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Abstract. We develop a probabilistic framework that computes 3D
shape descriptors in a more rigorous and accurate manner than usual
histogram-based methods for the purpose of 3D object retrieval. We
first use a numerical analytical approach to extract the shape informa-
tion from each mesh triangle in a better way than the sparse sampling
approach. These measurements are then combined to build a probabil-
ity density descriptor via kernel density estimation techniques, with a
rule-based bandwidth assignment. Finally, we explore descriptor fusion
schemes. Our analytical approach reveals the true potential of density-
based descriptors, one of its representatives reaching the top ranking
position among competing methods.

1 Introduction

There is a growing interest in 3D shape classification, matching and retrieval
as 3D object models become more commonplace in various domains such as
computer-aided design, medical imaging, molecular analysis and digital preser-
vation of cultural heritage. The research efforts in this field mainly focus on ju-
dicious design of discriminating shape features and on pragmatic computational
schemes. Representations used for shape matching are referred to as 3D shape
descriptors, which are usually based on direct shape features or some function
of these features [1,2].

We present a framework for 3D shape description based on probability density
function of shape features. We first define a geometric feature over the surface
of the 3D object. This geometric feature can be a scalar or a vector, and it is
intended to measure a local property of the 3D surface. In this work, we limit
ourselves to triangular mesh representations, however the proposed features can
be computed for point cloud representations as well. We calculate the geometric
feature on each triangle of the mesh and obtain a set of observations, each pro-
viding a local characterization. Using the set of observations and kernel density
estimation (KDE) [3], we then estimate the probability density of the local geo-
metric feature at target points chosen on the domain of the feature. The vector
of the estimated density values becomes our 3D shape descriptor. This density-
based approach collects local evidence about the shape information and then,
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using KDE, it accumulates this evidence at target points so as to end up with a
global shape description.

In the previous works on 3D shape descriptors, the idea of gathering and accu-
mulating local surface information is implemented by histograms [1,2,4,5,6,7,8].
Paquet et al. use the cord length and the angles between a cord and the principal
axes as geometric features to construct univariate histograms [4]. The resulting
3D shape descriptor consists of concatenated univariate histograms, called Cord
and Angle Histograms. Osada et al. follow a random sampling approach to ac-
quire a large set of observations so as to measure a global property of the surface,
such as the Euclidean distance between two surface points (D2) [5]. Among other
histogram-like approaches, Extended Gaussian Images (EGI) and their variants
[6,7] are based on the distribution of surface normals over a spherical grid. These
are not true histograms in the rigorous sense of the term, but they share the
philosophy of accumulating a geometric feature. The 3D Hough Transform De-
scriptor (3DHT), presented in [8], is based on the parameterization of the local
tangent plane. The 3DHT can be viewed as a generalization of EGI. We have
experimentally verified the conjecture that the 3DHT descriptor captures the
shape information better than the EGI descriptor in [9].

The main motivation of the present work is to develop a probabilistic frame-
work to compute histogram-based descriptors in a more rigorous and accurate
manner by the KDE technique. The resulting framework is a general one that
can be applied to any local feature vector of any dimension. In the light of
the proposed framework, we also reformulate the existing local shape features
discussed above in order to achieve an improved shape characterization. These
features, when combined with a new set of shape features that we propose, re-
sult in shape descriptors that outperform all of its histogram-based competitors
existing in the literature.

2 Local Geometric Features

We assume that each 3D shape is represented with a triangular mesh and that
its center of mass coincides with the origin of the coordinate system. In what
follows, capital italic letter P stands for a point in 3D, a small case boldface
letter p for its vector representation, nP for the unit surface normal vector at P
whenever P is an element of some surface M ⊂ R

3 and 〈., .〉 for the usual dot
product. We define a local geometric feature, as a mapping S from the points of a
surface M into a d-dimensional space, usually constrained into a finite subspace
of R

d. Each dimension of this space corresponds to a specific geometric measure,
characterizing the shape locally. In this work, we consider three different sorts
of multidimensional local geometric features, as introduced next.

The radial feature Sr at a point P is a 4-tuple defined as Sr (p) � (r, r) where
r � ‖p‖ and r = (rx, ry, rz) � p/ ‖p‖ . Sr consists of a magnitude component r,
measuring the distance of the point P to the origin; and a direction component r,
pointing to the location of the point P . The direction component r is a 3-vector
with unit-norm; hence it lies on the unit sphere.
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The tangent plane-based feature St at a point P is a 4-tuple defined as St (p) �
(dt,nP ) where dt � |〈p,nP 〉| and nP = (nP,x, nP,y, nP,z). Similar to the Sr-
feature, St has a magnitude component dt, which stands for the distance of the
tangent plane at P to the origin, and a direction component nP . The normal
nP is a unit-norm vector by definition and lies on the unit sphere.

The cross-product feature Sc at a point P is defined as Sc (p) � (r, cP ) where
cP = (cP,x, cP,y, cP,z) � p × nP . This third feature encodes the interaction
between the first two features above, namely, the radial feature Sr and the
tangent plane feature St. In much the same way as in Sr and St, Sc is decoupled
into its magnitude component r and its direction component cP . Notice however
that cP , according to its definition, is not generally a unit-norm vector. Its norm
satisfying 0 ≤ ‖cP ‖ ≤ 1 , cP lies inside the unit ball.

Note that the above three features are neither scale- nor rotation-invariant.
Accordingly, any method making use of them must assume prior scale and pose
normalization of the mesh.

3 Density-Based Shape Description

Given a set of observations {sk}K
k=1 for a random variable (scalar or vector) S,

the kernel approach to estimate the probability density function (pdf) fS of S
is formulated in its most general form as

fS(s) =
K∑

k=1

wk |Hk|−1 K (
H−1

k (s − sk)
)
. (1)

where K : R
d → R is a kernel function, Hk is a design parameter called the

d × d bandwidth matrix and wk is the importance weight associated with the
kth observation. We intend to apply this classical kernel scheme to derive proba-
bility distributions of 3D shape features. In this context, {sk}K

k=1 correspond to
measurements of some local geometric feature S, and the array of fS-values at
a predefined set of target points corresponds to the descriptor. For a triangular
mesh consisting of K triangles, we can obtain an observation sk from each of the
triangles, as described in Sect. 3.1. A natural choice for an importance weight wk

is the area of the kth triangle relative to the total mesh area. It is known that es-
timates in Eq. 1 are sensitive to the bandwidth parameters {Hk}K

k=1 rather than
the particular kernel used [3]. In our application, we have chosen the Gaussian
kernel. The availability of a fast algorithm was the determining factor for this
choice. We address the bandwidth selection issue in Sect. 3.2.

3.1 Feature Calculation

A shape descriptor can be estimated by using samples of shape features over
the mesh triangles. Previous studies [1,4] have considered a single sample per
triangle, namely the triangle barycenter. We claim this barycentric sampling is
not the best option because of possible shape and size non-uniformities of trian-
gles. Instead, we propose an estimate taking into consideration the multitude of
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points uniformly distributed over the triangle geometry. In other words, we will
replace sk in Eq. 1 with the expectation of the local feature value over the kth
triangle E {S|kth triangle} instead of the value just sampled at its barycenter
[9]. This moment estimate can be obtained as follows. Let T be an arbitrary
triangle in 3D space with vertices A, B, and C represented by pA,pB and pC

respectively. By taking any one vertex as a pivot (say, pivot A), the relative
coordinates of an arbitrary point P inside the triangle T can be expressed in
terms of e1 = pB −pA and e2 = pC −pA, as p = pA +xe1 +ye2, where x, y ≥ 0
and x + y ≤ 1. Assuming that points {P} are uniformly distributed inside the
triangle T , each feature S can be expressed as a function of two variables (x, y),
i.e., S (p) = S (x, y). Thus, the expected local feature value over the triangle T
reads as

E {S|T } =
∫∫

Ω

Si(x, y)f(x, y)dxdy (2)

where f (x, y) is the bivariate uniform density of the pair (x, y) over the domain
Ω = {(x, y) : x, y ≥ 0, x + y ≤ 1}. To approximate Eq. 2, we apply Simpson’s
1/3 numerical integration formula [10]. To remove the arbitrariness of the pivot,
we compute the integral with respect to each pivot A, B, and C. Finally, we
average the three integration results to obtain

E{S|T}≈(1/27)(S(pA)+S(pB)+S(pC)))

+(4/27)(S((pA+pB)/2)+S((pA+pC)/2)+S((pB+pC)/2))

+(4/27)(S((2pA+pB+pC)/4)+S((pA+2pB+pC)/4)+S((pA+pB+2pC)/2))

(3)

3.2 Bandwidth Selection

The KDE formulation given in Eq. 1 gives us the liberty to set a different band-
width matrix Hk for each triangle in a given mesh. With this richness of choice,
no assumption needs to be made about the shape of the kernel function or im-
plicitly about the shape of the kth triangle. However, the fast Gauss Transform
(FGT) algorithm in [11] precludes the use of a bandwidth matrix Hk per triangle.
The computation of the sum in Eq. 1 without resorting to a fast transform leads
to prohibitive computational load. To give an idea, for example, on a Pentium 4
PC (2.4 GHz CPU, 2 GB RAM), for a mesh of 130,000 triangles, direct evaluation
of the Sr-descriptor (1024-point pdf) takes 125 seconds against the 2.5-second
computation time with FGT. Accordingly, we adopt a fixed form of Hk = H ,
i.e., the bandwidth matrix does not vary across the triangles. This can be done
in two ways: either at the mesh level, in which case every mesh will be attributed
its own bandwidth matrix, or at the database level, in which case a single H is
valid for all meshes. At the mesh level, the bandwidth matrix for a given feature
can be set by Scott’s rule of thumb [3]: HScott =

(∑
k w2

k

)1/d+4
C1/2, where d is

the feature dimension and C is the estimate of the feature covariance matrix. At
the database level, we consider the average Scott bandwidth matrix over the 3D
meshes in the database. In our experiments, we have tested these two options
one against the other by comparing their retrieval performances.
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4 Experiments

We have tested our descriptors in a retrieval scenario on the Princeton Shape
Benchmark (PSB) [2], which consists of 3D objects described as triangular
meshes. PSB is a publicly available database containing a total of 1814 mod-
els, categorized into general classes and consisting of two equally sized sets:
one for training and another for testing purposes. We present the retrieval per-
formance of descriptors using precision-recall curves and discounted cumulative
gain (DCG) values [2]. Recall that DCG is a statistic that weights correct results
near the front of the list more than correct results appearing later in the ranked
list.

We applied the following normalization to the meshes to secure invariance to
translation, scale, and rotation. For translation invariance, the object’s center of
mass was translated to the origin. For scale invariance, the area-weighted average
distance of surface points to the origin was set to unity. Finally, to guarantee
rotation and flipping invariance, we have used the continuous PCA approach
[12]. We have taken 1024 target points within the domain of definition of Sr and
St and 2560 for Sc. Finally, we observed that the Minkowski l1-metric yielded
the best retrieval statistics among its alternatives such as l2, l∞, χ2, etc. We
have also found it useful to normalize descriptors to unit l1-norm.

4.1 Bandwidth Selection Strategy

One of the core concerns in our algorithm was the judicious setting of the band-
width parameters. Due to the FGT constraint, it was pointed out in Sect. 3.2
that it is necessary to operate on a database or mesh basis, but not on a trian-
gle basis. We tested the mesh and database alternatives with our local features
Sr, St, and Sc, always with Scott’s rule-of-thumb. Since we observed that the off-
diagonal terms of the matrices in the Scott’s rule were negligible as compared to
the diagonal terms, we decided to use only diagonal bandwidth matrices. Table
1 displays the comparison of DCG scores for Sr, St, and Sc on the PSB Training
Set. It is clear that setting H at the database level is more advantageous com-
pared to the mesh level setting. The results reported in the following experiments
are therefore for the database level setting.

4.2 Density-Based Versus Histogram-Based Descriptors

In this section, we demonstrate the performance advantage of the proposed KDE-
based approach compared to the histogram-based analogues in the literature. A
test case is Cord and Angle Histograms (CAH) [4]. The features in CAH are iden-
tical to our Sr-feature up to a parameterization. The CAH-descriptor consists
of the concatenation of cord length and angle histograms. We first applied our
framework in Eq. 1 to the individual components of Sr. The resulting descriptor,
denoted as [Sr,1, Sr,2, Sr,3, Sr,4], consists of the concatenation of univariate densi-
ties. In Figure 1(a), we provide the precision-recall curve corresponding to CAH
and [Sr,1, Sr,2, Sr,3, Sr,4] on PSB Test Set. The respective DCG values are 0.434
and 0.501, indicating the superior performance of our framework under identical
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Table 1. DCG values for Mesh-level and Database-level setting of the bandwidth
matrix on PSB Training set

Sr St Sc

Mesh-level DCG 0.511 0.514 0.499

Database-level DCG 0.541 0.567 0.543

Performance Gain (%) 6 11 11

Fig. 1. (a) Precision-recall curves comparing Sr and [Sr,1, Sr,2, Sr,3, Sr,4] to CAH-
descriptor, (b) Precision-recall curves comparing Sn to EGI-descriptor

feature sets. An additional improvement can be gained by estimating the joint
density of Sr. That is, we directly use the joint density of Sr as a descriptor. The
DCG value of the Sr-descriptor is 0.533, one more step of improvement to the
univariate case (DCG = 0.501). A second instance of our framework outperform-
ing its competitor is the EGI-descriptor [1,2,6,7], which consists of binning the
surface normals. The density of the direction component nP of our St-feature
is equivalent to the EGI-descriptor. The Sn-descriptor (Sn (p) � nP ) achieves a
DCG of 0.478 compared to the DCG score of 0.438 for EGI (see Figure 1(b)).

4.3 General Performance of Density-Based Descriptors

In this section, we discuss individual performances of the three proposed descrip-
tors Sr, St, and Sc, and explore their fusion alternatives. As shown in Table 2,
the proposed local features yield similar DCG performance scores on the PSB
Test Set. We can observe in the same table that their pair-wise concatenations
[Sr, St], [Sr, Sc], and [Sc, St] increase the DCG scores significantly. Furthermore,
the triple-wise concatenation boosts the DCG performance further. In fact, based
on the scores reported in [2], the [Sr, St, Sc]-descriptor has the highest DCG score
among all other well-known 3D shape descriptors, as shown in Figure 2. Except
for the 3D Hough Transform Descriptor (3DHT) [8] and CAH [4], all the descrip-
tor scores shown in Figure 2 are taken from [2]. Due to space limitations, we refer
the reader to [2] for brief descriptions and acronyms of these descriptors. The
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Table 2. DCG Performance of Density-based Descriptors on PSB Test Set

Sr St Sc [Sr, St] [Sr, Sc] [St, Sc] [Sr, St, Sc]

DCG 0.533 0.543 0.533 0.599 0.579 0.585 0.607

Size 1024 1024 2560 2048 3584 3584 4608

Fig. 2. Comparison of 3D shape descriptors on PSB Test Set (Except CAH, 3DHT,
and our descriptors, DCG values are taken from [2].)

[Sr, St, Sc]-descriptor developed in this work has a DCG value of 0.607, while
the next best descriptor REXT (Radialized Extent Function) [12] has a DCG
value of 0.601 [2]. Note also that the [Sr, St]-descriptor (DCG = 0.599) comes
third in the competition. The average REXT-descriptor size reported in [2] is
17.5 kilobytes, while for our [Sr, St, Sc]-descriptor this figure is 22 kilobytes. The
average generation time for the REXT-descriptor is 2.2 seconds [2], while our
[Sr, St, Sc]-descriptor can be computed in 0.9 second on the average.

5 Discussion and Conclusion

We have analyzed and experimented with a new 3D object description and re-
trieval method. In the analysis framework we developed, we have limited our-
selves to the first order local shape features. The features are local in the sense
that they measure a property of the surface point by point, without taking into
consideration the information about their neighbors. The three feature sets are
fairly representative of such first order feature varieties.

We have shown first that probability distribution-based shape descriptors ben-
efits significantly from kernel based estimation in contrast to the histogram-based
shape descriptors. Second, the kernel estimates become more informative if a
numerical-analytical approach is used in contrast to pure barycentric sampling.
Third, the retrieval performance significantly improves using descriptor fusion.
We have shown that with all these enhancements, our scheme has climbed on
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the competition ladder to the top position in its category, i.e., the one of purely
3D descriptors. Two pieces of wisdom gathered by these experiments are as fol-
lows: (i) Features involving surface normals are more informative; (ii) bandwidth
parameter per database is more useful as compared to per-mesh setting.

Future research will concentrate on potential improvements of decision fusion.
A second natural avenue of research is in the direction of second- and higher-order
features, that is, features using the neighborhood of a given triangle. Finally, we
plan to test the triangle-based bandwidth selection strategy.
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