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Density and flow reconstruction in urban traffic networks using

heterogeneous data sources

Andres Ladino, Carlos Canudas-de-Wit, Alain Kibangou, Hassen Fourati, and Martin Rodriguez ∗

Abstract— In this paper, we consider the problem of joint
reconstruction of flow and density in a urban traffic network
using heterogeneous sources of information. The traffic net-
work is modeled within the framework of macroscopic traffic
models, where we adopt Lighthill-Whitham-Richards model
(LWR) conservation equation characterized by a piecewise
linear fundamental diagram. The estimation problem considers
two key principles. First, the error minimization between the
measured and reconstructed flows and densities, and second
the equilibrium state of the network which establishes flow
propagation within the network. Both principles are integrated
together with the traffic model constraints established by the
supply/demand paradigm. Finally the problem is casted as a
constrained quadratic optimization with equality constraints in
order to shrink the feasible region of estimated variables. Some
simulation scenarios based on synthetic data for a manhattan
grid network are provided in order to validate the performance
of the proposed algorithm.

I. INTRODUCTION

Accurate state information of the network provides an

empowering tool for decisions about the usage of the traf-

fic infrastructure. Efficient road traffic management policies

strongly depend on the vehicle density information. Road ve-

hicle density (or road occupancy), i.e. number of vehicles per

kilometer, is a critical parameter regarding various aspects:

in road maintenance and traffic monitoring, it is essential to

inform the state of the network and to perform preventive

maintenance; in designing traffic light control policies, its

evolution is essential to construct efficient feedback laws,

see [10]. Despite the development of a large variety of

sensing technologies, measuring vehicle density is still a

difficult task in complex traffic networks. Magnetic loop

detector (MLD) has been the traditional technology but it

is very expensive for both deployment and maintenance.

The emergence of new technologies such as Floating car

data (FCD) has reduced the cost of measurement while

increasing the amount of traffic monitored. However, FCD

measures average velocity in a road sector (not densities),

often suffers from a limited penetration rate, and does not

suffices alone for a correct reconstruction of vehicle density.

The problem of traffic state reconstruction has been widely

investigated in the literature. Works in [19], [20], [21], [2],

[15] are some examples where Luenberger observers and

Kalman filter (KF) like techniques are applied to reconstruct

densities and speeds. Data fusion techniques are explored in

[7] where multiple sources of data are integrated in the three
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detector model. In more recent works [13], [14], authors

proposed to combine both FCD and MLD for flow and

density estimation. The study in [1] considers sources of

connected vehicles and not connected ones for the density

reconstruction. A different approach [4] formulated the prob-

lem for lagrangian and loop data integration into a model

from variational calculus perspective. For a more general

reviews on this problem, see [8], [18]. This paper is devoted

to the problem of joint reconstruction of flow and density

in traffic networks using heterogeneous data sources. To the

best of our knowledge, this problem has been partially treated

in some simple scenarios like highways, but very seldom

in urban traffic networks. The estimation process is carried

out on the basis of the steady-state equilibrium of traffic

network with an explicit model for the road intersections.

Each single road section is modeled by the well known

macroscopic fluid traffic model LWR, while the intersections

are modeled by solving the single junction problem [3] as

a set of optimization problems (maximum outflows) which

turn out to be Linear Programming (LP) if the piece-wise

linear fundamental (triangular) diagram is adopted.

The whole estimation problem is finally described as a

minimization of the quadratic error between the measurement

and their estimates under linear equality constraints coming

from the network model. One key general difficulty in this

problem, which is inherent to the nature of the system, is the

”non-invertibility” of the velocity-to-density map in free-flow

conditions. Namely, several density values are possible when

the network operate in free-flow velocity. Then, in this free-

flow regime, one velocity point maps to a bounded density

set. Although several regularization schemes are possible, the

results still remain very sensitive to noise in this domain, and

the errors can be spread out to the whole set of estimated

variables. To overcome this difficulty, we make use of the

equilibrium state of the system which intends to provide flow

propagation within the network and we adopt strict equality

constraints which allows the density recovery by promoting

solutions in the fundamental diagram.

The paper is organized as follows. We first introduce the

network traffic model adopted in this paper and formulation

the problem under study in Sections II and III respectively. In

Section IV, we presents the optimization algorithms for both

the density and flow reconstructions which are evaluated in

Section V for a given scenario.

II. ROAD TRAFFIC NETWORK MODEL

A urban network is made of roads and junctions between

them. In what follows, we describe the dynamics governing



each road and their splitting or merging in junctions.

A. Macroscopic Traffic model for a single section

The most used instance of a continuous macroscopic traf-

fic model is the Lighthill-Whitham-Richards model (LWR)

[12], [17], which describes the spatio-temporal evolution of

vehicle density ρ(x, t) and flow Φ
(

ρ(x, t)
)

as:

∂

∂t
ρ(x, t)+

∂

∂x
Φ(ρ(x, t)) = 0, (1)

The characteristic curve of Φ(ρ), widely known as fun-

damental diagram, may take multiple forms including a

triangular one [16]. The discretized version of this model

is known as the Cell Transmission Model (CTM) [5], [6],

which is undoubtedly one of the main and most well known

traffic models to date. It is based on a first order Godunov

approximation of LWR [11].

In CTM, the road segment of interest is first partitioned

into a sequence of cells. The propagation of traffic dynamics

in each cell is given by the following set of equations:

ρi(k+1) = ρi(k)+
T

li
(ϕi−1(k)−ϕi(k))

ϕi−1(k) =min
(

vfreeρi−1(k),ϕmax,w(ρmax−ρi(k))
)

(2)

where ρi(k) denotes the current vehicles density in the ith cell

while ϕi(k) stands for the interface flow between the ith and

(i+1)th cells, li being the length of the cell. The followings

are the set of parameters associated to each cell1:

• ρmax, the maximum density, often referred as jam den-

sity,

• ϕmax, the maximum capacity flow,

• vfree, the maximum velocity of vehicles in the cell, said

the free–flow velocity,

• w, the speed of the congestion wave in back propaga-

tion.

These parameters can be easily found in the fundamental

diagram (See Fig. 1).

ρ
crit
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S (ρi)

D(ρi−1)

ρi

ρi−1
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i

ρi

ϕ
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Φ(ρi)

Ψ(ρi)
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v f ree

w v f ree

Fig. 1: Left - Demand and Supply functions. Right - Density-

flow and density-speed fundamental diagrams where ρcrit

stands for the critical density which represents the switching

point between free-flow and congested regimes.

1We omit the i index in the notation of parameters of each cell to simplify
the reading process.

B. Junction model

Let G denote the set of junctions within the network.

A junction labeled g ∈ G represents a physical connection

between 2 or more roads and they can be found in shapes of

bottlenecks, divergences, or merges. A junction g is repre-

sented by the tuple (Ig,Rg) where Ig = {Ii : i = 1, . . . ,n+m}

represents a set of roads and r[i j] ∈ Rg are the splitting ratios

denoting driving preferences. Each element of G symbolizes

the existing junction between the set of n upstream roads

I−g = {Ii : i = 1, . . . ,n} and the set of m downstream roads

I+g = {I j : j = n+ 1, . . . ,n+m} as depicted in Fig. 2. The set

of junctions G along with the corresponding sets I−g ,I
+
g ,Rg

constitute the called Road Traffic Network (RTN).

a) Diverge junction

I− = {I1}
I+ − {I2, I3}

b) Merge junction

I− = {I1, I2}
I+ = {I3}
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Fig. 2: Simplified case of junction types

Each cell represents a node in a network and it is character-

ized by a set of unique variables describing the macroscopic

behavior: ρi(k), the density, ϕin
i

(k), the ingoing flow, and

ϕout
i

(k), the outgoing one. We refer to ρ(k), ϕin(k), ϕout(k)

as the vectors collecting all the densities and flows of the

network.

Definition 1 (Single Junction Problem): Consider a junc-

tion g with n incoming roads I−g and m outgoing ones I+g
under the vehicle conservation law, i.e.

n
∑

i=1

ϕout
i (ρi(k)) =

n+m
∑

j=n+1

ϕin
j (ρ j(k)). (3)

The single junction problem consists in determining values

of inflow and outflow consistent with the solutions of the

LWR model (or its discretized counterpart (2)).

Since solutions of ϕin, ϕout to the traffic distribution problem

in (3) are non unique, additional rules to incorporate drivers’

behavior can be added to define a particular solution. Typical

rules for Manhattan-like networks2 are:

A) Drivers follow fixed routes. Hence there exists traffic

routing coefficients ri j ∈ (0,1], representing the splitting

ratio from road Ii to road I j. The resulting matrix,

called Splitting Ratio matrix, Rg = [r]i j is row stochastic
∑n+m

j=n+1 ri j = 1. This matrix is assumed to be known (at

least in average).

2For the sake of simplicity we have limited our approach to Manhattan-
like networks where there are no merging junctions in which n > m.
However, it is also possible to generalize for any other type of networks
including also merging junctions by adding priority driving rules, see [9],[3]



B) Drivers tend to maximize the network throughput. So

drivers behavior is such that incoming flows to the

junctions ϕout are maximized.

A solver for the junction problem: Consider the rules A)

and B) together with the triangular fundamental diagram of

Fig. 1 having the density-flow map,

Φ(ρi) =















vfreeρi 0 ≤ ρi ≤ ρ
crit

w(ρmax−ρi) ρcrit < ρi ≤ ρ
max

, (4)

and, its corresponding speed-density map,

Ψ(ρi) =























vfree 0 ≤ ρi ≤ ρ
crit

w

(

ρmax

ρi

−1

)

ρcrit < ρi ≤ ρ
max

. (5)

Note that the admissible solutions are those satisfying the

Riemann problem [9]. The Riemann’s admissible solutions

can be rewritten using the Demand-Supply formalism, where

the demands D(ρi) and supplies S (ρi) functions are given as

(see also Fig 1):

D(ρi) =min
(

vfreeρi,ϕ
max), (6)

S (ρi) =min
(

ϕmax,w(ρmax−ρi)
)

. (7)

In a simple junction of one inflow and one outflow, the

interface flow corresponds to

ϕout
i =min

(

D(ρi),S (ρi+1)
)

, (8)

and the solutions ϕout
i

can be expressed as upper bounds of

the inequalities
0 ≤ ϕout

i ≤ D(ρi)

0 ≤ ϕout
i ≤ S (ρi+1).

(9)

Maximizing the throughput as suggested by rule B), implies

maximizing

max
ϕout

n
∑

i=1

ϕout
i (10)

and introducing rule A), implies that inflows and outflows

are linearly related by the relation ϕin
j
=

∑

i∈I− ri jϕ
out
i

, trans-

forming the inflows in

ϕin = RTϕout+ϕext. (11)

where ϕext = Bλe is a vector containing exogenous external

inflows to the network in the corresponding positions of ϕin

and zeros elsewhere. B is a selection matrix for the incoming

boundary flows of the network.

In problem (10) the flow ϕout should respect the rela-

tionships (9) for each one of the entering roads to the

intersection. Let us consider first an organization of the set

of constraints for a single junction g as

Ďg :
{

ϕout
i ≤ vfreeρi ∀ i ∈ I−

}

,

Dmax
g :

{

ϕout
i ≤ ϕ

max ∀ i ∈ I−
}

,
(12)

Šg :
{

n
∑

i=1

ri jϕ
out
j ≤ w(ρmax−ρ j) ∀ j ∈ I+

}

,

Smax
g :

{

n
∑

j=1

ri jϕ
out
j ≤ ϕ

max ∀ j ∈ I+
}

.

(13)

The set of constraints Dg = Ďg∩D
max
g and Sg = Šg∩S

max
g ,

complete the formulation required for the junction problem.

With P
ϕ
g :Dg∩Sg the solution to the junction problem can

then be finally stated as:

max
ϕout

n
∑

i=1

ϕout
i

s.t. ϕout ∈ P
ϕ
g .

(14)

Solutions of the optimization problem (14) typically reach

the upper boundaries of the constraints (See Fig. 1), and

they provide a single unique solution for cases where m > n.

C. Full traffic network model

The full network of roads can be described by a weighted

directed graph H := (I,R). The graph is represented by the

union of all tuples
(

I :=
⋃

g∈GIg,R := ∪g∈GRg

)

for each

intersection resulting in nH roads3.

The complete traffic network model combines, dynamic

equations of the density evolution of each road (2), in its

vector form

ρ(k+1) = ρ(k)+T L−1(ϕin(k)−ϕout(k)), (15)

or equivalently, using rule A),

ρ(k+1) = ρ(k)+T L−1
(

(RT − I)ϕout(k)+ϕext(k)
)

, (16)

where T the sampling time and L= diag{li}, with the junction

models compactly represented by a graph resulting form the

union of multiple single junction problems.

Definition 2 (Network Junction Problem): The extension

of the single junction problem to the network case is

represented as the union of all local problems respecting

simultaneously all the constraints imposed by the traffic

model at each junction.

max
ϕout

✶
Tϕout s.t. ϕout ∈ Pϕ. (17)

The network junction problem is the solution to the opti-

mization problem (17). The union of all problems is obtained

through the maximization of the total throughput
∑nH

i=1
ϕout

i
=

✶
Tϕout and the constraints Pϕ :=

⋃

g∈GP
ϕ
g .

III. DENSITY AND FLOW RECONSTRUCTION

In this section we present the joint density and flow

reconstruction problem. We first indicate the main data

characteristics and their associated observation model.

A. Observations model and its mathematical properties

Let IFCD be the set of roads where FCD are collected.

FCD measurements can be considered to be available ev-

erywhere in the network, i.e. |IFCD| = nH . They describe

the average velocity at each road. On the other hand, let

IMLD be the set where MLD data is collected. They measure

outflows at the road ends where sensors are installed. Loop

3We consider, all the roads in the graph H to be re-labelled with a single
index i so that each road keeps a unique identifier.



detectors are not available at all roads |IMLD| = NM < nH .

These measurements have the following observation models,

v̄i(k) = Ψ(ρi,k)+ηv(ρi,k), i ∈ IFCD (18)

ϕ̄out
l (k) = Φ(ρl,k)+ηϕout (ρl,k), l ∈ IMLD (19)

where the terms ηϕout ,ηv represent additive noise produced by

factors such as aggregation time, penetration rate, measure-

ment noise, etc, which naturally may affect the measurement

quality. The velocity measurement (18) will be used as a

basis for density reconstruction as velocity are sensed in all

the network road. However, its inverse map (noise apart)

ρi = Ψ−1(v̄i+ηv) (20)

is not invertible in the free-flow part (See Fig. 1). From other

hand the inverse map of the flow,

ρl = Φ−1(ϕ̄out
l +ηϕout ) (21)

has the problem that is not uniquely defined and that flow

measures are spatially sparse. The non-unicity of (21) can be

tackled by using the velocity measures allowing to discrimi-

nate congested from free-flow regimes, but can only be used

in some roads. Therefore, velocity measurements and flow

measurements will be used in different way to facilitate the

signal reconstructions. The density/flow reconstruction algo-

rithm is designed in the basis of the following assumptions:

Assumption 1 (Boundary flows): All inflows and outflows

at the network boundaries are measurable.

Assumption 2 (Measured FCD speeds): Speeds captured

by FCD are measured everywhere in the network.

Assumption 3 (Density pseudo-observation): Consider

the fundamental diagram. Consider a measurement of speed

measured in the congested regime, then there exists a

density observation which can be uniquely recovered from

the map (5), ∀ρi ∈ [ρcrit,ρmax],∀v̄i ∈ [0,vfree)

ρ̄i = Ψ
−1(v̄i) =

ρmax

1+ v̄i/w
, (22)

Assumption 4 (Network Equilibrium): The reconstruction

is done in a fast enough time scale so that the network

can be considered to be at the equilibrium. At the network

equilibrium, the flows are then related by the steady-state

equation of (16),

(RT − I)ϕout+Bλe = 0. (23)

Remark: Under full rank conditions for the matrix RT − I a

unique solution ϕout = −(RT − I)−1Bλe can be obtained for

the vector of outflows in the traffic network.

IV. RECONSTRUCTION PROBLEM

We consider the reconstruction problem expressed as the

solution to an optimization problem at a fixed time instant

min
ϕ̂out,ρ̂

Jϕout + Jρ s.tMϕ,ρ (24)

where Mϕ,ρ denotes a RTN model. The terms Jϕout and

Jρ represent penalty functions for the error between the

estimated values ϕ̂out, ρ̂ and the measurements from the

observation model in the systems.

The integration of these penalty functions allow the system

to consider the reality captured by the observation model

(20),(21). In particular, Jϕ integrates into the problem direct

information contained in the MLD measurements. This cost

function minimizes the error between available measure-

ments ¯ϕout = {ϕ̄out
l
, l ∈ IMLD} through the quadratic norm

∑

l∈IMLD
(ϕ̂out

l
− ϕ̄out

l
)2 .

On the other hand, assumption (3) allows a good recovery

of information in the congested zones. According to Fig. 1

density values on congested zones are contained in the speed

measurements. Let us consider

S v̄i
=















1, v̄i < vfree

0,elsewhere

For all the network the selection matrix S v̄ = diag{S v̄i
}

is a transformation that contains on its diagonal ones for

cells in congested zones and zeros everywhere else. The

penalty goal for the density case is achieved by considering
∑

v̄ j<vfree

(

ρ̂ j− ρ̄ j)
2
, which has as an objective the minimiza-

tion of density error in congested measured links. Finally the

two terms can be exchanged transforming the problem into

min
ϕ̂out,ρ̂

NM
∑

i=1

(ϕ̂out
l − ϕ̄

out
l )2+

NH
∑

j=1

(

S v̄ j
(ρ̂ j− ρ̄ j)

)2
s.tMϕ̂,ρ

(25)

a) Difficulties and relaxation of the estimation problem:

Some difficulties lie in the formulation of the problem (25).

Non linearities of Mϕ,ρ may appear in the fundamental

diagram and no explicit solution is known to the problem.

When introducing non linear constraints to the estimation

problem, the solutions are regularly hard to approximate

and most algorithms extract local minima. In addition, the

computational cost and the complexity to solve the problem

increases when the size of the network augments.

We introduce then a relaxed version of this problem which

considers two main aspects. First, given the sparse nature of

the flow measurements, and considering assumption 4 the

steady state of the system constitutes an additional source

of information to the flow reconstruction problem. This can

be can be integrated into the cost function through the norm
∥

∥

∥(I−RT )ϕout+Bλe

∥

∥

∥

2
.

Even though this term adds information to (25), it does

not tackle the nonlinearity. In order to relax the non linear

constraints we make use of piecewise linear fundamental

diagrams (4), (5). The set of constraints is then transformed

into linear equalities. They shape boundaries of the space

of solutions established by the network junction problem.

This aims to push solutions of the estimation within the

fundamental diagram. Given assumption 2 the information

about speeds provides a way to classify congested from free-

flow cell constraints as:

D̄g :
{

ϕout
i = vfreeρi ∀ i ∈ I−∧ v̄i = vfree

}

,

S̄g :
{

n
∑

i=1

ri jϕ
out
j = w(ρmax−ρ j) ∀ j ∈ I+∧ v̄ j < vfree

}

,

(26)
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Fig. 3: Manhattan network topology under study

Such constraints can be expressed in terms of the selection

matrix S v̄

A(v̄)ϕout = B(v̄)ρ+C(v̄), (27)

where

A(v̄) =

[

S v̄− I

RT S v̄

]

, B(v̄) =

[

vfree(S v̄− I)

−wS v̄

]

,

C(v̄) =

[

0

wρmax
✶S v̄

]

.

(28)

The resulting optimization problem is quadratic with linear

equalities which provide good properties for the solution.

The reconstruction problem can be formulated as follows.

Problem 1 (Joint density / flow reconstruction): Given a

set of measurements of flow ϕ̄out ∈ IMLD and a set of speed

measurements v̄ ∈ I the inverse problem defined to recover

ρ̂, ˆϕout is given by the solution of the following optimization

problem:

min
ˆϕout,ρ̂

∥

∥

∥CMϕ̂
out− ϕ̄out

∥

∥

∥

2

γϕ
+

∥

∥

∥S v̄

(

ρ̂−Ψ−1(v̄)
)

∥

∥

∥

2

γρ
+

∥

∥

∥(RT − I)ϕ̂out+Bλe

∥

∥

∥

2

γ

s.t. A(v̄)ϕ̂out = B(v̄)ρ̂+C(v̄)

ρ̂ ∈ Pρ.

(29)

In (29) Pρ :=
⋃

g∈GP
ρ
g define the boundaries for ρ. In this

case this particular boundaries can be determined from the

speed measurements v̄. CM selection matrix for the outgoing

flows wherever they are available. The terms γϕ,γρ,γ are

weighting factors.

V. SIMULATION SCENARIOS & RESULTS

A. Scenario description

We have built a manhattan topology network as depicted

in Fig. 3. In this case, each one of the junctions is specified

by 2 ingoing roads and 2 outgoing roads. The system is

excited externally with maximum demands ϕmax for external

inflows and outflows selected from a uniform distribution in

[0,ϕmax], meaning the boundary conditions of the network

are known. The selection of the splitting ratios is fixed so that

70% of the flow continues in a straight direction while the

remaining turns. We consider all cells are uniform li = 500m,

vfree = 50Km/h, ϕmax = 2000veh/h. The corresponding value

Fig. 4: Comparison of ground truth and estimated values for

density (top) and flow (bottom) at network equilibrium

of w is obtained from (4). For the purpose of this simulation

γϕ = γρ = γ = 1.

B. Performance measurement

In order to assess performance of the method, we consider

the Absolute Error (AE) as a reference:

APEρ(k) =
1

N

N
∑

i=1

|ρi(k)− ρ̂i(k)| (30a)

APEϕout (k) =
1

N

N
∑

i=1

|ϕout
i (k)− ϕ̂out

i (k)| (30b)

We illustrate the performance and limitations of the dis-

cussed estimation method. Initially, a simulation of the

Manhattan grid using the CTM and the network junction

problem solver was run until it reached equilibrium. These

results were taken as ground truth. Using this equilibrium

state, the density and flow reconstruction method was applied

by using measurements of the inflows at the boundaries and

speed information everywhere. Results are shown in Figure

4.

Even though the algorithm has been proposed for a static

case, to illustrate the performance of the algorithm we

consider a dynamical scenario. For this, a second experiment

was carried out. For this instance, the traffic network was

given an random initial condition of flow and density, and

the inflows at the boundaries were initialized with a demand

equal to random but fixed values in the interval [0,ϕmax].

Each of the iterations of the simulation process represents 15

seconds. At every step, the estimation method was applied

with the assumption that the network had reached equilib-

rium. Results are presented in Fig. 5.As it can be observed,

the estimation algorithm is able to capture the free-flow

and congested locations of the network, with values close

to ground truth. For the case of vehicle density, the mean

absolute error is 0.025 veh/km with a maximum error of

0.037 veh/km, whereas vehicle flow presented a mean error

of 0.45 veh/h and a maximum error of 1.5 veh/h. It should

also be noted that for traffic flow the proposed method tends

to approximates in a good way to the real values as desired.

VI. CONCLUSION

This research has addressed the problem of joint den-

sity/flow reconstruction over urban traffic networks based
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Fig. 5: Error dynamics for Flow and Density

on the fusion of multiple sources of information. The re-

covery process was achieved by introducing an estimation

problem in which the cost function considers the integration

of measurements and the network traffic model. We have

introduced a relaxation to the original reconstruction problem

and we have converted it into a quadratic problem under

linear constraints which presents nice properties to be solved.

The solutions of the problem show a good recovery in a static

as well as in a dynamic case.

Future works on this aspect involves the validation of

the current technique within a micro simulated scenario, the

analysis of robustness of the method with respect to pene-

tration rate, in particular the noise characterization related to

the observability model of speeds. Other future works include

the study the optimal sensor placement problem to improve

the efficiency of the method and a study of the scalability of

this model.
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