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Abstract— A deterministic procedure for optimal approxi-
mation of arbitrary probability density functions by means of
Dirac mixtures with equal weights is proposed. The optimality
of this approximation is guaranteed by minimizing the distance
of the approximation from the true density. For this purpose
a distance measure is required, which is in general not well
defined for Dirac mixtures. Hence, a key contribution is to
compare the corresponding cumulative distribution functions.

This paper concentrates on the simple and intuitive in-
tegral quadratic distance measure. For the special case of
a Dirac mixture with equally weighted components, closed–
form solutions for special types of densities like uniform and
Gaussian densities are obtained. Closed–form solution of the
given optimization problem is not possible in general. Hence,
another key contribution is an efficient solution procedure for
arbitrary true densities based on a homotopy continuation
approach.

In contrast to standard Monte Carlo techniques like particle
filters that are based on random sampling, the proposed ap-
proach is deterministic and ensures an optimal approximation
with respect to a given distance measure. In addition, the num-
ber of required components (particles) can easily be deduced
by application of the proposed distance measure. The resulting
approximations can be used as basis for recursive nonlinear
filtering mechanism alternative to Monte Carlo methods.

I. INTRODUCTION

Bayesian methods are very popular for dealing with sys-

tems suffering from uncertainties and are used in a wide

range of applications. For nonlinear systems, unfortunately

the processing of the probability density functions involved

in the estimation procedure, typically cannot be performed

exactly. This effects especially the type of density in recur-

sive processing, which changes and increases the complexity.

Hence, nonlinear estimation in general requires the approxi-

mation of the underlying true densities by means of generic

density types.

In literature different types of parametric continuous den-

sities have been proposed for approximation, including Gaus-

sian mixtures [1], Edgeworth series expansions [2], and ex-

ponential densities [3]. Furthermore, discrete approximations

are very popular. A well known approach is to represent the

true density by means of a set of samples [4]. This is used

by the class of particle filters [5]. Typically, the locations and

weights of the particles are determined by means of Monte

Carlo techniques [6], [7].

In this paper we provide a different view on such a discrete

representation. The given data points are interpreted as a

mixture of Dirac delta components in order to systematically

approximate an arbitrary density function. The proposed

method differs from the deterministic type of particle filters

in [8] as a distance measure is employed to find an optimal

approximation of the true density. However, typical distance

measures quantifying the distance between two densities are

not well defined for the case of Dirac mixtures. Examples

are the Kullback–Leibler distance [9] and integral quadratic

distances between the densities. Hence, in this paper the

corresponding cumulative distribution functions of the true

density and its approximation are compared in order to define

an optimal Dirac Mixture approximation. This can be viewed

as a reversal of the procedure introduced in [10], where a

distribution distance, in that case the Kolmogorv–Smirnov

test statistic, is used to calculate optimal parameters of a

density given observed samples.

Here, we apply the integral quadratic distance between the

cumulative distributions, which is simple and intuitive. Other

possible distribution distances include the Kolmogorov–

Smirnov distance [11], or the Cramér–von Mises distance

[12], [13]. For the special case of a Dirac mixture with

equally weighted components, closed–form solutions for spe-

cial types of densities like uniform and Gaussian densities are

obtained. The more general case for non-equally weighted

components is discussed in [14]. Since a closed–form solu-

tion of the given optimization problem is not possible in

general, an efficient solution procedure for arbitrary true

densities based on a homotopy continuation approach similar

to the approach introduced in [15] is applied.

The approximations yielded by the approach presented

in this paper can immediately be used for implementing a

recursive nonlinear filter that could serve as an alternative to

the popular particle filters. In contrast to a standard particle

representation, the proposed approach provides an optimal

approximation with respect to a given distance measure.

Furthermore, the approach is deterministic, since no random

numbers are involved. In addition, the number of required

components (particles) can easily be deduced by taking the

distance measure presented into account.

The paper is organized as follows. After the problem

formulation in Section II, the conversion of the approx-

imation problem into an equivalent optimization problem

is explained in Section III. Closed–Form solutions of this

optimization problem for special types of densities are given

in Section IV. A general solution approach for the case of

arbitrary densities is then given in Section V. Conclusions
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and a few remarks about possible extensions and future work

are given in Section VI.

It is important to note that this paper is restricted to the

case of scalar random variables. Furthermore, the focus is

on the special case of Dirac mixtures with equally weighted

components. This dramatically simplifies the derivations and

allows for closed-form approximations in some important

cases.

II. PROBLEM FORMULATION

We consider a given density function f̃(x). The goal is to

approximate this density by means of a Dirac mixture given

by

f(x, η) =
L

∑

i=1

wi δ(x − xi) , (1)

where in the context of this paper, the weighting factors

wi are assumed to be equal and given by wi = 1/L. The

parameter vector η contains the positions of the individual

Dirac functions according to

η =
[

x1, x2, . . . , xL

]T
.

For the remainder of this paper, it is assumed that the

positions are ordered according to

x1 < x2 < . . . < xL−1 < xL .

Our goal is to minimize a certain distance measure G be-

tween the given density f̃(x) and its approximation f(x, η).
However, standard measures of deviation are not well defined

for Dirac mixture densities.

III. THE OPTIMIZATION APPROACH

The first key idea is to reformulate the above approxi-

mation problem as an optimization problem by minimizing

a certain distance between the true density f̃(x) and its

approximation f(x). Instead of comparing the densities di-

rectly, which does not make sense for Dirac Delta functions,

the corresponding (cumulative) distribution functions are

employed for that purpose.

The distribution function corresponding to the true density

f̃(x) is given by

F̃ (x) =

∫ x

−∞

f̃(t) dt ,

the distribution function corresponding to the Dirac mixture

approximation can be written as

F (x, η) =

∫ x

−∞

f(t, η) dt =
L

∑

i=1

wiH(x − xi) , (2)

where H(.) denotes the Heaviside function defined as

H(x) =

⎧

⎨

⎩

0, x < 0
1
2 , x = 0
1, x > 0

.

A distance measure can then given by

G(η) =

∫

∞

−∞

(

F̃ (x) − F (x, η)
)2

dx . (3)
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Fig. 1. Approximation of the uniform distribution for a different number
of components L = 5, L = 10, and L = 15.

Theorem III.1 The optimal parameters xi, i = 1, . . . , L of

the Dirac mixture approximation f(x, η) according to (1) of

a given density f̃(x) with respect to the distance measure

(3) are obtained by solving

F̃ (xi) =
2 i − 1

2 L
, (4)

for i = 1, . . . , L.

PROOF. The necessary condition for a minimum of the distance
measure G(η) is satisfied by the roots of the derivative of G(η)
with respect to the parameter vector η according to

∂G(η)

∂η
= 0 .

For the individual parameters xi we obtain

∂G(η)

∂xi

= −2

Z

∞

−∞

 

F̃ (x) −
L
X

j=1

wjH(x − xj)

!

δ(x − xi) dx

for i = 1, . . . , L. Using the fundamental property of the Dirac delta
function gives

∂G(η)

∂xi

= −2

 

F̃ (xi) −
L
X

j=1

wjH(xi − xj)

!

.

Evaluating the Heaviside function and setting the result to zero
finally gives the desired result

F̃ (xi) −
2 i − 1

2 L

!
= 0

for i = 1, . . . , L. �

IV. SOLUTION FOR SPECIAL CASES

For illustrating the usefulness of the result given in The-

orem III.1, we consider two special types of densities that

admit a closed–form solution for the desired parameters of

the Dirac mixture approximation.



A. Special Case: Uniform Density

Without loss of generality, we consider the uniform density

f̃(x) =

⎧

⎨

⎩

0, x < 0
1, 0 ≤ x < 1
0, x ≥ 1

. (5)

The corresponding distribution function is given by

F̃ (x) =

⎧

⎨

⎩

0, x < 0
x, 0 ≤ x < 1
1, x ≥ 1

.

Hence, in (4) we have F̃ (xi) = xi, and the parameters of

the Dirac mixture approximation are immediately given by

xi =
2 i − 1

2 L
(6)

for i = 1, . . . , L.

The true distribution F̃ (x) and its Dirac mixture approx-

imation are shown for a different number of components

L in Figure 1. Obviously, the Dirac mixture approximation

converges to the true density for L → ∞, which will be

shown more formally in the next theorem.

Theorem IV.1 The distance measure G(η) between the uni-

form density f̃(x) and its Dirac mixture approximation with

L components is given by

G(η) =
1

12

1

L2

and decreases quadratically towards zero as the number of

components L increases.

PROOF. The distance measure is now given by

G(η) =

Z

1

0

 

x −
L
X

i=1

1

L
H

„

x − 2i − 1

2L

«

!2

d x ,

which is equivalent to

G(η) =
2L
X

i=1

 

Z 1

2L

0

x
2
dx

!

.

Evaluating the integral gives

G(η) =
2L
X

i=1

1

3

1

(2L)3
=

1

3

1

(2L)2
,

which concludes the proof. �

The expected value and the variance of the given true

density f̃(x) are given by

Ef̃{x} =
1

2

and

Ef̃

{

(

x − Ef̃{x}
)2

}

=
1

12
.
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Fig. 2. Approximation of the standard normal distribution and density for
a different number of components L = 3, L = 5 and L = 10.

Lemma IV.1 The expected value of the Dirac mixture ap-

proximation of the uniform distribution is (independent of

the number of components L) given by

Ef{x} =

L
∑

i=1

1

L

2 i − 1

2 L
=

1

2
.

PROOF.

Ef{x} =

Z

∞

−∞

x

 

L
X

i=1

wi δ

„

x − 2 i − 1

2 L

«

!

dx ,

which upon using the fundamental property of the Dirac delta
function gives

Ef{x} =
L
X

i=1

1

L

2 i − 1

2 L
.

Simplification yields

Ef{x} =
L (L + 1) − L

2 L2
=

1

2
.

�

Hence, the expected value of the approximation density is

equal to the expected value of the true density independent

of the number of components.

Lemma IV.2 The variance of the Dirac mixture approxima-

tion is given by

Ef

{

(x − Ef{x})2
}

=
L2 − 1

12 L2
.

PROOF. The variance is given by

Ef

˘

(x − Ef{x})2
¯

=

 

L
X

i=1

1

L

(2 i − 1)2

(2 L)2

!

− 1

4

=
(2 L + 1)(2 L − 1)

12 L2
− 1

4
,

which gives the above result. �
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Fig. 3. Progressive approximation of the Gaussian mixture with two components Example V.2 for γ = 0 . . . 1. The approximation density consists of
L = 15 components. The height of each Dirac component in the density approximation corresponds to its weight value.

The variance of the approximation density converges to

the true variance when the number of components goes to

infinity.

B. Special Case: Gaussian Density

Without loss of generality, we consider a standard normal

density with distribution function

F̃ (x) =
1

2
erf

(

x√
2

)

+
1

2
,

where erf(.) denotes the error function.

Lemma IV.3 The parameters of a Dirac mixture approxima-

tion of the standard normal density are given by

xi =
√

2 erf−1

(

2 i − 1 − L

L

)

for i = 1, . . . , L.

PROOF. With (4) we have

1

2
erf

„

xi√
2

«

+
1

2
=

2 i − 1

2 L
,

which immediately gives the desired result. �

The Dirac mixture approximation of the standard normal

density and the corresponding distribution for a different

number of components L is shown in Figure 2.

Remark IV.1 We assume, that a suitable implementation of

the inverse error function erf−1(.)1 is available.

1The corresponding MATLAB function is denoted by erfinv()

V. SOLUTION FOR THE GENERAL CASE

For general true densities f̃(.), a closed–form solution for

the parameters of the approximating Dirac mixture density is

not possible. Hence, we have to resort to a numerical solution

of (4) in Theorem III.1.

Of course, in the scalar case considered in this paper, a

wealth of numerical procedures for solving (4) are readily

available. However, the multidimensional case calls for more

advanced approaches. This is even more important, when

Dirac mixture approximations with non–equally weighted

components are considered [14]. Hence, we provide an effi-

cient solution procedure, that will be derived and explained

in simple scalar cases, but is also very well suited for the

more advanced cases.

The approach pursued here is based on the intuition that

in typical density approximation scenarios, a certain prior

density is given, which is transformed by the considered type

of processing step. This includes transformation of random

variables, the Bayesian filter step (measurement update), and

the prediction step (time update) for propagating a given

prior density through a nonlinear dynamic system.

Instead of performing the considered processing step at

once, the effect on the resulting density is introduced grad-

ually. For that purpose, a continuous transformation of the

given density towards the desired density is employed. This

typically allows us to start with a “simple” density s(x),
for which the approximation is either already known or can

easily be constructed.

A progression parameter γ is introduced, which is used to

parameterize the true density f̃(.). Without loss of generality,

the progression parameter γ is assumed to range in the

interval γ ∈ [0, 1], such that f̃(x, γ = 0) corresponds to

the simple density s(x) and f̃(x, γ = 1) corresponds to

the original true density, i.e., f̃(x, γ = 0) = s(x) and

f̃(x, γ = 1) = f̃(x).
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Fig. 4. Approximation of the Gaussian mixture from Example V.2 with a Dirac mixture with L = 10, L = 20, L = 30, and L = 40 components.

A straightforward progression from the simple density

s(x) to the original true density f̃(x) is given by

f̃(x, γ) = (1 − γ) s(x) + γ f̃(x) , (7)

which is demonstrated in the next example. Different pro-

gression schedules are possible as shown in [14].

Example V.1 We consider a Gaussian Mixture density with
two components given by

f̃(x) = w1N(x, m1, σ1) + w2N(x, m2, σ2) (8)

with
w1 = 0.3 , w2 = 0.7 ,

m1 = −0.5 , m2 = 2.0 ,

σ1 = 1 , σ2 = 0.3 .

As simple density, we select the uniform density given in (5).
The resulting homotopy is visualized in Figure 3 for various

values of γ ∈ [0, 1]. In addition, the optimal Dirac mixture
approximations with L = 15 components are shown for the
corresponding values of γ. This approximation will be dis-
cussed in what follows.

The approximation now tracks the true density that is

progressively modified by increasing γ. In order for the

parameter vector η(γ) to track the optimum, we require a

differential relation between the progression parameter γ and

the parameter vector η. For that purpose, we consider the

cumulative version of (7) given by

F̃ (x, γ) = (1 − γ) S(x) + γ F̃ (x) ,

where S(x) is the cumulative distribution corresponding to

the simple density s(x). The resulting progressive version

F̃ (x, γ) of F̃ (x) is then plugged into (4) and we take the

derivative with respect to γ. Since F̃ (xi, γ) is both an explicit

and due to xi = xi(γ) an implicit function of γ, we obtain

∂ F̃ (xi, γ)

∂ γ
+

∂ F̃ (xi, γ)

∂ xi

∂ xi(γ)

∂ γ
= 0 ,

for i = 1, . . . , L. With

∂ F̃ (xi, γ)

∂ xi

= f̃(xi, γ) ,

we obtain

−∂ F̃ (xi, γ)

∂ γ
= f̃(xi, γ) ẋi(γ) ,

where ẋi(γ) denotes the derivative of xi with respect to the

progression parameter γ.

In vector–matrix–notation, we obtain the following system

of explicit first–order ordinary differential equations (ODE)

b
(

η(γ), γ
)

= P
(

η(γ), γ
)

· η̇(γ) , (9)

with

b
(

η(γ), γ
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−∂ F̃ (x1,γ)
∂ γ

−∂ F̃ (x2,γ)
∂ γ

...

−∂ F̃ (xL,γ)
∂ γ

⎤

⎥

⎥

⎥

⎥

⎥

⎥



and

P
(

η(γ), γ
)

= diag
(

f̃(x1, γ), f̃(x2, γ), . . . , f̃(xL, γ)
)

.

For the specific progression given in (7), we obtain

∂ F̃ (xi, γ)

∂ γ
= F̃ (xi(γ)) − S̃ (xi(γ)) .

As a result, we obtain b
(

η(γ), γ
)

= b
(

η(γ)
)

with

b
(

η(γ)
)

=

⎡

⎢

⎢

⎢

⎢

⎣

S̃(x1(γ)) − F̃ (x1(γ))

S̃(x2(γ)) − F̃ (x2(γ))
...

S̃(xL(γ)) − F̃ (xL(γ))

⎤

⎥

⎥

⎥

⎥



. (10)
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Fig. 5. Trace of the parameter vector η(γ) with L = 15 samples. Each line in the plot shows the evolution of a particular parameter.

Example V.2 This example demonstrates the approximation
of the Gaussian mixture density from Example V.1 by means
of a Dirac mixture. For that purpose, we use the simple
progression scheme given in (7) also used in Example V.1.

For tracking the parameter vector, the system of ODE (9) is
solved for γ ∈ [0, 1] with b

`

η(γ), γ
´

given in (10). The progres-
sion is started with a parameter vector η(γ = 0) corresponding
to the optimal approximation of the uniform density given in (6).
For γ = 1, the parameter vector η(γ = 1) corresponding to the
desired optimal Dirac mixture approximation of the true density
(8) is obtained. This is demonstrated in Figure 3 for a fixed
number of L = 15 components and a few selected values of
γ ∈ [0, 1]. Please note that γ continuously covers the interval
[0, 1].

The resulting Dirac mixture approximations are shown in
Figure 4 for a different number of mixture components.

Figure 5 shows the evolution of the parameters of the Dirac
mixture, i.e., the positions of the individual components, as the
progression parameter γ varies from γ = 0 to γ = 1.

VI. DISCUSSION AND FUTURE WORK

In this paper a systematic procedure for approximating an

arbitrary probability density function by means of a Dirac

mixture with equally weighted components as a special case

of the method proposed in [14] has been introduced. The

resulting approximation can be used immediately as a basis

for recursive nonlinear filtering mechanisms. This can be

seen as an alternative to Monte Carlo based particle filters.

A special benefit of the proposed method lies in the fact,

that the approximation is deterministic and hence, successive

application yields identical results, which is not the case for

random number sampling based Monte Carlo methods.

The proposed procedure has been introduced in the context

of scalar random variables for the sake of simplicity. It can,

however, be generalized to random vectors in a straightfor-

ward manner.

Of course, the procedure is not limited to integral quadratic

distance measures. Similar derivations as the ones given in

this paper can be performed for different distance measures.
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