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The core-set approach is a discretization method for Markov state models of complex molecular

dynamics. Core sets are disjoint metastable regions in the conformational space, which need to be

known prior to the construction of the core-set model. We propose to use density-based cluster

algorithms to identify the cores. We compare three different density-based cluster algorithms: the

CNN, the DBSCAN, and the Jarvis-Patrick algorithm. While the core-set models based on the CNN

and DBSCAN clustering are well-converged, constructing core-set models based on the Jarvis-Patrick

clustering cannot be recommended. In a well-converged core-set model, the number of core sets

is up to an order of magnitude smaller than the number of states in a conventional Markov state

model with comparable approximation error. Moreover, using the density-based clustering one can

extend the core-set method to systems which are not strongly metastable. This is important for the

practical application of the core-set method because most biologically interesting systems are only

marginally metastable. The key point is to perform a hierarchical density-based clustering while

monitoring the structure of the metric matrix which appears in the core-set method. We test this

approach on a molecular-dynamics simulation of a highly flexible 14-residue peptide. The resulting

core-set models have a high spatial resolution and can distinguish between conformationally similar

yet chemically different structures, such as register-shifted hairpin structures. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4965440]

I. INTRODUCTION

In recent years, Markov state models (MSMs) have

developed into an extremely useful tool for the analysis of

complex molecular dynamics. These models are parametrized

from molecular-dynamics simulation (MD) data by discretiz-

ing the conformational space and counting the observed

transitions between pairs of states. MSMs have been used to

investigate such diverse processes as protein folding,1,2 protein

misfolding,3 ligand binding,4 allostery,5 amyloid formation,6–8

and solvent-dependent conformational dynamics.9 Once a

sufficiently accurate MSM has been obtained, the model

yields insight into long-lived conformations (also called

metastable sets), the kinetic exchange rates between them, and

the hierarchy in the free-energy landscape.10 Yet, the actual

construction of a MSM from MD data is still difficult, because

the accuracy of a MSM, i.e., whether or not it faithfully

represents the slow conformational dynamics of the system,

depends sensitively on the discretization of the conformational

space. Often a large number of states is required to achieve an

acceptable approximation error, while on the other hand the

statistical error increases when more states are added to the

model.

The approximation error due to the discretization depends

both on the number of states as well as on the exact

choice of the state boundaries. For example, if a single

state covers two minima in the potential energy landscape

of the molecule, the transitions between these minima are

a)Electronic mail: bettina.keller@fu-berlin.de

not resolved by the corresponding MSM. Even if a state

boundary is introduced between the minima, trajectories which

leave minimum one, cross the boundary, but immediately

return to minimum one before actually visiting the center of

minimum two will generate two transition counts between

these two minima and the resulting MSM will underestimate

the actual transition time scale (recrossing problem). This

problem becomes worse if the boundary is not positioned

exactly on top of the energy barrier but somewhat closer

to either of the minima. One cannot completely avoid this

approximation error but, from an analysis of the transfer

operator of the dynamics, it is known how the discretization

affects this error.11 In an optimal discretization, the state

boundaries are chosen such that the dominant eigenfunctions

of the transfer operator can be well represented. This

often requires a high resolution in the transition areas

between long-lived conformations, because the dominant

eigenfunctions vary in these regions. On the other hand,

a lower resolution can be afforded within the long-lived

conformations because in these regions of the conformational

space the eigenfunctions are often relatively constant.

Unfortunately, it is difficult to translate this knowledge into a

discretization algorithm because it requires prior knowledge

of the long-lived conformations and the transition regions

between them.

The insight into the approximation error has nonetheless

led to several new methods which improve the definition of

states, including discretization methods based on diffusion

maps,12 adaptive discretization schemes,13,14 and methods

which first identify an optimal low-dimensional subspace

0021-9606/2016/145(16)/164104/14/$30.00 145, 164104-1 Published by AIP Publishing.
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and then construct the discretization in this subspace.15,16

An alternative strategy to improve the discretization—the

variational approach to molecular dynamics17–19—abandons

the use of discrete states and instead uses functions

of the conformational space. Because one can choose

functions which smoothly vary in the transition regions,

very few basis functions can be sufficient to achieve a

highly accurate model of the conformational dynamics. In

fact, to achieve a comparable approximation error with a

conventional MSM of the same molecule, the number of

states can be more than an order of magnitude larger than

the number of basis functions in the variational model.

However, similar to conventional MSMs, the basis set has

to be chosen such that the dominant eigenfunctions can

be well represented as a linear combination of the basis

functions.19

Core-set models20,21 are a discretization method which

has been proposed early in the discussion and which uses

committor functions as basis functions. Committor-functions

assign the value zero to one region of the conformational

space and the value one to another region, and smoothly

interpolate in between.20,22–25 Choosing these regions to be in

the core of a long-lived conformation (hence the name of the

method), the committor functions have a similar functional

form as the dominant transfer operator eigenfunctions and

are therefore excellent basis functions. In contrast to the

variational approach, the committor functions do not need to

be known analytically, but the model can be parametrized from

a transformation of the MD trajectory to so-called milestoning

processes.20,22–25 Although the core-set model is an elegant

way to transfer the knowledge on the approximation error into

an algorithm, the method has not been used frequently. This

presumably has two reasons. First, one needs prior knowledge

of the long-lived conformations to define the cores. This is

somewhat easier than finding optimal states for an MSM

since no knowledge on the transition region is required, but

it is still not trivial. Second, the cores need to be sufficiently

metastable. This is easily fulfilled for molecules with a few

highly populated long-lived conformations but might not be

the case in molecules with complex molecular dynamics

and multiple metastable conformations with different relative

populations.

In an earlier publication,26 we have developed the

common-nearest neighbor algorithm (CNN), a density-based

cluster algorithm, and shown that it accurately identifies

the long-lived conformations of a molecule without the

construction of a MSM. In particular, the CNN algorithm

identified the center of a long-lived conformation as a

cluster but categorized the data points on the rims of

the conformation as noise points. This is precisely the

property of a good core set. The study additionally showed

that geometric cluster algorithms which base their cluster

criterion purely on a distance to a cluster medoid cannot

reliably identify the long-lived conformations of a molecule.

We thus propose to use a density-based cluster algorithm

to identify the cores for a core-set model. We test three

different density-based cluster algorithms: our own CNN

algorithm,26 the DBSCAN algorithm,27 and the Jarvis-Patrick

algorithm28 which is implemented in the MD simulation

package GROMACS.29 Cores with different probability

densities are identified by a hierarchical clustering procedure

in which the density parameters of the cluster algorithm

are iteratively re-adjusted. The metastability of the cores

is ensured by slightly relaxing a mapping parameter in

the construction of the milestoning processes. We test this

approach on a two-dimensional model system and on the

alanine dipeptide. Then we use it to construct a core-set

model of a 14-residue peptide, which forms several different

hairpin structures as well as a wide range of random coil

structures. Highly accurate kinetic models for this type

of peptides are notoriously difficult to construct because

the peptides have a vast accessible conformational space

with only marginally metastable conformations. Moreover,

different hairpin-conformations are structurally very similar

but are different from a chemical point of view. Our core-set

model resolves two quickly interconverting hairpin structures

which only differ by a register-shift in their hydrogen bond

pattern.

II. THEORY

For the convenience of the reader, we summarize the

derivation of the core-set models in Sections II A–II C. For a

detailed discussion see Refs. 20–23 and 30. The density-based

cluster algorithms are introduced in Section II D.

A. Molecular dynamics

The state space Ω of a molecular system contains all

position and momentum coordinates of the system. We

assume that the molecular system is in contact with a

thermal bath and that the dynamics in this state space is

ergodic, Markovian, and time-homogeneous. This ensures that

the molecular-dynamic process samples a unique stationary

probability density π(x) with x ∈ Ω. We furthermore assume

that the dynamic process is reversible with respect to π(x).

A realization of such a process xt ∈ Ω, a so-called trajectory,

can be obtained from thermostatted molecular dynamics

simulations.

Next, consider an ensemble of identical molecular

systems which are distributed according to some initial

probability density pt=0(x) which differs from the stationary

probability density, i.e., pt=0(x) , π(x). As the molecular

dynamic processes of each of the systems evolve, the ensemble

probability density changes and gradually relaxes towards

the stationary probability density: limt→∞ pt(x) = π(x). The

time-evolution of the probability density is governed by a

propagator P(τ),31,32

pt+τ(y) = P(τ)pt(x) =


p(x,y; τ)pt(x)dx, (1)

where the transition density p(x,y; τ) represents the condi-

tional probability density of finding the molecular system at

time t + τ in the state y, given that it has been in x dx at

time t. For practical reasons, one however does not use the

propagator for the construction of a Markov state model but
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the closely related transfer operator T (τ),31,32

ut+τ(y) = T (τ)ut(x) =
1

π(y)


p(x,y; τ)π(x)ut(x)dx (2)

with

pt(x) = π(x)ut(x),

ut(x) = π−1(x)pt(x).
(3)

The transfer operator transports functions ut(x) in time. As

time goes to infinity, ut(x) converges to a constant function:

limt→∞ ut(x) = limt→∞ π
−1(x)pt(x) = 1, independent of the

stationary probability distribution of the system.

The transfer operator is self-adjoint17,33 with respect to a

weighted scalar product

⟨u|v⟩π =


Ω

u(x)π(x)v(x)dx. (4)

Hence its eigenvalues λk(τ) and eigenfunctions rk(x) are real-

valued. The eigenfunctions form a basis of Ω. Furthermore,

its eigenvalues lie in the interval λk(τ) ∈ [−1,1].32,33 As a

consequence the time-evolution of the probability density can

be formulated as a superposition of the eigenfunctions with

time-dependent coefficients32,34–36

pt=nτ(x) =

∞

k=1

akλ
n
k(τ)rk(x) ≈

N

k=1

akλ
n
k(τ)rk(x). (5)

Since |λk(τ)| ≤ 1, the coefficients decay exponentially and the

slow dynamics can be approximated by a superposition of the

dominant first N eigenvectors. These dominant eigenvalues

and eigenvectors also contain a wealth of information

on the dynamics of the individual system.32,35,36 We are

thus interested in finding the dominant eigenvalues and

eigenvectors of the transfer operator by solving

T (τ)rk(x) = λk(τ)rk(x). (6)

Unfortunately, Eq. (6) cannot be solved analytically for any

realistic molecular system. One has to resort to approximation

techniques which involve a discretization of the transfer

operator.33,37

B. Discretization of the transfer operator

The eigenfunctions are approximated by expanding them

in a finite basis {ψi(x)}
n
i=1

,

r(x) ≈

n

i=1

c̃iψi(x), (7)

where the basis functions span a subspace of the full molecular

state space D ⊂ Ω,

D ≔ span{ψ1, . . . ,ψn}. (8)

The expansion coefficients c⊤ = (c1,c2, . . . ,cn) in Eq. (7) can

be obtained by a discretization of Eq. (6),20,21

c̃⊤P(τ)M−1 = λc̃⊤, (9)

with

P(τ) : Pi j(τ) =
⟨χi |T (τ)χ j⟩π

⟨χi,1⟩π
(10)

and

M : Mi j =
⟨χi | χ j⟩π

⟨χi |1⟩π
. (11)

The functions { χi(x)}
n
i=1

are scaled with respect to the basis

set {ψi(x)}
n
i=1

as

ψi(x) =
χi(x)

⟨χi |1⟩π
⇔ χi(x) = ⟨χi |1⟩π χi(x). (12)

This discretization is equivalent to the Galerkin discretization

of the transfer operator or the variational approach to molec-

ular dynamics,17–19,37 in which matrices S : Si j = ⟨χi | χ j⟩π and

C(τ) = Ci j(τ) = ⟨χi |T (τ)χ j⟩π appear (see the Appendix).

Given the analytical form of the basis functions { χi(x)}
n
i=1

,

the matrix elements Si j and Ci j(τ) can be estimated from

an MD simulation of the underlying dynamic process xt.

Conventional Markov state models13,32,38,39 can be regarded

as a special case of the variational approach in which the

basis functions are characteristic functions which partition the

state space Ω into discrete states.18 In the core-set approach,

the basis functions { χi(x)}
n
i=1

are committor functions (see

Section II C). These functions are, however, typically not

known analytically. Thus, we are in the somewhat difficult

situation of trying to find a matrix representation of an

operator which is not known analytically with respect to

a basis set which is not known analytically either. Fortunately,

one can show that the matrix elements of P(τ) and M can

be estimated from milestoning processes derived from MD

trajectories.21–25

C. Core sets, committor functions,
milestoning processes

We define n disjoint core sets B1,B2, . . . ,Bn with

Bi ∩ Bj = ∅ for all i , j. In contrast to the states in

conventional Markov state models, these core sets do not fully

partition the state space
n

i=1 Bi ⊂ Ω, i.e., there are regions

I = Ω \
n

i=1 Bi in the state space which are not assigned to

any of the core sets (Fig. 1(a)). Associated to each core set

Bi is a committor function qi(x), which is defined by the

following equations:



Lqi(x) = 0 x ∈ I

qi(x) = 1 x ∈ Bi

qi(x) = 0 x ∈ Bj ∀ j , i

, (13)

where L is the generator of the dynamics

d

dt
pt(x) = Lpt(x) (14)

associated to the propagator (Eq. (1)) by

pt+τ(x) = P(τ)pt(x) = exp (τL) pt(x). (15)

The committor function qi(x) can be interpreted as the

probability that the trajectory which is at position xt at time t

will reach the set Bi first before it reaches any of the other sets

Bj,i. Thus, qi(x) assumes the value one within Bi, the value

zero within any other core set and values between zero and

one in the space in between the core sets (Eq. (13)). Fig. 1(b)
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FIG. 1. Core sets, committor function, and milestoning processes. (a) Poten-

tial energy function with six minima. The gray areas represent the core sets

for each minimum. (b) Committor function of core set 2 (q2(x, y)) using only

core set 2 and 5 for the definition of the committor function. (c) Backward

milestoning process for core set 2. (d) Forward milestoning process for core

set 2.

shows the committor function q2(x) in the two-dimensional

potential energy function of Fig. 1(b), where we have however

only used two core sets, B2 and B5, to define the committor

function. To solve Eq. (13) and to obtain the committor

functions, one needs an analytical representation or a matrix

representation of the generator or, alternatively, of the transfer

operator.

Alternatively, one can define backward and forward

milestoning processes, m−
i
(t) and m+

i
(t), for each of the core

sets. Milestoning processes are projections of the trajectory

xt that depend on the history and the future of the trajectory.

They assume the value 1 whenever the trajectory is in

core set Bi and the value 0 whenever the trajectory is

in one of the other core sets. In the intervening space I,

the backward milestoning process also assumes the value

1 if the last core set the trajectory has visited was Bi,

i.e., the process assumes the value 1 as soon as it hits Bi

and only switches to 0 when it reaches another core set

(Fig. 1(c)),

m−i (t) =



1 if xt ∈ Bi

1 if xt ∈ I and last came from Bi

0 otherwise

. (16)

The forward milestoning process assumes the value 1

whenever the next core set to be visited by the trajectory

is Bi (Fig. 1(d)),

m+i (t) =



1 if xt ∈ Bi

1 if xt ∈ I and will go to Bi next

0 otherwise

. (17)

The matrix elements of M and P(τ) (Eqs. (10) and

(11)) can be estimated as the (time-lagged) correlation

functions between the backward and forward milestoning

processes

Pi j(τ) =
⟨qi |T (τ)qj⟩π

⟨qi |1⟩π
=

1

T − τ

T−τ

t=0

m−i (t)m
+
j (t + τ) (18)

and

Mi j =
⟨qi |qj⟩π

⟨qi |1⟩π
=

1

T − τ

T−τ

t=0

m−i (t)m
+
j (t), (19)

where P(τ) and M are defined with respect to the

basis set of the committor functions {qi(x)}
n
i=1

. Both

matrices are stochastic matrices. The matrix elements

Mi j represent the probability that the process will visit

core Bj next, given that the last core which has been

visited was Bi. The matrix elements Pi j(τ) represent the

probability that, after an interval [t, t + τ], the process

will visit Bj next, given that the last core which has

been visited at time t was Bi. Possible visits to other

cores in the interval [t, t + τ] do not affect Pi j(τ).
37 That

is,

Mi j = P[m
+
j (t) = 1|m−i (t) = 1],

Pi j(τ) = P[m
+
j (t + τ) = 1|m−i (t) = 1].

(20)

The core-set discretization yields a small discretization error

if the core sets are sufficiently metastable, such that the

process leaves the intervening space I on a faster time

scale than the fastest process of interest. This condition

is difficult to test. As a proxy we therefore ensure that

the largest element in each row of M is the diagonal

element (Mii > Mi j ∀ j) or even that M is diagonally dominant

(Mii >


j,i Mi j).

D. Density-based cluster algorithms

Let X be a data set X = {x1,x2, . . . ,xN}, where each

data point xi is a point in a high-dimensional space. A cluster

C = {x j,xk,xl, . . .} is a subset of data points which are located

in a region with high data point density and which is separated

from other clusters by regions with low data point density

(Fig. 2(a)). A direct estimate of the data-point density would

involve a discretization of the data space into volume elements

and counting the number of data points per volume element,

which is only feasible for low-dimensional spaces. Density-

based cluster algorithms circumvent the direct estimation of

the data-point density by determining whether two data points

xi and x j are density-reachable. Typically, a data point xi

becomes a member of a cluster C = {x j,xk,xl, . . .} if it is

density-reachable from at least one of the cluster members.

The cluster is expanded until none of the so far unassigned

data points are density-reachable from any of the cluster

members. A generic algorithm for a density-based cluster

algorithm is
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FIG. 2. Density-based clustering. (a) Data set with non-convex clusters and

noise points. (b)-(e) Various criteria to decide whether xi and xi are density

reachable (see Section II D): (b) xi and x j share at least N neighbors (blue

points), (c) xi and x j are in each others neighbor list, (d) xi and x j share at

least N neighbors (blue points) and are in each other’s neighbor list, (e) xi
and x j are in each other’s neighbor list and each of the data points has at least

N neighbors. (f) xa and xb are density connected but not density reachable.

ALGORITHM 1. Density-based cluster algorithm

while clustering is not complete do

initialize cluster C

while unassigned data points can be added to C do

loop over unassigned data points xi and cluster members x j

if xi and x j meet a DensityCriterion then add i to C

end

if C has more than Mmin members then

add C to list of clusters

else

classify C and all remaining unassigned points as noise

clustering is complete

end

end

The criterion which determines whether two data points

are density-reachable varies from algorithm to algorithm.

Usually, for each data point a list of neighbors within a

neighborhood R is generated and the number of shared

neighbors determine whether two data points are density-

reachable. For example, two data points can be density-

reachable from each other if

1. they share at least N neighbors (Fig. 2(b)), or

2. they are in each other’s neighbor list (Fig. 2(c)), or

3. if 1 and 2 are fulfilled (Fig. 2(d)), or

4. if 2 is fulfilled and each of the data points has at least N

neighbors (Fig. 2(e)).

If R is a radius around that data point, condition 1 is a rough

estimate of the data point density as the number of data

points in the overlap region of the two neighborhoods. The

estimate is however not very precise since the actual volume

of the overlap region is never determined. If the neighborhood

parameter R represents a radius, the maximum distance

between density connected data points is dmax(xi,x j) = 2R.

Condition 2 reduces this distance to dmax(xi,x j) = R. Note

that two cluster members xa and xz are not necessarily

directly density-reachable from each other but that they

are at least density-connected. Density-connected means that

there is a sequence of data points x1,x2, . . . xn (with x1 = xa

and xn = xz) in which each data point xi+1 is density-

reachable from the previous data point xi ((Fig. 2(f))).

Data points which cannot be assigned to any cluster are

called noise data points. We compare three different density-

based cluster algorithms: the Common-Nearest-Neighbor-

algorithm (CNN),26 Density-Based Spatial Clustering of

Applications with Noise (DBSCAN),27 and the Jarvis-Patrick-

algorithm (JP).28 All three algorithms can identify clusters

of arbitrary shape (Fig. 2(a)) and can distinguish noise

points.

In the CNN algorithm,26 the neighborhood parameter R

is a radius. Two data points are density-reachable and belong

to the same cluster if they fulfill condition 1. Optionally,

condition 3 can be applied which reduces the run time of the

algorithm.

Also in the DBSCAN algorithm,27 the neighborhood

parameter R is a radius. However, two data points are density-

reachable if condition 4 is fulfilled. This amounts to an

estimation of the data point density in the neighborhood of

each data point rather than in the overlap region between pairs

of data points. Applying only this condition yields clusterings

with many noise points and very few cluster members. The

algorithm therefore differentiates between core points, border

points, and noise points. Data points which have at least

N nearest neighbors are called core points. Border points

are data points which are not core points (i.e., have less

than N neighbors) but are closer than R to at least one of

the core points in the data set (i.e., are members of the

neighborlist of at least one core point). Border points can

be assigned to only one cluster. This definition introduces an

ambiguity. For example, if a border point xb has two core

points xi and x j in its neighbor list, and the cluster of xi

and x j is not density-connected, then xb can be assigned

to either the cluster of xi or the cluster of x j. But the two

clusters cannot be joined via xb. To which cluster xb is

assigned depends on the implementation. Data points which

are neither core points nor border points are called noise

points.

In the JP algorithm,28 the neighborhood parameter

R does not represent a radius but a predefined number

of nearest neighbors. This results in a fixed size of the

neighborlist with a variable volume of the neighborhood. Two

data points are density-reachable if they fulfill condition 1

or, optionally, condition 3. In the original publication, the

two data points whose neighborhoods are compared did not

add to the count of shared neighbors, whereas we decided

to include them in this count (to be consistent with the

CNN algorithm). That is, our implementation executed with

neighborhood parameter R and N nearest neighbors yields the
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same results as the original algorithm executed with R and

N − 2.

1. Implementation

All three cluster programs read a distance matrix and

extract from this matrix a neighbor list for each data

point. The neighbor list can be further simplified. In the

CNN algorithms, all data points which have less than N

neighbors are immediately classified as noise points since

they certainly cannot share N neighbors with any other data

points. Furthermore, these noise points are removed from the

neighbor lists of all other data points. If condition 3 is enforced

in the CNN algorithm or the JP algorithm, each data point can

only be density-reachable from a data point in its neighbor list.

This reduces the search-time for potentially density-reachable

points drastically. If condition 3 is not enforced, we keep a

second list of potentially density-reachable data points, i.e., all

data points within 2R. Since in the DBSCAN algorithm only

core-points (i.e., points which have at least N neighbors) can

be used to expand a cluster, the neighbor lists of all non-core

points are deleted. In contrast to the CNN algorithm, the

non-core points are however not removed from the neighbor

list of the core points since they still can enter a cluster as a

border point. Finally, we initialize the clustering on the data

point with the highest number neighbors, which speeds up the

run-time of the algorithm and ensures the reproducibility of

the results for DBSCAN. All programs for the density-based

clustering and the construction of the core-set model are

reported in the supplementary material.

2. Choice of parameters

The parameters for the CNN and DBSCAN algorithm are

chosen following the approach in Ref. 26. Histogram of the

distances in the distance matrix is plotted and R is set to the

value of the first maximum of this distribution. The parameter

N is varied until clusters of sufficient size are obtained. In the

JP algorithm R is varied until clusters of sufficient size are

obtained.

III. METHODS

A. Two-dimensional data set

The two-dimensional Boltzmann-distribution p(x, y)

∝ Z(β)−1 exp(−βV (x, y)) (Z(β) =


exp(−βV (x, y))dxdy is

the partition function and we set β = 2, Fig. 1(a)) was

sampled using a Markov-Chain-Monte-Carlo algorithm.40 The

potential energy function (Fig. 3(a)) was

FIG. 3. Core-set models for the dynamics in the two-dimensional energy surface. (a) Stationary probability density. (b)-(d) Cluster results for the density based

cluster algorithms CNN, DBSCAN, and JP. For JP, only the largest seven out of 19 clusters are shown. (e) Crisp discretization into six states. (f) Slow kinetic

processes as identified by the core-set models and the MSMs. Negative values of the corresponding eigenfunction are shown in blue, positive values in red, and

values close to zero in gray. (g) Implied time scale test for processes 2, 3, and 4.
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TABLE I. Parameters of the two-dimensional potential energy function

(Eq. (21)).

i c1 µxi σ2
xi

µy i σ2
y i

1 1 30 100 40 85

2 2 80 400 80 85

3 2 190 550 190 550

4 1.2 100 1000 200 100

5 1.2 200 100 100 1000

6 1 110 1000 110 85

V (x, y) = − log


6

i=1

ci exp *,−
(x − µxi)

2

2σ2
xi

+
- exp *,−

(y − µyi)
2

2σ2
yi

+
-


(21)

with parameters reported in Table I. Trial positions rtrial

= (xtrial, ytrial) were drawn from a two-dimensional normal

distribution N (ri,σ = 20) centered at the position ri
= (xi, yi) of the current iteration and accepted with a probabil-

ity pacc = min{1, exp(−β · ∆V )}, where ∆V = V (xtrial, ytrial)

− V (xi, yi). For the kinetic analysis, the iteration index was

interpreted as the time of the trajectory. The sampling was

performed over 107 iterations and the positions were saved to

file every 10th iteration. The average acceptance rate was 0.83.

The full program is reported in the supplementary material.

B. Molecular dynamics simulations

1. Terminally capped alanine

The MD simulations of the terminally capped alanine

have been reported previously.41 The simulations were

performed in an NVT ensemble in explicit water using

the GROMACS simulation package 4.5.5,29 the AMBER

ff99SB-ILDN force field,42 and the TIP3P water model.43

The temperature was restrained to 300 K using the V-rescale

thermostat44 (τt = 0.01 ps). A cubic box with a box length

of 2.72 nm was used and periodic boundary conditions were

applied in all three directions. The equations of motion were

integrated using the leap-frog integrator with a time step of 2 fs.

Covalent bonds to hydrogen atoms were constrained using the

LINCS algorithm45 (lincs_iter = 1, lincs_order = 4). Lennard-

Jones interactions were cut off at 1 nm. The electrostatic

interactions were calculated using a Particle-Mesh Ewald

(PME) summation46 with a real space cutoff of 1 nm, a Fourier

grid spacing of 0.1, and an interpolation order of 4. Solute

coordinates were written to file every 1 ps. Five independent

trajectories of 200 ns each were produced, yielding a total

simulation time of 1 µs.

2. Hairpin peptide

For the hairpin peptide RGKITVNGKTYEGR we have

performed all-atom molecular dynamics simulations in

explicit water in an NVT ensemble. We used charged termini,

protonated the arginine and lysine residues, and deprotonated

the glutamic acid residue. The structure was energy minimized

(emtol = 100.0 (kJ/mol)/nm, nsteps = 5000) and solvated in a

cubic box with a box length of 7.08 nm. Three chlorine anions

were added to obtain an uncharged box. The simulation box

was energy minimized and equilibrated for 100 ps. From

the equilibration run, we extracted eight starting structures

for the production runs. The same force field, water model,

and simulation parameters as for Ac-A-NHMe were used,

except for the time constant in the V-rescale thermostat

which was set to τt = 0.1 ps. Solute coordinates were written

to file every 1 ps. We obtained eight trajectories with a

length of 860–980 ns with a total simulation length of

ca. 7.4 µs.

C. Density based clustering and core set models

The clustering was performed on a subset of all frames

in the simulated trajectories (Table II), which were extracted

at regular intervals. In the two-dimensional data set, the

Euclidean distance served as a distance measure between

pairs of data points. In the molecular systems, the pairwise

distance was calculated as the backbone RMSD between two

structures i and j after rotational and translational fit. We used

pyRMSD47 (Version 4.2.1) in combination with the QCP-

OMP-Calculator48 for the calculation of the RMSD values.

The clustering was performed as described in Section II D

with parameters as reported in Table II. The minimum number

of members per cluster were 50 for the two-dimensional

data set, 20 for Ac-A-NHMe, and 20 for the hairpin

peptide.

For the milestoning trajectories, the MD trajectories were

mapped onto the n clusters by checking whether a given

frame xt would qualify as a member of the cluster Ci

based on the cluster algorithm and the cluster parameters

which generated the cluster. That is, for clusters obtained

using a hierarchical cluster procedure, the parameters for

the mapping varied from cluster to cluster. For the hairpin

peptide, we used a relaxed mapping criterion by increasing

the cluster parameter R associated to each cluster by 10%

and by reducing the parameter N by one. Note that the

clusters were not increased during the mapping, but for

each frame xt the density criterion for a cluster Ci was

TABLE II. Cluster parameters and number of frames used for the clustering.

Parameter CNN DBSCAN JP

2D model

# frames 10 000 10 000 10 000

R/arb. unit 4 4 30

N 20 25 24

Alanine dipeptide

# frames 5 005 5 005 5 005

R/nm 0.01 0.01 4

N 20 30 2

β-hairpin peptide

# frames 19 950 . . . . . .

R/nm 0.2-0.08 . . . . . .

N 2 . . . . . .

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Fri, 09 Dec

2016 12:59:40

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-027640


164104-8 O. Lemke and B. G. Keller J. Chem. Phys. 145, 164104 (2016)

evaluated based on the same set of members of Ci. This

yielded a cluster trajectory ct ∈ [0,1,2, . . . ,n] which then

was converted to n forward and n backward milestoning

trajectories (Eqs. (16) and (17)). The elements of matrices

P(τ) and M were estimated as time-lagged correlation

functions of these milestoning processes (Eqs. (18) and

(19)). The PCCA+ analysis49 of the matrix P(τ)M−1 was

performed using the MSM analysis package EMMA50,51

and a threshold of 0.6 for the “fuzzy” PCCA-cluster

assignment.

D. Markov state models

For the conventional Markov state models, we constructed

microstate trajectories and estimated the transition matrix

using in-house scripts. The microstate definitions are shown

in Figs. 3(e) and 4(d). Additionally, we used regular

discretizations with 10 × 10 = 100 microstates and with

50 × 50 = 2500 microstates for the two-dimensional data

set. For Ac-A-NHMe, a regular discretization with 36 × 36

= 1296 microstates was constructed in the space of the

φ- and ψ-backbone torsion angle. We used a mov-

ing lag time window to count the transitions and en-

forced detailed balance by symmetrizing the count matrix.

The lag time τ was chosen based on the implied

time scale test,38 which tests whether the implied time

scale

FIG. 4. Core-set models for alanine dipeptide (Ac-A-NHMe). (a)-(c) Cluster

results for the density based cluster algorithms CNN, DBSCAN, and JP

shown in the Ramachandran plane of alanine dipeptide. (d) Crisp discretiza-

tion into four states. (e) Slow kinetic processes as identified by the core-set

models and the MSMs. Negative values of the corresponding eigenfunction

are shown in blue, positive values in red, and values close to zero in gray. (f)

Implied time scale test for processes 2 and 3.

ti =
−τ

ln [λi(τ)]
(22)

does not vary as a function of the lag time τ. The dominant

processes were characterized by a PCCA+ analysis49 using

the MSM analysis package EMMA.50,51

IV. RESULTS

A. Two-dimensional potential energy surface

Fig. 1 illustrates the performance of the three density-

based cluster algorithms on a two-dimensional potential

energy surface with six minima. We sampled the dynamics

in this potential energy landscape using a Metropolis Markov

chain Monte Carlo algorithm.40 Each of the wells has a

different minimum energy such that the data point density

varies from well to well (Fig. 3(a)). Nonetheless, the six

minima were identified by each of the three cluster algorithms

using only a single parameter setting (Figs. 3(b)-3(d)). That is,

we did not need to apply hierarchical clustering to account for

the variation in data point density. DBSCAN and CNN found

exactly six clusters and yield almost identical results. Both

algorithms identified tight but well-defined cores in each of

the minima (Figs. 3(b) and 3(c)). The JP algorithm extracted

19 clusters of which the seven largest are shown in Fig. 3(d).

These JP clusters are larger than those identified by DBSCAN

and CNN and have fuzzy boundaries. Also note that minimum

2 is split into two clusters.

We used the clusters as core sets and compared the

resulting core-set models with conventional MSMs. Two

core-set models were constructed using six cores from the

CNN and DBSCAN results. The core-set model based on the

JP-results had 19 cores. One conventional MSM consisted of

six states which we chose manually to optimally represent the

six minima (Fig. 3(e)). We also included two additional MSMs

with a regular discretization (10 bins per axis → 100 states

and 50 bins per axis→ 2500 states). All six models identified

the same slow processes and assigned comparable lag times

to the processes (Figs. 3(f) and 3(g)). We used the implied-

timescale test21,32,38 as an indicator for the discretization error.

In this test, the discretization error is treated as negligible for

lag times τ at which the implied scales are approximately

constant with respect to the lag time. The 2500-state MSM

showed the fastest convergence in all six processes, followed

by the six-core core-set models based on the DBSCAN and

CNN clustering. The JP-clustering outperformed the 100-

state MSM in processes 2, 3, and 6, but yielded a relatively

poor convergence for processes 4 and 5. (Data shown for

processes 2, 3, and 4.) All three core-set models showed better

convergence than the six-state MSM. The kinetic processes

corresponding to the implied time scales are depicted in

(Fig. 3(f)). Red areas denote positive signs in the dominant

eigenvectors, blue areas denote negative signs, and grey areas

correspond to values close to zero. The dominant eigenvectors

represent the kinetic exchange between regions of opposite

signs. Thus, process 2 represents the kinetic exchange across

the largest barrier in the system which separates cores 1, 2,

and 3 from cores 4, 5, and 6. Process 4 and 5 with similar

implied time scales correspond to the equilibration within
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FIG. 5. Hierarchical clustering (see Section IV C). (a) Data set with clusters

of different data point densities. (b) Noise points are identified. (c) and (d)

The remaining data set is hierarchically subdivided into clusters.

cores 1, 2, and 3, while cores 4, 5, and 6 do not take part

in these processes. The equilibration within cores 4, 5, and 6

is mediated by a relatively slow process (process 3, 3.3 ns)

between the high-lying core 6 and the more populated cores

4 and 5, and by a faster kinetic exchange between cores 4 and

5 (process 6). The benchmark-test on the two-dimensional

energy surface showed that, a core-set discretization with n

cores identified by a density-based cluster algorithm yields

a considerably lower discretization error than a conventional

MSM with n optimally chosen states. In fact, the resolution of

the regular discretization had to be increased to 2500 states to

obtain a convergence which is comparable to a core-set model

with six core sets.

B. Terminally capped alanine

As a molecular system with well-defined metastable

states we chose alanine dipeptide (Ac-A-NHMe) which is

a commonly used test system.13,18,41 The slow dynamics

of the molecule is well-captured by the dynamics of its

φ- and ψ-backbone torsion angles (Ramachandran plane).

Figs. 4(a)-4(c) show the cluster results for CNN, DBSCAN,

and JP. All three algorithms identified three clusters

corresponding to the α-helix conformation (blue cluster),

the β-sheet conformation (orange cluster), and the Lα-helix

conformation (green cluster). As in the 2D model, CNN

and DBSCAN yielded very similar results with rather tight

clusters, and the JP algorithm yielded larger clusters with

less well defined boundaries. We used these clusters to define

core-set models and compared the results to two conventional

MSMs. The first MSM was constructed on four manually

defined states shown in Fig. 4(d), the second MSM was

constructed on a regular grid with 36 bins per torsion angle

yielding 1296 states in total. The core set models based

on the CNN and the DBSCAN clustering as well as both

conventional MSMs identified two slow processes (Fig. 4(e)).

Process 2 corresponds to a kinetic exchange between the

Lα-helix conformation and the other two conformations with

an implied time scale of ≈1.3 ns. Process 3 corresponds to a

kinetic exchange between the α-helix conformation and the β-

sheet conformation with an implied time scale of ≈70 ps. The

implied-time scale test shows that the convergence (Fig. 4(f))

of these four models is similar. By contrast, the core-set

model based on the JP clustering converges at considerably

larger lag times. Moreover, the implied time scales converge

to values which are slightly below the reference value of the

1296-state MSM (Fig. 4(f)) and hence do not fully reproduce

the reference model.

FIG. 6. Hierarchical clustering of a β-hairpin peptide and mass matrices of the corresponding core-set models. (a) Sequence of cluster parameters in the

hierarchical clustering procedure. (b) Matrices M at different levels of clustering. Arrows highlight matrix elements which cause some matrices to be not

diagonally dominant. (c) Corresponding matrices M with relaxed mapping parameters. (d) Implied time scale test for the core-set models with relaxed mapping

parameters. Red: process 2, blue: process 3, green: process 4, purple: process 5.
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C. Core-set approach with hierarchical clustering

The results, so far, have shown (i) that, for systems

with a small number of well-defined minima in the potential

energy function, the CNN and the DBSCAN cluster algorithm

reliably identify these minima and (ii) that core-set models

based on these clusters show a better convergence in the

implied time scale test than conventional MSMs of comparable

size and are therefore more accurate. However, many

biologically interesting molecules exhibit a large number of

only marginally metastable states. Moreover, the probability

densities associated to these metastable states can vary

considerably. Thus, the challenge is to find a method that

identifies states with different probability densities and to

assure at the same time that the resulting cores are sufficiently

metastable that the matrix M remains diagonally dominant.

We approached the first part of the problem by using a

hierarchical clustering procedure in which in every round of

clustering the parameters was re-adjusted to match the data

point density in the remaining data set. Fig. 5(a) shows a data

set with clusters of different data point densities which can be

distinguished visually but not be separated with a single round

of clustering. By clustering with parameters corresponding to

a low data point density, noise points are identified (gray points

in Fig. 5(b)) and removed from the data set. By readjusting the

parameters to a higher data point density, the yellow cluster

is split of from the data set (Fig. 5(c)). Re-clustering the blue

data set with parameters corresponding to even higher data

point densities subdivides the data set into two clusters, shown

in red and blue, whereas applying the same parameters to the

yellow data sets splits the cluster into noise points (Fig. 5(d)).

In practice, one decreases the neighborhood parameter R

in small intervals of ∆R while keeping the value N fixed.

Reducing R at first leads to smaller clusters because data

points at the rims are characterized as noise points. When R is

further lowered, eventually one or more clusters are split into

smaller clusters.

An example for a peptide with complex conformational

dynamics and a multitude of only marginally metastable states

is the 14-residue peptide RGKITVNGKTYEGR.52 In solution,

the peptide forms several different β-hairpin structures as well

as a wide range of random coil structures. In our simulations,

the peptide was about 45% folded and 55% unfolded. We

applied the hierarchical cluster approach in combination with

the CNN algorithm to a data set of 19 950 peptide structures.

Starting from the initial parameter values (R = 0.2 nm and

N = 2), we reduced R in intervals of ∆R = 0.01 nm. The

parameter values at which clusters were split is shown in

Fig. 6(a). The initial clustering with parameters R = 0.2 nm

and N = 2 yielded two clusters, of which one was further

split into 15 smaller clusters by clustering with parameters

R = 0.16 nm and N = 2. We sequentially split the largest

cluster of each clustering with decreasing values of the

neighborhood parameter R obtaining clusterings with 29 and

41 clusters. The clustering with 50 clusters was obtained

by refining the three largest clusters from the clustering

with 29 clusters with R = 0.13 nm. Further decreasing the

neighborhood parameter to R = 0.10 nm and R = 0.08 nm

subdivided the two largest clusters at each level and eventually

led to a very fine clustering with 63 clusters. The minimum

number of shared neighbors was kept constant at N = 2

throughout the hierarchical cluster analysis.

We used the clusterings with 29, 41, and 63 clusters for

the construction of core-set models as described in Sec. III.

It is important to point out that, when mapping the MD-

trajectory onto the clusters, we did not use global values for

the cluster parameters. Instead, a structure was assigned to a

core if the structure met the density criterion which originally

generated the cluster at the center of the core. That is, each

cluster “attracted” frames according to its cluster parameters.

The matrices M of the corresponding core-set models are

shown in Fig. 6(b). The matrix M of the model with 29

cores was diagonally dominant. However, in the models with

higher number of states, several states were not sufficiently

metastable and generated off-diagonal matrix elements which

were larger than the corresponding diagonal matrix element.

The resulting matrices were not diagonally dominant and the

discretization could not be used for a core-set model. We

therefore relaxed the mapping criteria, i.e., we set N = 1 and

FIG. 7. Kinetic model of the β-hairpin peptide. (a) 41-core-set model at lag

time τ = 40 ns. (b) 63-core-set model at lag time τ = 40 ns. The lines represent

free-energy barriers as identified by a PCCA+ analysis of the core-set models.

The associated implied time scales are shown in the same color as the barrier.

Next to the index of each metastable set (M1–M5), the relative population of

the set is shown in percentages. The depicted structures are example structures

from each metastable-set.
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increased each of the neighborhood parameters R by 10%,

for these specific states. The relaxed mapping criterion should

be chosen large enough that M becomes diagonally dominant

and small enough that frames are not assigned to more than

one core. The resulting matrices M are shown in Fig. 6(c).

The off-diagonal matrix elements were much closer to zero

than in Fig. 6(b) and indeed all three matrices were diagonally

dominant. The models with the relaxed mapping parameters

were analyzed further.

The implied time scales (Fig. 6(d)) in the resulting three

core-set models were well converged at a lag time of about

τ = 10 ns and remained reasonably constant up to τ = 100 ns.

That is, the region in which the models can be assumed to

be Markovian stretched over an order of magnitude in the

lag time. In summary, Fig. 6 shows that, using a hierarchical

clustering, one can systematically vary the spatial resolution of

the core-set discretization. By slightly relaxing the mapping

criteria, one can ensure that the mass matrix is diagonally

dominant and obtain well-converged core-set models even for

very fine discretizations.

D. Dynamic model of the β-hairpin peptide

Figs. 7 and 8 show the structural interpretation of the core-

set models with 41 and 63 cores. We applied PCCA+ analysis

to group the cores into larger metastable sets (M1–M5).

The identified metastable sets account for 60%–70% of all

structures in the trajectory, depending on the model and the

fuzziness-parameter in the PCCA+ analysis. The remaining

structures were random coil structures with no stable hydrogen

bond pattern. Remarkably, the structures in all metastable sets

were stabilized by an ionic bond from the positively charged

side chain of Arg1 to either the carbonyl group at the C-

terminus or to the negatively charged side chain of Glu12

(Fig. 8). Thus, these two interactions seem to act as a brace

which forces the peptide into a loop structure which then gives

rise to various β-strand and β-bridge structures. Both models

identified the metastable set M1, which is characterized by

a very stable β-bridge between Thr5 and Glu12. The slowest

process in the system is the exchange of this structure with

the rest of the structural ensemble with an implied time scale

of 790 ns in the 41-core-set model and of 900 ns in the

63 core-set model. The 41 core-set model next identified a

relatively large metastable set M2, which consists of hairpin

structures. However, the dssp-plot shows that the set covers at

least two different types of hairpin structures, whose hydrogen

bond patterns seem to be register shifted. For example, the

carbonyl group of Lys9 forms hydrogen bonds to the amino

groups Ile4 and Thr5, which is not possible simultaneously.

Likewise, the amino-group of Tyr11 forms hydrogen bonds

FIG. 8. Structural analysis of the metastable sets as identified by the 41-core-set model and the 63-core-set model, both at lag-time τ = 40 ns. The dssp-plot and

the most populated hydrogen bonds for each set of conformations are shown. M1 from the 63-core-set model has a large overlap with M1 from the 41-core-set

model. The hydrogen bond pattern is only shown once. Likewise for M3. M4/M5/M2c from the 63-core-set model is a collection of multiple structures with

no common hydrogen pattern. The percentages below the metastable-set index denote the relative population of the set. For the dssp-plots, 10.000 frames were

extracted from each metastable set.
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to the carbonyl groups of Lys3 and Ile4. Obviously, the 41

core-set discretization cannot resolve the difference between

these two hairpin structures. The model further identified a

relatively unstructured metastable set with M3 with various

β-bridge contacts and about 16% relative population, a loop

structure stabilized by a β-bridge between Lys3 and Tyr11

(M4, 3% relative population), and a turn structure (M5) with

about 2% relative population. The kinetic exchange between

metastable sets M2, M3, M4, and M5 takes place at time

scales of 150–250 ns.

The 63-core-set model split metastable set M2 into two

subsets which interconvert at a time scale of about 640 ns.

Each of the two sets now has a consistent dssp-plot (Fig. 8).

Set M2a is stabilized by a hydrogen bond from the amino

group of Thr5 to the carbonyl group of Lys9, i.e., a hydrogen

bond of i → i + 4 (α-turn). The other backbone hydrogen

bonds in the M2 set are in register to this bond: Lys3→ Tyr11,

Lys3← Tyr11, Arg1→ Gly13, and Arg1← Gly13. By contrast,

set M2b is stabilized by two backbone hydrogen bonds

between Val6 and Lys9, i.e., bonds of type i → i + 3 (β-turn),

with all the other backbone hydrogen bonds being in register

with this bond: Ile4→ Tyr11, Ile4← Tyr11, and Gly2← Gly13.

Metastable set M3 in the 63-core-set model has a large overlap

with M3 from the 41-core-set model. Performing the PCCA+

analysis on the dominant five eigenvectors on the core-set

transition matrix splits the conformational space into five

metastable sets. Consequently, the last metastable set of the

63-core-set model combines the quickly interconverting sets

M4 and M5 (and some structures from M2) of the 41-core-set

model into one metastable set.

The analysis of the core-set models for the β-hairpin

shows that using a hierarchical clustering one can define

sufficiently many cores to accurately describe the dynamics

of even very flexible molecules with a large conformational

space. Core-set models based on different levels of clustering

are consistent among each other. Increasing the number of

cores leads to a splitting of large metastable sets and hence

an increase in spatial resolution. Moreover, the comparison

between the 41-core-set model and the 63-core-set model

shows that a high spatial resolution is not only necessary

to decrease the approximation error but also to differentiate

between similar structures which differ from a chemical point

of view.

V. DISCUSSION AND CONCLUSIONS

We identified the highly populated areas in the

conformational space using density-based cluster algorithms

and used these clusters as cores in the core-set approach.

We have shown that with this strategy one can obtain highly

accurate models of the conformational dynamics. In particular,

the number of cores needed to achieve a given approximation

error is up to an order of magnitude smaller than the number of

states in a conventional MSM with comparable approximation

error.

We tested three different density-based cluster algorithms.

The CNN26 and the DBSCAN27 algorithm consistently yielded

very similar clusterings with tight clusters centered at the

potential energy minima. By contrast, the JP algorithm28

yielded larger numbers of cluster with more fuzzy boundaries.

Core-set models of a terminally capped alanine (Ac-A-NHMe)

based on the JP clustering were not in agreement with a 1296-

state reference MSM, and no converged core-set model could

be constructed from the JP-clustering of the 14-residue peptide

(data not shown). These results indicate that the JP algorithm

is not well-suited as a starting point for core-set models. In

the JP algorithm the neighborhood of a data point is defined

by the R nearest neighbors, rather than by a fixed distance

R. The effective neighborhood radius grows with decreasing

data point density which distorts the estimate of the data point

density. As a consequence, the clusters are not defined by a

drop in data point density and lead to ill-defined cores.

On the other hand, the CNN and the DBSCAN algorithm

are equally suited for the identification of highly populated

states in a conformational space and for the construction of

core-set models. If the number of data points is relatively low

compared to the dimensionality of the data set, as for example

in the data set for 14-residue peptide with 19 950 frames,

either a low value for the number of common neighbors N

or a large value for the neighborhood radius R needs to be

chosen for the CNN algorithm. In our experience, choosing

a low number of N and adjusting R to the data-point density

works better than fixing R to a high value and varying N ,

possibly because R can be varied continuously whereas N can

only assume integer values.

Note that a recently introduced class of density-based

cluster algorithms53,54 is likely to also yield a suitable core-

set discretization. In these algorithms, first the number of

cluster centers are identified based on an estimate of the

local data-point density at each data point54 and the distance

between high-density data points.53 Then the remaining data

points are assigned to the clusters based on the distance

to the cluster members and local data point density of the

unassigned point. The data-point density between two data

points is not estimated. In Ref. 55, a different approach is used

to identify core sets. First, on the order of 1000 trial milestone

conformations are chosen based on their local probability

density. From these trial milestones, a subset of core-set

conformations are selected by maximizing a metastability

index. This requires a search through the possible subsets

of all trial conformations, for which the authors propose an

elegant algorithm.

One of the main advantages of the identification of core-

sets using density-based clustering is that one can extend

the core-set approach to systems which are not strongly

metastable. This is important for the practical application of

the core-set method because many biologically interesting

systems are only marginally metastable. We achieve this by

applying the density-based cluster algorithm in a hierarchical

manner while monitoring whether the matrix M remains

diagonally dominant. The dominance of the diagonal elements

in M is a measure for the metastability of the cores.

This metastability can be further improved by relaxing

the parameters which govern the mapping of individual

trajectories onto the cores during the construction of the

milestoning processes. This approach yields core-set models

with a high spatial resolution. For example, we could
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distinguish between conformationally similar yet chemically

different structures, such as register-shifted hairpin structures

in a 14-residue peptide. Overall, combining density-based

clustering with the core-set approach is an easy to use

discretization method for Markov state models which in our

test systems improved both the approximation error and the

spatial resolution of the models.

SUPPLEMENTARY MATERIAL

See supplementary material for the used scripts for the

density-based cluster algorithms as well as all further scripts

for the creation of the core sets and the Markov State model.

In addition to this, examples are included. Furthermore, the

script for the Markov-Chain-Monte-Carlo-sampler, which was

used for the creation of the 2D-dataset, is provided.
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APPENDIX: DISCRETIZATION
OF THE TRANSFER OPERATOR

The eigenfunctions are approximated by expanding them

in a finite basis { χi(x)}
n
i=1

,

r(x) ≈

n

i=1

ci χi(x) (A1)

with the basis functions spanning a subspace of the full

molecular state space D ⊂ Ω,

D ≔ span{ χ1, . . . , χn}. (A2)

The expansion coefficients in Eq. (A1) can be obtained by a

Galerkin discretization of eq.31,33,37 This yields the following

generalized eigenvalue problem:

C(τ)c = λSc, (A3)

where the elements of the correlation matrix C(τ) are given

as

Ci j(τ) =


χi |T (τ)χ j

�
π
=


χi(y)π(y)

�
T (τ)χ j(x)

�
dy

(A4)

and the elements of the overlap matrix S as

Si j =


χi | χ j

�
π
=


χi(x)π(x)χ j(x)dx. (A5)

This discretization is used in the variational approach to

molecular dynamics.17–19 The overlap matrix is symmetric

because the scalar product is symmetric, and it is invertible

because the basis functions are linearly independent. Thus,

to obtain the expansion coefficients, one can also solve the

equivalent eigenvalue problem

S−1C(τ)c = T(τ)c = λc. (A6)

The matrix T(τ) = S−1C(τ) is the so-called projected transfer

operator. The discretization in Eq. (A6) is used in conventional

Markov state models.13,32,34,38

In the core-set approach20,21 one uses Eq. (A6) as a

starting point to derive a discretization with respect to an

alternative basis of D

D ≔ span{ψ1, . . . ,ψn} (A7)

with

ψi(x) =
χi(x)

⟨χi |1⟩π
⇔ χi(x) = ⟨χi |1⟩π χi(x). (A8)

That is, one approximates the eigenfunctions by expanding

them in {ψi(x)}
n
i=1

r(x) ≈

n

i=1

c̃iψi(x) =

n

i=1

c̃i

⟨χi |1⟩π
χi(x), (A9)

and seeks the expansion coefficients c̃. Note that in Eq. (A8) the

basis functions are only scaled by a scalar ⟨χi |1⟩π. Thus, both

basis sets span the same subspace D and the corresponding

expansion coefficients are related by

c = Π−1c̃⇔ c̃ = Πc, (A10)

where Π is diagonal matrix

Πi j =

⟨χi |1⟩π if i = j

0 otherwise
. (A11)

Inserting into Eq. (A6) yields the following matrix equation

for the expansion coefficients c̃:

ΠS−1C(τ)Π−1c̃ = λc̃, (A12)

where the matrices C(τ), S, and Π are defined with respect

to the original basis { χi(x)}
n
i=1

and are given by Eqs. (A4),

(A5), and (A11). In the literature on the core-set method, the

transpose of Eq. (A12)�
ΠS−1C(τ)Π−1c̃

�⊤
= c̃⊤Π−1C(τ)S−1

Π = λc̃⊤ (A13)

is typically used (C(τ), S, andΠ are symmetric matrices), and

we will adhere to this convention. Defining the matrix

P(τ) = Π−1C(τ) with Pi j(τ) =
⟨χi |T (τ)χ j⟩

⟨χi,1⟩π
(A14)

and the mass matrix

M = Π−1S with Mi j =
⟨χi | χ j⟩

⟨χi |1⟩π
, (A15)

Eq. (A13) can be recast as

c̃⊤P(τ)M−1 = λc̃⊤. (A16)

This discretization is used in the core-set approach.
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