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DENSITY-DEPENDENCE IN SINGLE-SPECIES POPULATIONS 

- BY M. P. HASSELL 

Department of Zoology and Applied Entomology, Imperial College, 
London S. W.7 

INTRODUCTION 

Models for population growth in a limited environment are based on two fundamental 

premises: that populations have the potential to increase exponentially and that there is 

density-dependent feedback that progressively reduces the actual rate of increase. The 

most familiar of these models is the logistic equation of Verhulst (1838) and Pearl & 

Reed (1920). A recent paper by May et al. (1974) has explored several other continuous 

and discrete models and shown the general relationship between time delays in a con- 

tinuous (differential) model and the density-dependence in a discrete (diffierence) model. 

In this paper the form of density-dependent relationships is examined with particular 

reference to insects, a new discrete model is presented and its stability properties described. 

SOME OBSERVED RELATIONSHIPS AND THEIR DESCRIPTION 

The examples in Fig. 1 show several density-dependent relationships arising from intra- 

specific competition for a fixed amount of food. In each case the mortality is expressed as 

log (NJNS) (the k-value of Haldane (1949) and Varley & Gradwell (1960)) where Nt is the 

origina population density and NS is the density of survivors. The significant features of 

these are that (1) there is pronounced density-dependence at high population densities 

which becomes negligible as density decreases and (2) the density-dependence at high 

populations is either characterized by a fixed slope (b) or this slope increases rapidly with 

increasing density as in Fig. la. These properties should be part of a general model 

describing density-dependent relationships. 
A familiar model that is the basis for the tests for density-dependence of Varley & 

Gradwell (19l0) and Morris (1959) may be expressed as 

NS = - Nt(l -b) (l) 

where oc and b are constants that define the relationship between mortality, or natality, 

(this qualification is assumed throughout) and density. In logarithmic form and on 

rearranging, we have the linear equation 

Log N-t = log cc + b log Nt. (2) 

This is now in the same units as the observed data in Fig. 1. Clearly equation (2) is only 

adequate in describing those parts of the overall relationships in Fig. 1 which tend to be 

linear. 
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FIG. 1. Some density-dependent relationships due to intraspecific competition. In each 
case mortality, or reduced natality, is expressed as a k-value (log Nt/Ns) and plotted against 
the log initial density (log Nt). Figs la to le, after Varley et al. (1973); Fig. lf, after Rogers 
(1970). All curves fitted by eye. (a) Mortality of Lucilia cuprina (Meig.) between larval and 
adult stages (data from Nicholson 1954). (b) Reduced fecundity of Tribolium castaneum 
(Herbst) (data from Birch, Park & Frank 1951). (c) Reduced fecundity of Cryptolestes. 
(d) Mortality of Drosophila simulans Meig. between larval and adult stages (data from 
Miller 1964). (e) Mortality of D. melanogaster Meig. between larval and adult stages (data 
from Miller 1964). (f) Mortality of Cadra cautella Walk. between egg and pupal stages. 

By introducing a finite nett rate of increase (i), we have the population model 

Nt+l = - Nt(l-b) (3) 

where Nt+ 1 and Nt are population sizes in successive generations. The stability conditions 
of this model have been discussed by May et al. (1974). Stability is governed by the para- 
meter b alone, the population being stable when 

2> b >O. 
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When I > b > O, a perturbed population returns smoothly to the point equilibrium, but if 
2>b>1 the population 'overcompensates' and exhibits damped oscillations about the 
equilibrium. When b>2, equation (3) predicts oscillations of increasing amplitude 
(see below). 

This model is well suited to describe the density-dependence occurring at high popula- 
tion densities (Fig. 1). It has the severe limitation, however, of being linear on logarithmic 
scales, intercepting the aboissa. This implies a threshold population density (Nc, see Fig. 
lf) below which the mortality (log NJNS) becomes negative: there are more survivors (Ns) 
than initial numbers present (Nt) ! This could only occur when immigration or reproduc- 
tion intervenes before the survivors are sampled. This linearity alone is responsible for 
the oscillations of increasing amplitude in population size when b > 2. Varley, Gradwell & 
Hassell (1973), realizing this, made the simplest kind of correction, namely 

Nt + 1 = - Nt( 1 -b) when Nt > NC 
oc (4) 

Nt+1 = i Nt when Nt<Nc 

There is either density-dependence defined by the linear eqn (2) or no mortality at all 
(exponential growth). This discontinuity at Nc effectively reduces the objection of Ns > Nt 
when Nt<NC. However, when b>2 in this model, the population oscillates irregularly 
about the equilibrium with a pattern that varies with the initial value of Nt. This, too, is 
an unsatisfactory result. Such oscillations are akin to the neutrally stable cycles of the 
Lotka-Volterra predator-prey models where the system always 'remembers' its starting 
conditions. They are not to be expected under natural conditiolls. 

The more likely general outcome is one of stable limit cycles when b>2. This only 
occurs when some 'smoothing' is introduced in the region of the threshold (Nc) (May et al. 
1974), which leads us to the generalized model 

Nt+ 1 = ( Nt-t(wt))Nt (5) 

where the function,f(Nt), now replaces the density-dependence term, b. This function is 
given the limiting forms 

f(Nt)oO when Nt < Nc 

f(Nt) b when Ntp Nc (6) 

SCRAMBLE AND CONTEST 

Nicholson's (1954) terms, 'scramble' and 'contest', distinguish between two quite dif- 
ferent kinds of intraspecific competition. 

Ideally, scramble involves the exactly equal partitioning of the resource such that there 
is an abrupt change from complete survival to 100% mortality when there is just in- 
sufficient resource to maintain any individual. This is shown in idealized form in Fig. 2a 
where 

b = 0 whell Nt < Nc 

b = so when Nt> Nc. 

'In contest each successful animal gets all it requires, the unsuccessful animals get 
insufficient for survival or reproduction' (Varley et al. 1973). The classic example usually 
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FIG. 2. The density-dependent relationships arising from two extremes of intraspecific 
competition: (a) scramble; (b) contest. Axes as in Fig. 1. (After Varley et dl. 1973.) 

quoted is where there is competition for a fixed number of refuges. As density increases 
the number surviving remains constant. In idealized form this leads to density-dependence 
as shown in Fig. 2b where 

b = O when Nt < Nc 

b = 1 when Nt> Nc. (8) 

A model that approaches this situation is the logistic equation. This conforms to 
conditions (8) except for a smooth transition in the region of Nc. 

Such scramble and contest are the two extremes of competition. Normally, some ele- 
ment of contest is always likely since some individuals will be more successful than 
others. In terms of the parameter, b, the condition 

1 > b > O when Nt > Nc 

represents different degrees of contest alone, while the condition 

oo>b>1 when Nt>Nc 

represents varying combinations of scramble and contest. This range is well illustrated 
from Fig. 1. Scramble is most marked in Figs la and ld, while contest is better seen in 
Fig. lb. Of course, in all cases the sharp discontinuity at Nc contained in eqns (4), (7) and 
(8) gives way to a smoother transition. 

A model that is well suited to describe the extremes of scramble has been discussed by 
May (1974) as a limiting case of a model for a population of periodical cicadas (see also 
Cook (1965), May et al. (1974) and Southwood et cll. (1975)). It has the form 

Ntfl=iNte aNt. 
(9) 
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The mortality term (log Nt/NS) here increases exponentially with log Nt giving the limiting 
forms off(Nt) from equation (5) of 

f(Nt)O when Nt Nc 

- J(Nt)oo when Nt>NC (10) 

The stability properties of this model (May 1974) are governed by the nett rate of in- 
crease (i) alone, and not by any specific density-dependence t;erm. The population ex- 
hibits exponential damping towards the equilibrium, damped oscillations and stable limit 
cycle behaviour, respectively, as the value of i increases. Its disadvantage as a general 
description for density-dependence is that it does not cater well for the cases where the 
density-dependence is linear (characterized by b) at high population densities. 

A NEW MODEL 

The following model satisfies the conditions (6) on page 285 and has the further obvious 
constraint that log NJNS0 when Nt0 

Nt+l = [i(l+aNt) b]Nt (11) 

where A and b are as previously defined and a is a constant defining the threshold density 
(Nc = I/a). Fig. 3 shows the form of the density-dependent function from the model, 
again expressed as mortality (log Nt/Ns) plotted against log population density (log Nt) 
(cf. Fig. 1). The curve is described by the equation, 

log Nt = b log (1 + aNt). (12) 

Note that b is a constant representing the slope of the relationship attained at high 
population densities (at lower values of Nt, the slope is not constant). In the particular 
example in Fig. 3, b = 1t0 and a = 0t01 (i.e. Nc = 100). By varying b and a, a wide range 
of curves is obtained of the same general form as the examples in Fig. 1. 
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FIG. 3. A density-dependent relationship from equation (11) where a = 0 01 and b = 1 0. 
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The stability properties of this model are shown in the section below and the extent to 

which the model describes actual data sets is considered in the Discussion. 

Stability analysis 
It is now widely appreciated that density-dependent factors need not invariably lead to 

the damping of population Ructuations. The work of May in particular (1972, 1973, 1974 
and May et al. 1974) has illustrated how density-dependent relationships can lead to a 
similar range of exponential and oscillatory damping and stable limit cycle behaviour as 
found in some predator-prey models. This range of stability properties is also obtained 
from the model in equation (11). The procedure for determining the boundaries between 
the diXerent stability conditions follows that outlined in May et al. (1974). 

Firstly, equation (11) is written in the general form 
Nt+ 1 = [f(Nt)]Nt (13) 

wheref(Nt) is the density-dependent nett growth rate from generation to generation. At 
equilibrium, Ntl = Nt = N*, which occurs when 

f(N*)= 1. (14) 
The stability of this equilibrium depends on the eXective density-dependence (hence- 
forth called b) evaluated by plotting log NJNt+ 1 against Nt and determining the slope of 
the relationship at the equilibrium point, N* (see Fig. 6 below). It therefore encompasses 
the density-dependent mortality, log Nt/Ns, and the growth rate of the population, A. 
In general terms this density-dependent term, b, may be defined from 

_ d log N _ _dN_ (15) 
As discussed in May et al. (1974), neighbourhood stability now depends on the condition 
2>b>0. We thus need to evaluate equation (1S) for our specific model, equation (11). 
Equilibrium is now defined as 

f(N*) = i(l+aN*)-b = 1. (16) 
From equation (15), b is given by 

b = N* ab A(1 + aN*)-b- 1 (17) 

which, by combining with equation (16), gives 
b aN* 

_ _aN* (18) 
or 

b= b(-<2 b)= b 1-exp( n ) . 19) b 
By combining this expression for b with the equilibrium relationship (15), the stability 
criterion 2 > b >O leads to a relationship between b and A that aXects stability. Fig. 4 dis- 
plays the stability boundaries as functions of b and A. Notice that the condition b = 1 
divides exponential and oscillatory damping, and b = 2 divides neighbourhood stability 
from limit cycle behaviour. Fig. 5 shows some numerical examples of these different 
kinds of stability achieved by varying A as shown. 
Equation (18) shows there to be only two parameters affecting stability, the 'slope' of 
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the density-dependence, b, manifest at high population densities and the growth rate of the population 1w. The parameter, a, is important in affecting the equilibrium, N*, but has no aXect on stability. This is made clearer from Fig. 6a. The density-dependent func- tions are plotted for two models where a varies (0 1 and 0 01) while b and A are kept constant. Although the equilibria are very diffierent, the values of b at the equilibria are 

10 

4 

Exponential damping 

Population growth raS (X) 
1000 

FIG. 4.- Stability boundaries between the parameters, b and i, from equation (11). See text for further explanation. 

the same and hence stability unaffiected. Contrast this with Fig. 6b where a and b are held constant but A varied. Here the value of Z clearly increases as A increases and conse- quently the stability properties will change. 

DISCUSSION 

Description of data 
To be useful in more than a theoretical sense, a general model for density-dependence should describe adequately the full range of relationships-known to occur from availablcw data. We have seen from Fig. ' 1 that laboratory competition experiments lead rto similar outcomes characterized by low- and high-density behaviours. These density-dependent 

relationships may either rise almost exponentially as in Fig. 1 a (b oo') or tend to become 

linear at high population densities as'showntin Figs ld, e, f. Data from the field are usually collected over a smaller range of densities than 'contrived in the laboratorySand thus only a segment of the relationships are apparent. The data shown in Fig. 1 have one feature that cannot be described by equation (12): the fairly abrupt transition in the region of Nc. Fig. 7 shows this using the data from 
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FIG. 5. Population changes calculated from equation (11), where a = 0 01, b = 4 0 and A 
varies as shown. 

Fig. la and a further example from a competition experiment between larvae of the moth 
Plodia interpunctella (Hubner)*. The fit of the model is poorest where the transition is 
most abrupt (as in Fig. lf), which also leads to inadequate estimates of the 'slope', b. The 
inclusion in the model of further parameters would improve these fits but, unfortunately, 
with such parameter proliferation goes an increased unwieldiness. Of course, in the 
extreme case where there is a sharp discontinuity at Nc, only two distinct equations could 
adequately describe the data. 

Fortunately, the model produces more encouraging results using field data. Under 
field conditions, such sharp discontinuities as seen in Fig. 1 are much less likely. Sis 

* The parameters a and b in these examples (and also from Fig. 8 below) were estimated by a least 
squares technique. A copy of the computer programme is available on request. 
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punctella (Hubner) between egg and pupal stages plotted against log egg density (after 

Rogers 1970, data from Snyman 1949). 
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examples of density-dependent relationships from census data are shown in Fig. 8. Some 
of the examples embrace a sufflcient range of densities to show clearly the curvilinear 
nature of the relationships. In particular, the data for disease amongst larch bud moth 
larvae (Fig. 8c) and larval starvation in Colorado potato beetles (Fig. 8f) are cases where 
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FIG. 8. Density-dependent relationships from field data and their description based on 
equation (12). (a) Cabbage root fly (Erioischia brassicae (Bouche)) pupal mortality. a = 
0 00011, b = 3-16 (data from Benson 1973). (b) Winter moth (OperopAtera brumata (L.)) 
pupal mortality. a = 0 6, b = 0-38 (data from Varley & Gradwell 1968). (c) Larch tortrix 
(Zeiraphera diniana Gn.) larval disease. a = 0000018, b = 011 (data from Varley & 
Gradwell 1970, after Auer 1968). (d) Clutch size reduction in the great tit (Parus major L.) 
plotted against log maximum clutch size (log Nt). a = 0-0064, b = 0-18 (after Krebs 1970). 
(e) Chick mortality in the partridge (Perdix perdix L.) plotted against log hatching popula- 
tion (log Nt). a<0 000005, b>28-58 (after Blank et al. 1967). (f) Larval starvation in the 
Colorado potato beetle (Leptinotarsa decemlineata (Say)) plotted against log larval density 

(log Nt). a = 0 00007, b = 30 95 (data from Harcourt 1971). 

there is a wide range of sampled population densities above and below the transition 
region (Nc) In the remaining examples, data comes from a relatively restricted range of 
densities over which the.relationships appear more or less linear. The model performs 
well in both categories. 
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Some implications 
The stability analysis and Fig. 4 show that the rate of increase, i, can have a marked 

afEect on stability. Only when the value of the parameter, b, is less than unity is its eXect 
small: there is then always exponential damping (b < 1). However, if b is greater than unity, 
the stability properties depend critically on the magnitude of A. If A is large, the equilib- 
rium population, N*, is also large and hence the eXective density-dependence, b (slope at 
N*), approaches the value of b. This will lead to decreasing oscillations or stable limit 
cycles as shown in Fig. 4. If A is small, however, the equilibrium value N* will be in the 
region of low density-dependence (b < 1) leading to exponential damping. Thus, the con- 
tribution to stability of several of the relationships in Fig. 1 would depend very much on 
the assumed values for A. 

In a multiple age class population where the density-dependence acts on a given stage, 
the value of A is most unlikely to be the same as the fecundity per adult. The estimate of A 
should be the rate of increase of the population, having taken into account all other 
mortalities acting during the life cycle. Consider the simplest example where the stages of 
the life cycle are discrete and density-dependence acts on a single stage (e.g. the pupae): 

log Adults (t+ 1) = log Adults (t)+log Fec = log L gg (()t) 

I Larvae (t) _ [b log(1 + a Pupae (t))]. (20) 

The value of i in this example is given by 

log i log Fec- log EggS(t) _ IOg Larvae(t) (21) 

This emphasizes that the appropriate value of A for a stability-analysis may be consider- 
ably less than the potential rate of increase of the adult population. 

Because the effective density-dependence changes with population density, tending 
towards zero when densities are low, the response of a population to perturbations can 
depend on whether the population is moved above or below the equilibrium, N*. In 
particular, this is important if the value of b is greater than unity but i is small. We are 
now in the domain of exponential damping shown in Fig. 4. Consider the case illustrated 
in Fig. 9a, where there is overcompensation at high population densities (b = 2). If per- 
turbed markedly above the equilibrium (to N1), a very high mortality occurs forcing the 
population to a low level (N2). There is now much reduced mortality and weak density- 
dependence so that the population moves smoothly back to the equilibrium as illustrated 
in Fig. 9b (hollow circles). This is quite different from the oscillatory behaviour normally 
associated with overcompensation and which tends to occur with larger values of A. It is 
also in accord with field examples where population crashes from very high densities are 
not followed by marked oscillations (e.g. Dendrolimus pini L. and other moth species in 
German coniferous forests (Schwertfeger 1941)). Of course, if the initial perturbation is 
markedly downwards, there is simple exponential damping back to the equilibrium. These 
dif3Serences do not apply if the value of b is less than unity. There will now always be 
exponential damping irrespective of the direction of the perturbation (Fig. 9b, solid 
circles). 
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FIG. 9. (a) Density-dependent relationship calculated from equation (12) where mortality 
(expressed as a k-value) is plotted against log population density (log Nt). See text for 
further explanation. (b) Population changes calculated from eqn. (11) following displace- 
ment from the equilibrium (N* = 100). o: a= 0-01, b = 2 and i = 4 (as in Fig. 9a). 
Overshooting when displaced above N* as shown; exponential damping when displaced 
below. : a = 0 09, b = 0 6 and i = 4. Exponential damping when displaced above or 

below N*. 
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SUMMARY 
(1) The general form of density-dependent relationships is discussed and illustrated 

with examples. These are compared with the relationships predicted from two other 
models for density-dependence. 

(2) A new model is proposed which has the properties that (1) at high population 
densities, the relationship between mortality, or natality (expressed as k-values), and the 
log density is characterized by a constant slope (b) and (2) the degree of density-depend- 
ence decreases as population density falls. 

(3) The stability properties of this model are discussed. A population may exhibit 
exponential damping, oscillatory damping, or stable limit cycle behaviour, depending 
upon the parameter (b) and the effective rate of increase of the population (i). 
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