_n be the orthogonal projections of C to the respective sides of z. Since the distance between any two of the C_i 's is at least 2, the distance between the F_i 's is at least 1. It follows that the s_i 's do not overlap. Therefore

$$|z \cap k| = |k| - |s_1| - \cdots - |s_n| \ge |k| - n|s|,$$

where s is a segment cut off from k by a tangent of c. For $n \le 6$ this implies the desired inequality

$$|z \cap k| \geq |k| - 6|s| = |h|.$$

The case when n = 7 can be settled by a very rough estimate which automatically rules out the possibility that n > 7. Since the length

$$\frac{4}{\sqrt{3}}\sin\frac{\pi}{7}=1.00201\cdots$$

of a side of a regular heptagon inscribed into k is close to 1, it is clear that the points F_1, \ldots, F_7 must lie close to the boundary bd k of k, suggesting that the s_i 's are very small. Though this is sufficiently convincing, we present the details.

The distance CF_7 attains its minimum $m = 1.1383 \cdots$ if $CF_1 = \cdots = CF_6 = 2/\sqrt{3} = 1.1547 \ldots$, and all sides of the heptagon $F_1 \cdots F_7$ are equal to 1. It follows that

$$|s_i| \le \frac{1}{2} \left(\frac{2}{\sqrt{3}}\right)^2 (2\omega - \sin 2\omega) = 0.00424 \cdots, \quad i = 1, \dots, 7,$$

Densest Packing of Translates of the Union of Two Circles

where $\omega = \arccos \sqrt{3} m / w$. Hence

$$|s_1| + \cdots + |s_7| < 0.0297 < 6|s| = 0.724 \dots$$

Turning to the proof of the theorem, we consider a rectangular coordinate system (x, y) in which the centers of the two unit circles contained in u coincide with (-t, 0) and (t, 0). Let c^- and c^+ be the left- and right-sided circles, and C^- and C^+ their centers. Let the translates u_1, u_2, \ldots of u form a packing. Let c_1^- , c_1^+ , c_2^- , c_2^+ , \ldots be the set of pertaining circles. In this set let z_i^- and z_i^+ be the Dirichlet cells of c_i^- and c_i^+ . We define the Dirichlet cell of u_i by $z_i = z_i^- \cup z_i^+$. In order to simplify the notations we suppose that u is an arbitrary member of the packing, and denote its Dirichlet cell by z.

We shall prove the theorem by showing that

$$|u|/|z|\leq \bar{d}(u).$$

We shall prove a sharper inequality: If k^- and k^+ are circles concentric with $c^$ and c^+ of radius $2/\sqrt{3}$ and $k = k^- \cup k^+$ then

$$|z \cap k| \ge |u|/\bar{d}(u) = |\bar{z}|,\tag{2}$$

where \bar{z} is a Dirichlet cell in the densest lattice-packing.

Let u_1, \ldots, u_n be those domains other than u whose Dirichlet cells intersect k. Let the respective intersections be s_1, \ldots, s_n . Since the Dirichlet cells do not overlap neither do the s_i 's. Therefore

$$|z \cap k| = |k| - |s_1| - \dots - |s_n|. \tag{3}$$

We claim that among s_1, \ldots, s_n there are at most two whose areas are greater than |s|. We shall prove this by showing that, with the exception of at most two, the sets s_1, \ldots, s_n are circular segments.

Let u_0 be a translate of u not necessarily disjoint of u. Let C_0^- and C_0^+ be the corresponding translates of C^- and C^+ . In the arrangement of translates of u, consisting only of u and u_0 , let z_0 be the Dirichlet cell of u_0 . We say that the intersection $s_0 = k \cap z_0$ is exceptional if it is not empty and not a circular segment. Let p be the set of points defined by the following property: If either $C^- \in p$ or $C^+ \in p$ then s_0 is exceptional.

Let a and b be circles of radius $2/\sqrt{3}$ centered at the points of intersection of bd k^- and bd k^+ (Fig. 1). The difference $(2k^- \cap 2k^+) \setminus (a \cup b)$ consists of four arc-sided triangles. Let v and w be the triangles bisected by the y-axis. We claim that $p = a \cup b \cup v \cup w$. This can easily be seen by the following alternative definition of p: The set p consists of the centers of those circles of radius $2/\sqrt{3}$ whose boundaries intersect both arcs constituting bd k.

Presently we are only interested in the part of p which lies in the ring r defined by $r = (2k^- \cup 2k^+) \setminus (2c^- \cup 2c^+)$. This part consists of two disjoint components whose diameter is less than or equal to 2 with equality only in the limiting case as $t \to 0$. Since the distance between centers C_i^- or C_i^+ belonging to different u_i 's is at least 2, the assertion is proved.

Now we make use of the easily seen fact that under the sole condition that u and u_0 are disjoint $|s_0|$ attains its maximum if u_0 and u have three points of contact. Denoting s_0 in this position by \hat{s} , and assuming that $n \leq 6$, we have, by (3), in accordance with (2),

$$|z \cap k| \ge |k| - 4|s| - 2|\hat{s}| = |\bar{z}|.$$

Now we consider seven pairs of centers $(C_1^-, C_1^+), \ldots, (C_7^-, C_7^+)$ such that of each pair at least one center is in *r*. Let (C_i^-, C_i^+) be a pair of centers such that C_i^- lies in the half-plane $x \le 0$ and C_i^+ lies in the half-plane $x \ge 0$. We assume that among the seven pairs of centers there are (i) two such pairs, or (ii) one such pair, or (iii) none.

Case (i). Let C_7^+ , C_1^- , C_2^- , C_3^+ be in $x \ge 0$, and let C_3^- , C_4^+ , C_5^+ , C_6^- , C_7^- be in $x \le 0$. Translating C_4^+ , C_5^+ , and C_6^+ through the vector $\mathbf{C}^-\mathbf{C}^+$ we obtain, along with C_7^+ , C_1^- , C_2^- , and C_3^+ seven points in the ring $2k^+ \setminus 2c^+$ with a distance at least 2 from one another. Referring to the above proof of Thue's theorem we see that these points must be close to bd $2k^+$. Therefore the original points must be close to bd $(2k^- \cup 2k^+)$ so that $|z \cap k|$ is, by far, greater than $|\bar{z}|$.

Case (ii). We can translate the domains u_1, \ldots, u_7 continuously "outwards" without overlapping each other until, of each pair of centers, one center lies on $bd(2k^- \cup 2k^+)$, and the other lies either on $bd(2k^- \cup 2k^+)$ or outside $2k^- \cup 2k^+$. We number the centers so that $C_1^-, C_2^-, C_3^-, C_4^+, C_5^+, C_6^+, C_7^-$, and C_7^+ lie, in

Densest Packing of Translates of the Union of Two Circles

this cyclic order, on $bd(2k^- \cup 2k^+)$ (Fig. 2). Translate C_5^+ through the vector $\mathbf{C}^-\mathbf{C}^+$ and C_2^- through $\mathbf{C}^+\mathbf{C}^-$ obtaining the points U and V. Let $bd 2k^-$ and $bd 2k^+$ intersect at the points F and G, G being in the same half-plane y > 0 or y < 0 as C_7^- and C_7^+ . Let Σ and σ be the length of the arcs on $bd 2k^+$ subtended by the chords of length 2 and 2t, respectively. Using an obvious notation for the length of an arc on $bd 2k^-$ or $bd 2k^+$, we have

$$8\pi/\sqrt{3}+2\sigma = \widehat{C_7G} + \widehat{GC_7} + \widehat{C_7C_2} + \widehat{C_2F} + \widehat{FC_5} + \widehat{C_5C_7}$$
$$= \sigma + \widehat{C_7C_2} + \widehat{VF} + \sigma + \widehat{FU} + \sigma + \widehat{C_5C_7} \ge 4\Sigma + 3\sigma + \widehat{UF} + \widehat{FV},$$

whence

$$\Lambda = \widehat{UF} + \widehat{FV} + \sigma + 4\Sigma - 8\pi/\sqrt{3} \le 0.$$

For a given value of t, $\widehat{UF} + \widehat{FV}$ attains its minimum if, in the inequalities $C_4^+C_3^- \ge 2$, $C_4^+U = C_4^-C_5^+ \ge 2$, $C_3^-V = C_3^+C_2^- \ge 2$, equality holds. Geometrical considerations suggest, and numerical computations, support the conjecture that in the extremal position either C_4^+ or C_3^- coincides with F. From the computed values of Λ belonging to different values of t and different positions of C_4^+ and C_3^- we present, for a few values of t, only the smallest one which belong to the

suggested position:

t	0	0.065	0.066	0.1	0.2	0.3	0.4
Λ	-0.0313	-0.0002	0.0004	0.0156	0.0572	0.0944	0.1280
t	0.5	0.6	0.7	0.8	0.9	1	
Λ	0.1588	0.1954	0.2140	0.2390	0.2626	0.2852	

This table shows that there is a value $\bar{t} = 0.065 \cdots$ such that for $t > \bar{t}$ case (ii) cannot occur.

The same argument shows that case (ii) (for $t \le \overline{i}$) cannot occur either if, from all seven pairs of centers, at least one center lies in $\lambda c^- \cup \lambda c^+$ where $\lambda = 1/\sin(\pi/7)$ is the circumradius of a regular heptagon of side-length 2. But if for some $j \le 7$ both c_j^- and c_j^+ are outside $\lambda c^- \cup \lambda c^+$ then $|s_j|$ is very small, more exactly less than $3|w| = 0.00067 \cdots$ where w is a circular segment cut off from k^+ by a tangent of $(\lambda/2)c^+$. On the other hand, u_j prevents the rest of the centers under consideration from getting close to bd $2k^- \cup 2k^+$, so that inequality (2) is again amply fulfilled.

Case (iii) can be settled in a similar manner to (ii). Without going into details we mention that there is a constant $\bar{t} = 0.034 \cdots$ such that for $t > \bar{t}$ case (iii) cannot occur.

This ends the proof of the theorem.

We still make some remarks about $d_n = \sup_{u \in S_n} d(u)$, where S_n is the set of all possible unions of *n* unit circles.

Let u be the union of n unit circles with centers on a line equally spaced at a distance $2t \le 2$. Then $\overline{d}(u)$ is given in terms of t by the function

$$f_n(t) = \frac{2(n-1)(\arcsin t + t\sqrt{1-t^2}) + \pi}{2(n-1)t\sqrt{4-t^2} + \sqrt{12}}.$$

As we have seen, we have $d_2 = \max_{0 \le t \le 1} f_2(t)$. Now we can phrase

Conjecture 2. For n = 3, 4, and 5 we have $d_n = \max_{0 \le t \le 1} f_n(t)$.

However, passing from n = 5 to n = 6 the extremal configuration seems to change drastically. Let v be the union of six unit circles centered at the vertices of a regular hexagon of side-length 1. Then we have

$$\bar{d}(v) = \frac{3\sqrt{3}+2\pi}{(\sqrt{3}/2)(7+3\sqrt{5})} = 0.96695\ldots,$$

whilst $\max_{0 \le t \le 1} f_6(t) = 0.96686 \dots$ This phenomenon is similar to the "sausage catastrophe" observed by Wills [6].

Densest Packing of Translates of the Union of Two Circles

Improving a construction suggested by J. Pach we now shall show that

$$\lim_{n \to \infty} (1 - d_n) n \le \frac{4\sqrt{3} - 2\pi}{3\sqrt{3}}.$$
 (4)

Let k > 1 and $l \ge 0$ be integers. In the thinnest lattice-covering of the plane with unit circles the centers of the circles form a lattice generated by the vertices of a regular triangle of side-length $\sqrt{3}$. Let H be a closed regular hexagon of side-length $\sqrt{3} k$ containing 3k(k+1)+1 lattice-points. On bd H we put, on each segment determined by consecutive lattice-points l, new points so as to divide the segment into l+1 parts of length $2t = \sqrt{3}/(l+1)$. Now we have in H altogether

$$n = 1 + 3k(k+1) + 6kl$$

points. Let U be the union of the unit circles centered at these points. We have

$$|U| = |\operatorname{conv} U| - |\operatorname{conv} U \setminus U|$$

= $\frac{9\sqrt{3}}{2}k^2 + 6\sqrt{3}k + \pi - 6k(l+1)(2t - \arcsin t - t\sqrt{1-t^2}),$

where conv U denotes the convex hull of U.

In the densest lattice-packing of translates of U each domain is touched by six others so that adjacent domains have 2kl-1 points of contact. A unit cell C of this lattice is given by joining to H along three consecutive sides parallelograms of side-length 2 and $\sqrt{3} k$ including an angle arc $\sin(\frac{1}{2}\sqrt{4-t^2})$ and two equilateral triangles of side-length 2 between the parallelograms. Thus we have

$$|C| = \frac{9\sqrt{3}}{2} k^2 + 3\sqrt{3} k\sqrt{4 - t^2} + 2\sqrt{3}$$

and

$$|C| - |U| = 3\sqrt{3} k \left(\sqrt{4 - t^2} - \frac{1}{t} \arcsin t - \sqrt{1 - t^2} \right) + 2\sqrt{3} - \pi.$$

Since

$$\lim_{t \to 0} \frac{1}{t^2} \left(\sqrt{4 - t^2} - \frac{1}{t} \arcsin t - \sqrt{1 - t^2} \right) = \frac{1}{12}$$

there is a positive constant c such that for $0 < t \le \sqrt{3}/2$ we have

$$\sqrt{4-t^2} - \frac{1}{t} \arcsin t - \sqrt{1-t^2} < ct^2$$
.

It follows that

$$1-d_n \leq \frac{|C|-|U|}{|C|} < \frac{3\sqrt{3} \ ckt^2 + 2\sqrt{3} - \pi}{\frac{9\sqrt{3}}{2} k^2}.$$

Let p be a positive number less than 1/8. Letting n tend to infinity and choosing l so that $n^p < l \le m^{1/2-p}$ we have $\lim_{n\to\infty} n/k^2 = 3$ and $\lim_{n\to\infty} k/l^2 = 0$. Therefore multiplying the last inequality by n and going over to the limiting value as $n \to \infty$ we obtain inequality (4).

It is conjectured that in (4) the sign of equality holds. We formulate the following sharper

Conjecture 3. Let D(u) be the density of the densest packing of congruent copies of a domain u. Then

$$\sup_{u\in S_n} D(u) \sim 1 - \frac{4\sqrt{3}-2\pi}{3\sqrt{3} n}.$$

References

- 1. C. A. Rogers, The closest packing of convex two-dimensional domains. Acta Math. 86 (1951), 309-321.
- 2. L. Fejes Tóth, Some packing and covering theorems. Acta Sci. Math. (Szeged) 12/A (1950), 62-67.
- 3. L. Fejes Tóth, On the densest packing of convex discs. Mathematika 30 (1983), 1-3.
- 4. L. Fejes Tóth, Densest packing of translates of a domain. Acta Math. Acad. Sci. Hungar. 45 (1984), 437-440.
- 5. L. Fejes Tóth, Über einen geometrischen Satz. Math. Z. 46 (1940), 83-85.
- 6. J. M. Wills, Research Problem 35. Period. Math. Hungar. 14 (1983), 312-314.

Received December 4, 1985.