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Abstract

We describe a density�adaptive reinforcement
learning and a density�adaptive forgetting al�
gorithm� This learning algorithm uses hybrid
k�D�	k�trees to allow for a variable resolu�
tion partitioning and labelling of the input
space� The density adaptive forgetting al�
gorithm deletes observations from the learn�
ing set depending on whether subsequent ev�
idence is available in a local region of the pa�
rameter space� The algorithms are demon�
strated in a simulation for learning feasible
robotic grasp approach directions and orien�
tations and then adapting to subsequent me�
chanical failures in the gripper�

� Introduction and Motivation

In many learning applications� it is often the case that
the learner perceives a continuum of real�valued per�
ceptual input attribute valuations� in which case the
state�space is in
nite� rather than a set of discrete�
valued attributes� Additionally� it is often the case
that reinforcement for a given instance �the outcome�
is binary� For example� in a robotic domain� either an
object is grasped successfully or dropped� Therefore�
in that context� it may be more meaningful to learn
the conditional probability of receiving the reinforce�
ment value� rather than to estimate reinforcement as
a real�valued quantity�

We describe a technique� Density�Adaptive Reinforce�
ment Learning �DARLING�� for identifying regions of
a real�valued parameter space where the lower�bound
probability of succeeding �receiving immediate reward�
subject to a ��� con
dence value is above some min�
imum probability required for the task�

Also� as noted previously by ��� �� ���� an impor�
tant assumption taken by many learning methods is
that the concept �e�g� the environment and task�
to be learned is stationary over time� By station�
ary� we mean that the true underlying process which

maps exemplars to outcomes is unchanging� A non�
stationary concept can be manifested in terms of time
varying state�transition functions� or time�varying re�
ward functions� This may� in turn� be due to gradual
or sudden failures in sensors and actuators� as well as
changes in the behavior of the external world�

In arti
cial neural�network approaches� weights are
updated on�line and non�stationarity presents less of
a problem� since the weight updating rules will even�
tually change weights so that they minimize predic�
tion error on the most recent pool of exemplars� The
problem is more acute in cases where a memory�based
approach for learning is used and stored exemplars
are used directly to form predictions� such as nearest�
neighbor and tree based approaches� In the non�
stationary case� the learning set will contain obser�
vations which are obsolete and will be signi
cantly
biased by the representative exemplars from obsolete
concepts� Consider also� that often� arti
cial neural
networks are trained on a �xed learning set which is
repeatedly presented in random order� and therefore
the same requirement to delete obsolete observations
is present�

We describe a density adaptive forgetting technique to
delete obsolete observations using exponential weight�
decay based on a nearest neighbor criteria� The ap�
proach uses a decay coe�cient to decrement an expe�
rience�s weighting� similar to that of �� ��� ��� How�
ever� this coe�cient is a function of the similarity
of that given experience to subsequent experiences�
rather than a 
xed value� The weight of an exem�
plar is decayed and deleted when it goes below some
minimum value� and is superseded by the newer ob�
servations that led to its deletion� This procedure can
be used as a front�end to a variety of learning algo�
rithms� the only prerequisite being that the input at�
tribute space can support a distance metric� It can
also be easily modi
ed to keep the size of a learning
set bounded if limited storage is available�

We demonstrate the utility of these learning and for�
getting algorithms in simulation for the assessment
of a robotic grasp�s suitability to an object with a



given parametric superellipsoid attribute description
��� and pose� However� the method can be applied to
any situation where there are a 
xed set of actions to
evaluate� a reward and a real�valued input attribute
space�

This work di�ers from previous e�orts in learning for
robotic grasping in terms of action and perceptual rep�
resentation� as well as the learning methods employed�
Dunn �� employed a two dimensional polygonal rep�
resentation� and a random search for successful grasps
during learning� followed by a 	�D model matching
during execution� Tan 	�� employed a feature�based
sonar depth representation and a cost sensitive exten�
sion of ID�� with ��D objects� Bennett 	� worked in
robotic grasping of polygonal 	�D puzzle piece task
using explanation�based learning and domain theories
about uncertainty and grasping� Mel ���� Ritter ���
and Cooperstock have used � � � neural�networks�
self�organizing feature maps and backpropagation� re�
spectively� for learning visually�guided control of robot
arms for grasping�

� Learning Algorithm

First� we describe the learning algorithm� Density
Adaptive reinforcement learning �DARLING� ����
Here the term Density refers to the local density of ob�
servations in the attribute space� de
ned as the num�
ber of exemplars per unit volume of attribute space�

The DARLING algorithm takes inspiration from de�
cision tree approaches embodied in Classi
cation and
Regression Trees �� and ID�� ���� along with the ge�
ometric learning approaches described by Omohun�
dro ���� The goal of the algorithm is to identify
regions of the input attribute space having a lower�
bound estimated probability� p�� of succeeding �re�
ceiving reward� that is greater than some speci
ed
minimum probability pmin required for the task� The
algorithm produces a classi
cation tree �see Figure
�� with real�valued splits that approximates those re�
gions� We desire that the tree approximate those re�
gions of the parameter space with minimum over� and
under�estimation�

��� Density�Adaptation

The algorithm 
rst builds a k�D�tree �� based on the
distribution of the exemplars in the parameter space�
ignoring the outcome labels of each exemplar� This
step adaptively partitions the exemplar set into a set
of bins each with a roughly uniform number of exem�
plars� Therefore� a k�D�tree takes the exemplar distri�
bution in the attribute space� and partitions the input
space such that the probability of a future observation
landing in any one of the partition bins approaches
equi�probability� assuming it is drawn from the same
distribution as the learning set� The attribute space

k-D Tree

Labelled Leaf

Labelled Leaf

Labelled Leaf Labelled Leaf

Decision Tree

Decision Tree

Figure �� The DARLING Tree� It consists of a k�D�
tree with leaf nodes that cover regions of the parameter
space� The leaf nodes are either labelled classi
cations
or the roots for shallow 	k decision�trees that further
partition and identify subregions�

is e�ectively transformed so as to equalize the origi�
nal distribution of exemplars so that it is uniform �	��
The higher the local density of exemplars� the larger
the number of bins per unit volume �area� of attribute
space� and the smaller the average spatial extents of
those leaves� Smaller spatial extent leads to higher
e�ective resolution �see Figure 	��

Many decision�tree algorithms operating in real�valued
domains are greedy� they rank the attributes and splits
at the current node under construction based on some
locally computable 
gure of merit� At one extreme
are algorithms such as ID����� and CART ��� Their
splitting criteria are based on the expected information
gain among attributes which is purely a function of
instance labelling and the orderings of these labellings
as projected along the current attribute axis� They do
not take into account metric information such as the
physical locations of exemplars in the parameter space�
The DARLING algorithm is at the other extreme since
it 
rst builds a k�D trees� The k�D�tree is also gener�
ated using a greedy algorithm for ranking attributes�
However� it completely ignores the labelling of the ex�
emplars� and picks attributes according to which at�
tribute for the current node has the greatest spatial
spread as projected onto the current attribute axis�
only looking a metric information about the learning
set� Immediately after this phase� the DARLING al�
gorithm looks at outcome label information to build
shallow decision trees�

��� Node Splitting and Labelling

As stated previously� k�D�tree partition does not en�
sure that the homogeniety of each bin is high� since
its construction ignores the outcome of each exemplar�
and is driven only by their locations� It may be that
a node under evaluation does not meet the pmin stop�
ping criteria� However upon splitting that node� it
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Figure 	� Density adaptation using k�D trees� The
k�D�tree partition of a mixture of Gaussians and a
uniform distribution� It can be seen that the size of
the leaves decreases as the local density of samples in�
creases� yielding the desired adaptive resolution prop�
erty�

may yield a set of children nodes among which some
are acceptable�

Since we are interested in 
nding regions of the at�
tribute space having a pessimistic probability of suc�
cess greater than some pmin� we use the outcome ratios
to compute a probability interval estimate �� for the
underlying probability of receiving a success in that
leaf� Two thresholds� pmin and pmax� are required for
splitting� If the lower bound of the probability inter�
val is above the pmin threshold� then it is accepted� It
the upper bound p� is below the pmax value� then it is
immediately rejected� If neither condition holds then
the k�D tree leaf is further split�

This k�D�leaf splitting could also be accomplished us�
ing a variety of standard identi
cation tree algorithms
depending on the learning task� The critical notion is
that the e�ective resolution of a decision tree of some
depth l is greater when its domain is smaller� Because
we are inserting these decision trees into the domain
of k�D�tree leaves� the spatial distribution of exemplars
governs the resolution of the individual decision trees�
The decision trees may be shallow� yet still have high
spatial resolution if they are embedded into a leaf with
small spatial extent� In this implementation� we em�
bed 	k�trees �generalized quadtrees� into the k�D�tree�
They are built to varying depths based the �� � ��
acceptance criteria described below�

Algorithm DARLING�point set�

�� perform density adaptation ��

Generate k�D�tree for point set

for all leaves of k�D�tree
begin

Compute p� and p� for current leaf accord�
ing to equation 	 �� can label as success ��
if p� � pmin then cur leaf�outcome �� suc�
cess
else if p� � pmax then cur leaf�outcome ��
failure �� label as failure ��

else generate 	k tree� new� 	k node ��
cur leaf � �� build 	k�tree if indeterminate ��

end

Figure �� The DARLING Algorithm

��� Deciding When to Split

The idea of the splitting criteria is to drive the prob�
ability interval estimates towards the extremes of � or
�� which indicate good homogeneity in outcome of ex�
emplars in the current leaf partitions� The upper and
lower con
dence bounds for the probability estimate
interval� p� and p� respectively� are computed using
the same ��� con
dence bound computation utilized
by Kaelbling ���

We desire an interval that contains the true proba�
bility value with con
dence �� � �� given x successes
�rewarding outcomes� out of n exemplars in the leaf�
This yields

p� � pi � p� ���

where
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�

�
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�
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where� p� and p� are the lower and upper bounds of
the probability interval estimate� respectively and g�

�

is the con
dence interval coe�cient �either tabulated
or computed�� The complete algorithm is given in Fig�
ures � and ��

��� Robustness to Noise

The di�erence in error immunity between k�nearest�
neighbor algorithms and the DARLING algorithm is
shown in Figure �� The quantity pflip is the probabil�
ity that the outcome of a given exemplar in the learn�
ing set is mislabelled by having its labelling �ipped�
The quantity perror is an estimate the combined mis�
classi
cation rate due to false positives and false nega�
tives conditioned over all predicted and true members
of the class� It is a normalized measure of hypothesis�



Algorithm generate �k tree� cur node� leaf cur leaf
�

Compute p� and p� for cur leaf

if p� � pmin then �� terminate ��

begin

cur node�outcome �� success
cur node�children �� �

end

else if p� � pmax then �� terminate ��

begin

cur node�outcome �� failure
cur node�children �� �

end

else �� split further ��

begin

for all cur node�children
begin
cur node�child � new� node �
generate 	k tree� cur node�child� parti�
tion�cur leaf�child� �

end
end

Figure �� The Adaptive 	k�tree Construction Al�
gorithm

agreement with the true concept� computed by taking
���� random exemplars uniformly distributed over the
input domain�

The similarity in performance is due to the fact that
the labelling of a given leaf in the DARLING tree is
based on a probability estimate that is pooled from a
number of observations over the leaf�s domain� which is
similar to the mechanism employed in k�nearest neigh�
bors� In Figure � the bin size is b���� which is ap�
proximates k��� nearest�neighbors� However� some
of the k�D�tree bins are split in to 	k trees so they
have smaller bin�size� This explains why the error
break�down curve of DARLING falls somewhere in be�
tween that of the k�� and k��� cases for the nearest�
neighbor learners�

� Density�Adaptive Forgetting

As mentioned previously� an important distinction
should be made in the taxonomy of learning systems
between learning in a domain with stationary con�
cepts versus learning in a domain where concepts may
change� Additionally� we cannot expect the learner
to have in
nite storage capacity� This implies it must
have some forgetting mechanism� in order to store only
a bounded number of examples at any given time�

In particular� memory�based learning algorithms do
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Figure �� A comparison of several k�nearest�neighbor
performance curves �dashed� to the DARLING curve
�solid� for � � ��� pmin � �� and pmax � �� and a
unit circle test concept� The noise breakdown curve
for the DARLING algorithm is similar to that of the
��nn algorithm�

not track changing concepts well� as noted by
Moore ���� Consider the following scenario� a learner
has been collecting exemplars on line for several years
and storing them �assume it has a huge store�� and
suddenly the dynamics of the environment change� In
this case� the learner will adapt very slowly� since there
will be a large number of observations from the past
that are no longer representative of the current con�
cept� In fact� the learner will have a permanent bias
since the obsolete observations will always be in its
database�

We develop a forgetting algorithm for accomplishing
the deleting of experiences based on the principle of
locality of observations� This states that observations
should be forgotten only if there is subsequent infor�
mation in their locality of parameter space�

This mechanism is implemented by associating a
weight w to each observation� Each weight is decre�
mented at a rate proportional to the number and prox�
imity of succeeding exemplars to the corresponding ob�
servation� This is in contrast to other weighted forget�
ting mechanism where all weights are decremented by
multiplication with factor� �� between � and �� each
time a new observation is input to the system ���� in�
dependent of its location� These approaches have the
disadvantage that the entire parameter space must be
constantly refreshed� otherwise all data vanishes in re�
gions not subsequently populated by exemplars� This
creates an undue burden on acquiring new exemplars
since� as the dimensionality of the input parameter
space increases �and more exemplars are needed�� the
forgetting rate must be decreased which impairs track�
ing performance�
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Figure �� The in�uence function for decaying obser�
vation in the neighborhood of previous observations�
The � � ��X�Xfkg�� is used as a forgetting coe��
cient for the kth nearest neighbor which is at distance
d�X�Xfkg� from the new observation X� It is a func�
tion of the scale parameter d�X�Xfmg� at which �
reaches unity� and � which is the forgetting rate�

In our approach� we decrement each exemplar�s weight
by a factor �� proportional to the proximity of a sub�
sequent observation� based on a truncated m�nearest
neighborhood in�uence function� A new observation
is initialized with a weight w � �� Each time a new
exemplar is input� the weightings wfkg of kth nearest
observations� Xfkg� �k � m�� within a neighborhood
of the m nearest�neighbors of the new exemplar X are
decreased by multiplication with ��

w
�

fkg � �
�
X�Xfkg

�
wfkg ���

When a given observation�s weighting falls below some
threshold value �� it is deleted from the learning set�
The quantity �

�
X�Xfkg

�
is computed based on the

following truncated quadratic function �depicted in
Figure ���

�
�
X�Xfkg

�
�

�
� � �� � � �

d�fkg

d�
fmg

if d�fkg � d�fmg
� otherwise

���

Here Xfig is the location of the ith nearest neigh�
bor� X is location of the new observation� and dfig �
d��X�Xfig� is the Euclidean distance from the ith
nearest neighbor to the new observation� Since the
radius dfmg is that of the sphere containing the m
nearest neighbors� this adapts the decay radius of in�
�uence to the local density of exemplars around the
new exemplar�

The parameters � � m and � determine how many
nearby subsequent observations are necessary in the
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Figure �� A plot of an actual weight decay as a function
of the number of succeeding observations� Whenever
the observation is within an m�th nearest neighbor in�
terval� its weight value decreases as a function of the
distance between the exemplar and the succeeding ob�
servation�
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Figure �� The asymptotic number of exemplars held
in the memory store as a function of 	 and � for a two
dimensional domain with uniform exemplar distribu�
tion�

neighborhood of a previous observation before it is
deleted from the learning set� The weights decay in
a stochastic fashion as illustrated in Figure �� where
an observation decays only if it happens to be one of
the m nearest�neighbors of a succeeding observation�
A straightforward way to implement a bound on the
number of exemplars stored is to set m� the number
of nearest�neighbors� equal to some 
xed fraction 	�
�� � 	 � ��� of the total number of observations cur�
rently in the learning set ���� By doing this� the total
number of observations that are kept in memory can
be set to reach some asymptotic value based on the
selection of the �� 	 and � parameters �See Figure ���



��� An Example� Adapting to Action Errors

To illustrate the algorithms discussed� we use a simple
simulation developed to test the ability of the DAR�
LING algorithm to adapt to the situation where one of
the 
ngers on a two 
ngered robotic gripper is jammed
at its extreme position� The task of the learner is to
determine whether approaching from the object�s z�
axis direction when its z�axis is pointed upwards will
succeed as a function of object dimensions� as schemat�
ically illustrated in Figure �� After the failure� the
gripper is still functional� it can pick up objects by
squeezing with its operational 
nger and compressing
the object against the jammed 
nger� However� the
range of objects that can actually be picked up is de�
creased dramatically� and is now limited to a small
interval�

The selection map �see Figure ��� for a given
approach�orientation combination makes a prediction
as to when the corresponding interaction will succeed�
The prediction is made in terms of the parametric de�
scription of the object� its reduced superquadric de�
scription� which is essentially a bounding box represen�
tation� For example� the success or failure of the z�axis
up� z�axis approach �zup�zapp� is a function of the ex�
tents of the object perpendicular to the approach axis�
namely ax and ay� The white areas of the selectivity
map �Figure ���a�� indicate the set of objects with
ax� ay dimensions that are predicted to succeed in the
ideal case� while the grey areas indicate objects whose
dimensions would predict failure� The width of the
white region is ��mm� which is the maximum width
that the jaws of the gripper can open� which� in turn�
determines the widest object than can be grasped�

When the 
nger is jammed� then the underlying se�
lection maps change so that the width of objects now
graspable ranges from 	� mm to �� mm �see Figure
���b��� rather than � to �� mm� The transition is
therefore from the concept depicted in the �� �a� to
that in �� �b�� Figure �� shows the learned selectivity
maps created by the DARLING tree� The transition
to the broken 
nger from the operational one occurs at
n � 	���� At this point� the prediction performance
is seen to degrade signi
cantly �see Figure �	�� The
error then decreases with further observations as the
forgetting algorithm gradually deletes the older obser�
vations and supersedes them with observations that
re�ect the current state of a�airs of the environment�

� Conclusion and Future Extensions

As can be seen in the simulation� a signi
cant num�
ber of objects must be attempted �in practice around
	�� are needed� before the learner begins to converge
on the correct underlying selection map� This is due
to the fact that the algorithm we have chosen is non�
parametric in terms of the description of the concepts

x

y

z

Zup-Zapp −0

Figure �� Approaching an object in the z�axis up con�

guration from the z�axis direction
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Figure ��� The beginning and ending selectivity maps
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Figure ��� Adapting to a Malfunction� At n � 	��� in
the simulation� one of the 
ngers in the gripper jams at
its extreme position� causing the range of objects that
are graspable to decrease� The selectivity map learned
tracks the changes of the underlying maps depicted in
��� The learning and forgetting algorithms had the
parameter values � � ��� pmin � ��� pmax � ��� � � ��
and 	 � ���� The upper diagonal distribution of the
points is due to the canonical superquadric represen�
tation where ax � ay � az�
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Figure �	� The learning curve for the simulation� It
can be seen that the learning curve jumps upward at
the n � 	��� point� where the 
nger jams� and then
gradually decreases as the system forgets the obsolete
observations� The error plotted is an estimate of the
probability of the symmetric di�erence between the
true and hypothesized concept�

that it creates and is therefore almost completely data
driven� This is the tradeo� between inductive�bias and
sample complexity� The less restrictions on the con�
cepts that can be faithfully approximated� the larger
the sample size necessary for the learner� We believe
that a low�bias approach is warranted in perceptual
situations where sensory distortions and miscalibra�
tions can lead to di�cult to characterize e�ects that
may not be well approximated by methods with high
inductive bias�

There are a number of immediate enhancements that
can be made to the learning algorithm� The 
rst is to
embed decision trees that use non�axis parallel splits
such as perceptron trees 		�� or linear discriminants
that might be more e�ective� since they will in general
provide much better performance for shallow trees�

Some simple branch�and�bound tests can be imple�
mented to prevent unnecessary subdivision� In par�
ticular� if the node�s current best case split has a p�
estimate which is lower than the current node�s p�
lower bound� then further subdivision will not yield
an improvement and the node should be abandoned�

Additionally� by merging neighboring regions with
like labellings� the resulting trees could be simpli
ed�
possibly yielding better generalization� and the error
breakdown as a function of random mislabelling errors
could be improved� The merging process would pool
larger numbers of observations� which would yield bet�
ter noise immunity�

Another drawback is that the search is greedy� It
searches for partitions with su�cing pessimistic suc�
cess probabilities and stops splitting when they are
met� rather than for the highest possible lower bounds�
It might be the case that further splitting yields a par�

titioning which has higher lower bound probabilities�
even though the current bound is acceptable� A hill
climbing lookahead search might yield better solutions�

The forgetting algorithm has the advantage of respect�
ing locality of observations since the metric of a locale
is determined by the local density of exemplars� This
allows for e�cient updating of the learning set so that
new observations decay only their neighbors� This
especially advantageous when the sampling distribu�
tions for the learning set is non�stationary and moves
between di�erent areas of the attribute space over
time� Using time�weighted forgetting� exemplars in in�
active areas would be deleted unnecessarily� whereas
with density�adaptive forgetting they will persist un�
til new evidence is available to supersede them� On
the other hand� if the sampling distribution is station�
ary then density�adaptive forgetting behaves identi�
cally to time�weighted forgetting� so there is no penalty
in adopting it over time�weighting forgetting in the

rst place�

Since the k�D tree built for the DARLING is an e��
cient structure for nearest�neighbor lookup� returning
the nearest neighbors in time O�logn�� where n is the
number of observations� it is synergistic with the use
of the nearest�neighbor forgetting approach�

Schlimmer et al� ��� point to the characteristic of
resiliency in learning systems as a property that oc�
curs in human and animal learning� Resiliency is the
property of a learning system that the longer a be�
havior is trained� the longer it takes to unlearn sub�
sequently� While algorithms which display this prop�
erty may be more psychologically suggestive� resiliency
can be counterproductive in rapidly changing environ�
ments� In particular� if a system operates on�line for
very long periods of time before a change occurs� it
will take an unacceptably long time to forget the obso�
lete concept� Fortunately exponentially weighted tech�
niques that actively delete exemplars will not su�er
from the same level of resiliency� since they have a
natural saturation in the size of the learning set �see
Figure �� which a�ords turnover�

The forgetting parameters 	 and � are task dependent�
It is therefore important to be able to estimate the ap�
propriate forgetting parameter for a given task� The
more rapidly a task environment changes� the larger 	
should be and the smaller � should be� However� there
is an obvious tradeo�� the more rapid the forgetting
rate� the fewer the asymptotic number of exemplars in
the learning set and the worse the overall learning per�
formance� Much work remains in devising automatic
techniques for selecting these parameters� Moore sug�
gests a technique for estimating task�speci
c forgetting
parameters using cross�validation in ����

Once forgetting is implemented� another important
question is how often to regenerate the classi
cation
tree structures� In this work� new observations are



simply inserted into their corresponding k�D leaf as
they come in� in order to allow the nearest�neighbor
forgetting queries to continue� The DARLING tree
is rebuilt modulo ��� observations� If on�line perfor�
mance is needed� an interleaved tree�building schedule
may be used� so that the preceding decision�tree is
used on�line while its successor is being built either in
a background process� or on another processor� Al�
ternatively� ��� discusses some issues in incrementally
updating adaptive k�D�trees�

This issue might be sidestepped by using the forgetting
technique together with other incremental techniques
such as ID�� 	��� or using it with nearest�neighbor pre�
diction techniques that do not form explicit decision�
trees ���
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