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Density dependent hadron field theory for asymmetric nuclear
matter and exotic nuclei

F. Hofmann, C. M. Keil, H. Lenske
Institut für Theoretische Physik, Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen,

Germany
(July 22, 2000)

Abstract

The density dependent relativistic hadron field (DDRH) theory is ap-
plied to strongly asymmetric nuclear matter and finite nuclei far off stabil-
ity. A new set of in-medium meson-nucleon vertices is derived from Dirac-
Brueckner Hartree-Fock (DBHF) calculations in asymmetric matter, now ac-
counting also for the density dependence of isovector coupling constants. The
scalar-isovector δ meson is included. Nuclear matter calculations show that
it is necessary to introduce a momentum correction in the extraction of cou-
pling constants from the DBHF self-energies in order to reproduce the DBHF
equation of state by DDRH mean-field calculations. The properties of DDRH
vertices derived from the Groningen and the Bonn A nucleon-nucleon (NN)
potentials are compared in nuclear matter calculations and for finite nuclei.
Relativistic Hartree results for binding energies, charge radii, separation en-
ergies and shell gaps for the Ni and Sn isotopic chains are presented. Using
the momentum corrected vertices an overall agreement to data on a level of a
few percent is obtained. In the accessible range of asymmetries the δ meson
contributions to the self-energies are found to be of minor importance but
asymmetry dependent fluctuations may occur.

PACS number(s): 21.65.+f, 21.30.Fe, 21.10.-k, 21.60.-n
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I. INTRODUCTION

The modern approach to nuclear structure is based on relativistic models describing
nuclear matter and finite nuclei as a strongly interacting systems of baryons and mesons.
Starting from a Lagrangian formulation a phenomenological hadronic field theory is obtained
by adjusting the meson-nucleon coupling constants to various properties of infinite nuclear
matter and finite nuclei [1,2]. A connection to free space nucleon-nucleon interactions is
not attempted. The prototype for such an approach is relativistic mean-field theory (RMF)
[3,4] where nuclear forces are obtained from the virtual exchange of mesons, finally leading
to condensed classically fields produced by nucleonic sources. Using this procedure recent
RMF models have been remarkably successful in describing nuclei over the entire range of
the periodic table [5–9]. In order to improve results cubic and quartic self-interactions of the
mesons fields had to be introduced [10,11]. Although higher order scalar self-interactions can
be motivated by vacuum renormalization [4] in practice the strengths of the self-couplings are
determined in a purely phenomenological way. In mean-field approximation the mesonic self-
interactions correspond effectively to higher order density dependent contributions. Using
up to quartic terms a good description of nuclear matter and finite nuclei is obtained but,
depending on the sign of especially the quartic scalar σ self-interaction, instabilities occur
in the region above saturation density [5].

A more fundamental - but also more elaborate - approach is to derive in-medium inter-
actions microscopically. An appropriate and successful method is Dirac-Brueckner theory
(DB). Using realistic NN potentials in-medium interactions are derived by a complete re-
summation of (two-body) ladder diagrams. A break-through was obtained with relativistic
Brueckner theory which reproduces the empirical saturation properties of nuclear matter
reasonably well [12–18]. Since full-scale DB calculations for finite nuclei are not feasible
a practical approach is to apply infinite matter DB results in local density approximation
(LDA) to finite nuclei [19–21]. Retaining a Lagrangian formulation this is achieved by in-
troducing density dependent meson-nucleon coupling constants taken from DB self-energies
[19]. In [22,23] it was pointed out that such an approach does not comply with relativity and
thermodynamics. A fully covariant and thermodynamically consistent field theory, however,
is obtained by treating the interaction vertices on the level of the Lagrangian as Lorentz-
scalar functionals of the field operators. In the density dependent relativistic hadron field
(DDRH) theory [22,23] the medium dependence of the vertices is expressed by functionals of
the baryon field operators. An important difference to the RMF treatment of non-linearities
is that the DDRH approach accounts for quantal fluctuations of the baryon fields even in
the ground state. Such effects contribute as rearrangement self-energies to the baryon field
equations describing the static polarization of the background medium by a nucleon [23,24].
Since DDRH theory provides a systematic expansion of interactions in terms of higher or-
der baryon-baryon correlation functions [22,23], extensions beyond the mean-level are in
principle possible.

In mean-field approximation DDRH theory reduces to a Hartree description with density
dependent coupling constants similar to the initial proposal of Brockmann and Toki [19].
The rearrangement contributions significantly improve the binding energies and radii of
finite nuclei. Several calculations in the DDRH model for stable nuclei have been performed
[23,25–27] using density dependent vertices derived from DB calculations with the Bonn A
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potential [15,28]. Recently, a phenomenological approach to DDRH theory was presented
[29] by determining the density dependence of the vertices empirically. Descriptions of finite
nuclei of a quality comparable to non-linear RMF models were obtained. Extensions to the
baryon octet sector and hypernuclei are discussed in [30].

The main intention of this paper is to apply DDRH theory to asymmetric matter and
nuclei far off stability. Since the vertex functionals used in the former applications were
taken from DB calculations in symmetric matter, information on the density dependence of
isovector vertices was not available. From the DB results for asymmetric matter, obtained
in Ref. [18,31] with the Groningen potential [32], a new set of coupling constants has been
derived, now including density dependent isoscalar (σ, ω) and isovector (δ, ρ) vertices.
Contributions from the scalar-isoscalar δ meson are of special interest at extreme neutron-
to-proton ratios.

From inifinite matter calculations it was found that the momentum dependence of self-
energies has to be taken into account in order to reproduce the underlying DBHF equation
of state by DDRH calculations. In a strict sense this means to go beyond the static Hartree
limit. A closer inspection, however, shows that for a mean-field description it is sufficient
to account for the momentum dependence on an average level. Rather than using the
self-energies at the Fermi-surface [15,18] a more appropriate method is to extract coupling
constants from self-energies averaged over the Fermi-sphere. This still leads to static vertices
but incorporating momentum dependent corrections.

The paper is arranged as follows. In Sec. II the DDRH approach and the mean-field
reduction are reviewed. In Sec. III the approach to extract density dependent coupling
constants from nuclear matter DB self-energies including isovector contributions and the
momentum corrections is presented. The global properties of the newly determined coupling
constants are investigated in applications to infinite matter. In Sec. IV we report on DDRH
calculations for the isotopic chains of Ni and Sn nuclides, both including stable and exotic
nuclei. These two isotopic chains are of special interest because several magic neutron
numbers and the corresponding shell closures are covered on top of the magic Z=28 and Z=50
proton numbers, respectively. Results for the Groningen and the Bonn A NN potentials
are compared. Contribution from the scalar-isoscalar δ meson and the influence of the
momentum correction are examined in detail. The paper closes in Sec. V with a summary
and conclusions.

II. DENSITY DEPENDENT HADRON FIELD THEORY FOR ASYMMETRIC
NUCLEAR MATTER

A. The model Lagrangian and the equations of motion

The density dependent relativistic hadron field (DDRH) theory has been presented and
thoroughly discussed in [22,23,30]. In this work we restrict ourselves to a short review of
the model and to a discussion of the extensions to Ref. [23].

The model Lagrangian includes the baryons represented as Dirac spinors Ψ = (ψp, ψn)T ,
the isocalar mesons σ and ω, the isovector ρ meson and the photon γ. In addition to former
models we also include the scalar isovector meson δ which is important in asymmetric systems
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and naturally has to be taken into account when extracting the coupling functionals from
asymmetric nuclear matter DBHF calculations as will be explained in detail later. The
Lagrangian is

L = LB + LM + Lint

LB = Ψ [iγµ∂
µ −M ] Ψ (1)

LM =
1

2

∑
i=σ,δ

(
∂µΦi∂

µΦi −m2
i Φ

2
i

)
−

1

2

∑
κ=ω,ρ,γ

(
1

2
F (κ)

µν F
(κ)µν −m2

κA
(κ)
µ A(κ)µ

)
(2)

Lint = ΨΓ̂σ(Ψ,Ψ)ΨΦσ −ΨΓ̂ω(Ψ,Ψ)γµΨA
(ω)µ +

ΨΓ̂δ(Ψ,Ψ)τΨΦδ −ΨΓ̂ρ(Ψ,Ψ)γµτΨA(ρ)µ −
eΨQ̂γµΨA

(γ)µ. (3)

Here, LB and LM are the free baryonic and the free mesonic Lagrangians, respectively, and
interactions are described by Lint, where

F (κ)
µν = ∂µA

(κ)
ν − ∂νA

(κ)
µ (4)

is the field strength tensor of either the vector mesons (κ = ω, ρ) or the photon (κ = γ) and
Q̂ is the electric charge operator.

The main difference to standard QHD models [3,4] is that the meson-baryon vertices
Γ̂α (α = σ, ω, δ, ρ) are not constant numbers but depend on the baryon field operators Ψ.
Relativistic covariance requires that the vertices are functions Γ̂α(ρ̂) of Lorenz-scalar bilinear
forms ρ̂(Ψ,Ψ) of the field operators. Two obvious choices are the scalar density dependence
(SDD) with ρ̂ = ΨΨ and the vector density dependence (VDD) where ρ̂2 = ĵµĵ

µ depends
on the square of the baryon vector current ĵµ = ΨγµΨ. In this work we only present results
for the VDD description since it leads to better results for finite nuclei [23] and gives a more
natural connection to the parameterization of the DB vertices. This will be discussed in
detail in the next section.

As pointed out in [23] the most important difference to RMF [2] or convential DD [19]
theories is the contribution from the rearrangement self-energies to the DDRH baryon field
equations. This is evident since the variational derivative of Lint with respect to Ψ will also
act on the vertices.

δLint

δΨ
=
∂Lint

∂Ψ
+
∂Lint

∂ρ̂

δρ̂

δΨ
(5)

The second term on the right hand side of the equation is the rearrangement contribution
to the self-energy. Rearrangement accounts physically for static polarization effects in the
nuclear medium, cancelling certain classes of particle-hole diagrams [24]. The usual self-
energies are defined as

Σ̂s(0) = Γ̂σ(ρ̂)Φσ + Γ̂δ(ρ̂)τΦδ (6)

Σ̂µ(0) = Γ̂ω(ρ̂)A(ω)µ + Γ̂ρ(ρ̂)τA(ρ)µ + eQ̂A(γ)µ. (7)
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while the vector rearrangement self-energies are obtained from Eq. (5) as

Σ̂µ(r) =

(
∂Γ̂ω

∂ρ̂
A(ω)ν ĵν +

∂Γ̂ρ

∂ρ̂
τA(ρ)ν ĵν

− ∂Γ̂σ

∂ρ̂
ΦσΨΨ− ∂Γ̂δ

∂ρ̂
τΦδΨΨ

)
ûµ. (8)

Here, ûµ is a four velocity with ûµûµ = 1. Defining

Σ̂s = Σ̂s(0), Σ̂µ = Σ̂µ(0) + Σ̂µ(r) (9)

the structure of the baryon field equations takes on the standard form[
γµ

(
i∂µ − Σ̂µ

)
−
(
M − Σ̂s

)]
Ψ = 0, (10)

however, the underlying dynamics is changed by the rearrangement contributions. In addi-
tion the effective baryon mass M∗ = M − Σ̂s differs for protons and neutrons due to the
inclusion of the scalar isovector δ meson. This is an additional property of the model that
was not present in the previous formulation [22,23] where only the ρ meson in the isovector
part of the interaction was considered. We also find that the density dependence of the ρ
and δ mesons gives an additional contribution to the vector rearrangement self-energies.

B. Mean-field reduction

The field equations are solved in the Hartree mean-field approximation. In the Hartree
approach the highly complex form of the vertex functionals and its derivatives can be treated
in a simple way using Wick’s theorem [33]. Calculating the expectation value with respect
to the ground state |0〉 the vertices reduce to

〈Γ̂α(ρ̂)〉 = Γα(〈ρ̂〉) = Γα(ρ) (11)

and 〈
∂Γ̂α(ρ̂)

∂ρ̂

〉
=
∂Γα(ρ)

∂ρ
. (12)

where in the VDD case 〈ρ̂〉 = ρ is just the baryon ground state density.
Meson fields are treated as static classical fields, time reversal symmetry is assumed,

therefore only the zero component of the vector fields contributes. The meson field equations
reduce to

(−∇2 +m2
σ)Φσ = Γσ(ρ)ρs (13)

(−∇2 +m2
ω)A

(ω)
0 = Γω(ρ)ρ (14)

(−∇2 +m2
δ)Φδ = Γδ(ρ)ρ

s
3 (15)

(−∇2 +m2
ρ)A

(ρ)
0 = Γρ(ρ)ρ3 (16)

−∇2A
(γ)
0 = −eρp (17)
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where the densities are the following ground state expectation values

ρs = 〈ΨΨ〉 = ρs
n + ρs

p (18)

ρ = 〈Ψγ0Ψ〉 = ρn + ρp (19)

ρs
3 = 〈Ψτ3Ψ〉 = ρs

n − ρs
p (20)

ρ3 = 〈Ψγ0τ3Ψ〉 = ρn − ρp (21)

and the indices n and p stand for neutrons and protons, respectively. We will use the index
b = n, p to distinguisch between different nucleons.

The Dirac equation, separated in isospin, is the only remaining operator field equation

[γµ (i∂µ − Σµ
b (ρ))− (M − Σs

b(ρ))]ψb = 0 (22)

and contains now the static density dependent self energies

Σ
s(0)
b (ρ) = Γσ(ρ)Φσ + τbΓδ(ρ)Φδ (23)

Σ
0(0)
b (ρ) = Γω(ρ)A

(ω)
0 + τbΓρ(ρ)A

(ρ)
0 + e

1− τb
2

A
(γ)
0 (24)

Σ0(r)(ρ) =

(
∂Γω

∂ρ
A

(ω)
0 ρ+

∂Γρ

∂ρ
A

(ρ)
0 ρ3

− ∂Γσ

∂ρ
Φσρ

s − ∂Γδ

∂ρ
Φδρ

s
3

)
. (25)

The self-energies differ for protons and neutrons (τn = +1, τp = −1) while the rearrange-
ment self-energies are independent of the isospin.

III. RELATIVISTIC HARTREE DESCRIPTION OF INFINITE NUCLEAR
MATTER

A. Properties of infinite nuclear matter

In nuclear matter the field equations further simplify assuming translational invariance
and neglecting the electromagnetic field. Solutions of the stationary Dirac equation

[γµk
∗µ
b −m∗

b ] u
∗
b(k) = 0 (26)

are the usual plane wave Dirac spinors [34]

u∗b(k) =

√
E∗

b +m∗
b

2m∗
b


 1

σk∗b
E∗

b
+m∗

b


χb (27)

where χb is a two-component Pauli spinor and the index b distinguishes between neutrons
and protons. The effective mass m∗

b = M − Σs
b differs for neutrons and protons due to the

inclusion of the δ meson in the scalar self-energy. The kinetic 4-momenta k∗µb = kµ
b − Σµ

b

and the energy E∗
b of the particle are related by the in-medium on-shell condition k∗b

2 = m∗
b
2
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leading to E∗
b = (k∗0b )

2
=
√

k∗
b
2 +m∗

b
2. Integrating over all states k ≤ kFb

inside the Fermi

sphere and introducing EFb
=
√
k2

Fb
+m∗

b
2 the scalar and vector densities in infinite nuclear

matter are found as

ρb =
2

(2π)3

∫
|k|<kFb

d3k =
k3

Fb

3π2
(28)

ρs
b =

2

(2π)3

∫
|k|<kFb

d3k
m∗

b

E∗
b

=
m∗

b

2π2

[
kFb

EFb
+m∗

b
2 ln

kFb
+ EFb

m∗
b

]
. (29)

Calculation of the energy density and the pressure from the energy-momentum tensor

T µν =
∑

i

∂L
∂(∂µφi)

∂νφi − gµνL (30)

φi = Ψ,Ψ,Φσ, A
(ω)
µ ,Φδ, A

(ρ)
µ

is straightforward and the results are obtained in closed form

ε = 〈T 00〉 =
∑

b=n,p

1

4
[3EFb

ρb +m∗
bρ

s
b]

+
1

2

[
m2

σΦ2
σ +m2

δΦ
2
δ +m2

ωA
(ω)
0

2
+m2

ρA
(ρ)
0

2
]

=
∑

b=n,p

1

4
[3EFb

ρb +m∗
bρ

s
b]

+
∑

b=n,p

1

2

[
ρbΣ

0(0)
b + ρs

bΣ
s(0)
b

]
(31)

p =
1

3

3∑
i=1

〈T ii〉 =
∑

b=n,p

1

4
[EFb

ρb −m∗
bρ

s
b] +

∑
b=n,p

ρbΣ
0(r)

− 1

2

[
m2

σΦ2
σ +m2

δΦ
2
δ −m2

ωA
(ω)
0

2 −m2
ρA

(ρ)
0

2
]

=
∑

b=n,p

1

4
[EFb

ρb −m∗
bρ

s
b] + ρΣ0(r)

+
∑

b=n,p

1

2

[
ρbΣ

0(0)
b − ρs

bΣ
s(0)
b

]
(32)

From these relations it is seen that rearrangement does not affect the energy density but
contributes explicitly to the pressure p. It is obvious from this that not taking into account
rearrangement would violate thermodynamical consistency because the mechanical pressure
p obtained from the energy-momentum tensor must coincide with the thermodynamical
derivation

pthermo = ρ2 ∂

∂ρ

(
ε

ρ

)
= p. (33)
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B. Nucleon-meson vertices from Dirac-Brueckner theory and the momentum
correction

Since the DDRH nucleon-meson vertices are deduced from microscopic Dirac-Brueckner
calculations the question arises about the best ansatz for the extraction of the DB results.
This has been discussed extensively in [30]. For a given infinite nuclear matter DB vertex
Γα(ρnm) the mapping to the field theoretical formulation is defined by [23]

Γα(ρ̂) =
∫ ∞

0
Γα(ρnm)δ(ρ2

nm − ρ̂2)2ρnmdρnm (34)

and directly allows us to apply the DB results to our model. Still, we have not defined
how to extract the DB vertices Γα(ρnm) at a given density ρnm from the results obtained
in Brueckner calculations. Results of Brueckner calculations are the binding energy and
the DB selfenergies ΣDB. The latter are usually calculated by projecting the T matrix
onto a set of Lorentz invariant amplitudes [13,32,35]. They can then be related to coupling
constants used in mean-field theory as was examined in the local density approximation
(LDA), e.g. [18–20,36]. This is usually done on the level of the infinite nuclear matter
meson field equations by setting the mean-field self- energies equal to ΣMF = Γαφα ≡ ΣDB.
Plugging this into the meson field equations we find m2

αΣDB = Γ2
αρα, with ρα being the

corresponding density to a meson field φα as defined in Eqs. (18)-(21).
From Brueckner calculations in asymmetric nuclear matter scalar and vector self- energies

for protons and neutrons are given, allowing us to extract the intrinsic density dependence
of isocalar and isovector meson-nucleon vertices. One finds [18]

(
Γσ

mσ

)2

=
1

2

Σs(DB)
n (kF ) + Σs(DB)

p (kF )

ρs
n + ρs

p

(35)

(
Γω

mω

)2

=
1

2

Σ0(DB)
n (kF ) + Σ0(DB)

p (kF )

ρn + ρp
(36)

(
Γδ

mδ

)2

=
1

2

Σs(DB)
n (kF )− Σs(DB)

p (kF )

ρs
n − ρs

p

(37)

(
Γρ

mρ

)2

=
1

2

Σ0(DB)
n (kF )− Σ0(DB)

p (kF )

ρn − ρp

. (38)

From this follows that in general the vertices are functions of the Fermi momentum and
the scalar and vector densities. Specific parameterizations will be discussed in the next
section. In mean-field theory, only the ratios Γα

mα
determine the properties of the EoS. The

same still holds true for DDRH theory as long as the ratios Γα

mα
(kF ) are the same functions

of kF [29]. Comparing this approach to nonlinear RMF models [7,10,11], one finds that
the nonlinear σ or ω terms can also be interpreted as density dependent σ or ω masses
or vice versa. However, for finite nuclei this is no longer correct since the rearrangement
dynamics alters the local single particle properties during the self-consistent calculation. As
a consequence mass and coupling strength influence the system independently. In this paper
we only consider constant meson masses and put the medium dependence completely into
the coupling constants.
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Self-energies of Brueckner calculations are in general momentum dependent. But the
usual approach is to neglect the momentum dependence and take the value at the Fermi
surface [18,31] or to neglect it already a priori [15]. Since the mapping is done on the
Hartree level, exchange contributions are implicitly parameterized into the direct terms. In
order to quantify the error from neglecting the momentum dependence, we expand the full
DB self-energies around the Fermi momentum.

ΣDB(k, kF ) = ΣDB(kF , kF )

+ (k2 − k2
F )
∂ΣDB(k, kF )

∂k2
|k=kF

+O(k4) (39)

≡ ΣDB(kF ) + (k2 − k2
F )Σ′(kF ) (40)

It is common practice to identify the first term with the Hartree self-energy [15]. A
measure of the momentum dependence around the Fermi surface is provided by the second
term. A quadratic dependence on the momentum has been chosen as supported by Brueckner
calculations [18]. However, using only ΣDB(kF ) for the determination of the vertices will, in
general, not reproduce the DB EoS. Up to now a satisfactory solution to this known problem
[20,27] was not yet found. To tackle this problem we introduce as an additional constraint
that the self- energies have to be chosen such that εDB ≡ εDDRH.

As can be seen from Eq. (31), the mean-field contribution of the vector self-energy to the
potential energy of symmetric nuclear matter is given by ε0pot(kF ) = ρΣ0(0)(kF ). Averaging
the same contribution from the DB self-energies ΣDB(k, kF ) over the Fermi sphere and
requiring it to equal the mean-field potential energy we find the condition

ρ(kF )Σ0(0)(kF ) =
4

(2π)3

∫
|k|≤kF

d3kΣDB(k, kF )

= ρ(kF )ΣDB(kF )− Σ′(kF )
2

15
k5

F

= ρ(kF )ΣDB(kF )

[
1− 2

3
k2

F

Σ′(kF )

ΣDB(kF )

]
(41)

Obviously, the term in brackets is the correction that has to be taken into account in
order to reproduce the EoS. It should also be included in the extracted self-energies. In
principle, Σ′(kF ) is known from Eq. (39) but usually not extracted from DBHF calculations.
Therefore, we use the approach to calculate Σ′(kF ) numerically by adjusting the DDRH
binding energy to the DB EoS. This can also be interpreted as modifying the vertices

Γ2(kF ) → Γ̃2(kF ) ≡ Γ2(kF )

[
1− 2

3
k2

F

Σ′(kF )

ΣDB(kF )

]
. (42)

As a first approximation we assume the ratio Σ′(kF )/ΣDB(kF ) to depend weakly on kF

which motivates the introduction of momentum corrected nucleon-meson vertices

Γ̃α(kF ) = Γα(kF )
√

1 + ζαk2
F (43)

with ζα being constants determined by adjusting to the DBHF EoS. The rearrangement
terms are modified as follows
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∂Γ̃α(kF )

∂ρ
=
√

1 + ζαk
2
F

∂Γα(kF )

∂ρ

+
kF

3ρ

kF ζα√
1 + ζαk2

F

Γα(kF ) (44)

A more general ansatz would be to let ζα(kF ) depend on the Fermi momentum.
The contribution from the scalar mesons can be treated accordingly, however one has to

note that the scalar self-energy is also contained in the effective mass m∗. Therefore a change
of Σs(0) also affects ρs and couples back to the modified self-energies. For this reason it is
not possible to give a closed form for the exact momentum correction. Still, the ansatz from
equation (43) can be used to modify the scalar coupling constants but with the constants
ζα to be fixed numerically.

It should be noted that the modified self-energies do not represent the exact DB self-
energies since the mapping was not done on the single particle level but by adjusting the
bulk binding energy of the EoS. Also, in order to have momentum dependence on the single
particle level, exchange terms would have to be taken into account explicitly. However, these
are already implicitly included in the Hartree vertices through a Fierz transformation [4,30].
Nevertheless, bulk properties of the DB calculations are retained without adjusting every
single self-energy separately since ζα was chosen to be a constant thus keeping the number of
new parameters on a minimal level. The quality of this approximation is measured directly
by the agreement of the two equations of state.

One can imagine several possibilities how to calculate the momentum correction. One
way is to adjust ζσ and ζω to the minimum of isospin symmetric infinite nuclear matter.
Another way would be to keep e.g. the σ vertex fixed and adjust ζω for each point of the
EoS which leads to a density dependent correction ζω(kF ). Apparently, the procedure to
determine the momentum correction ζα is not unique, as already pointed out in [18,31].

In the next section we are going to present a parameterization of coupling constants
derived from DB calculations in asymmetric nuclear matter and discuss results of the mo-
mentum correction by assuming ζα = const.

C. Fit of the nucleon-nucleon vertices

Several parameterizations of density dependent coupling constants exist. But they either
only include density dependence in the isoscalar channel [20] due to the lack of asymmetric
nuclear matter DB calculations or they are purely phenomenological [29]. Here we present
a parameterization of asymmetric nuclear matter results [18,31] derived from the Groningen
potential [14,32]. The mapping of the DB self-energies is done as proposed in equations (35)
- (38) leading to a density dependence in both the isoscalar (σ, ω) and the isovector (δ, ρ)
channel. Figure 1 and Fig. 2 show the dependence of the ratios Γα

mα
(kF ) on the density ρ(kF )

for different asymmetry ratios as = ρp/ρ. In the isoscalar channel the dependence on the
asymmetry is negligible, in the iscovector channel it is extremely weak, especially around the
saturation density of about ρ0 = 0.16fm−3. We therefore choose the ansatz that the coupling
constant only depend on the total vector density ρ(kF ) and not on the proton and neutron
densities separately. In order to take into account a maximum of information from the DB
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calculations we fit the average of the self-energies for the asymmetry ratios as = 0.2, 0.3, 0.4
[18]. In [20] a polynomial expansion of Γ2 in kF around the saturation density kF0 was
chosen, leading to an excellent fit of the self-energies around ρ0. But due to the polynomial
approach the behavior at very low and very high densities is not perfectly stable. Intending
applications over wide density regions ranging from nuclear halos to neutron star conditions
in future investigations we choose a rational approximation as proposed in Ref. [29]

Γα(ρ) = aα


1 + bα( ρ

ρ0
+ dα)2

1 + cα( ρ
ρ0

+ eα)2


 . (45)

A clear advantage of such a rational form is the well defined behavior at low and high densities
turning into a constant at very high densities. The results for the fit for ρ0 = 0.16fm−3

are displayed in Fig. 1 for the isoscalar channel and in Fig. 2 for the isovector channel of
the interaction. The parameters are shown in Table I. The description of the DB results is
very good, in the isoscalar channel it is even sufficient to require dα = eα. In the isovector
channel the fit is more difficult, especially since the δ-meson has an ascending slope at high
densities. This requires the additional parameter eα to describe the low and the high density
behavior equally well.

D. Results for infinite nuclear matter

To check the quality of the effective parameterization (Table I) of the in-medium de-
pendence of the vertices it is instructive to look at the infinite nuclear matter EoS. The
calculation was done by solving the meson field equations (13-16) with the densities from
equations (28) and (29). Results for symmetric nuclear matter (as = 0.5), pure neutron
matter (as = 0.0) and for nuclear matter with an asymmetry ratio of as = 0.3 are shown
in Fig. 3. Displayed are also the DB binding energies from [18] for the same NN potential.
One sees that the equation of state is clearly not reproduced even though the fit describes
the self-energies at kF very well. While the DB EoS has a binding energy of ε/ρ0 = −15.6
MeV and a saturation density ρ0 = 0.182 fm−3, the standard choice leads to a Hartree EoS
which is about 2.5 MeV weaker bound (ε/ρ0 = −13.13 MeV) and the saturation density is
shifted to lower densities (ρ0 = 0.161 fm−3). As discussed in Sec. III B due to the approxi-
mations made when neglecting the momentum dependence of the self-energies this could be
expected.

We apply our momentum correction scheme to the coupling constants in a two step
process. First we restrict ourselves to symmetric nuclear matter and try to reproduce the DB
EoS by adjusting Γσ and Γω. This is done in the constant momentum correction scheme by
choosing ζσ and ζω in such a way that the saturation point of DB calculations is reproduced.
We find the very small corrections ζσ = 0.00804 fm−2 and ζω = 0.00103 fm−2 and are able to
reproduce the EoS very accurately as can be seen in Fig. 3. It is important to note that even
though we only adjusted one point we are able to reproduce the binding energies at low as
well as at high densities. This justifies our assumption of a k2

F dependence for the correction
of the coupling constants. Figure 4 compares the momentum corrected couplings to the
original ones. The correction increases with higher densities (or momenta) as expected from
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the functional form of the coupling constants but remains small for the σ meson and nearly
negligible for the ω meson. Nevertheless these small corrections suffice to gain 2.5 MeV
binding energy at saturation density. We conclude that the EoS reacts extremely sensitive
to small changes in the coupling constants, therefore great care has to be taken when fitting
the self-energies. In addition the same is appropriate for DB calculations. One has to be very
careful when extracting the self-energies and needs a consistent scheme for the projection
onto the Lorentz invariants.

After fixing Γσ and Γω the second step is to adjust the couplings in the isovector channel.
This is done by keeping Γδ fixed and adjusting ζρ for each given DB binding energy to neutron
matter. In this approach one obtains a density dependent correction ζρ(kF ). The correction
is incorporated in the DB self-energies and the ρ meson-nucleon vertex is readjusted. The
corrected self-energies and the fit through them are shown in Fig. 5, the parameters are given
in Table II. From Fig. 3 it is seen that the new fit reproduces the EoS of neutron matter very
well and this even at high densities where the static fit to the DBHF self-energies leads to an
interaction being far too repulsive. This is important for applications to neutron stars where
the high density behavior plays a crucial role. Figure 3 also shows an excellent accordance of
the calculations with DB results at intermediate asymmetry ratios, e.g. as = 0.3, especially
around the saturation density. This is a very important result since the interaction was only
adjusted to pure neutron matter and justifies our assumption that the parameterization of
meson-nucleon vertices is asymmetry independent. We also confirmed this for other values
of as where DB results were available from [18].

In Table III nuclear matter properties for the presented models are given. Saturation
density and binding energy of the momentum corrected DDRH calculation reproduce the
DB data very well, also the asymmetry-energy coefficient a4 = 26.1 MeV, determined by

a4 = ρ2
0

∂

∂(ρ3)2

ε

ρ
(ρ0, ρ3)|ρ3=0, (46)

is in compliance with DB value of 25 MeV even though this value was not taken into account
for the adjustment of the isovector interaction.

IV. RELATIVISTIC HARTREE DESCRIPTION OF FINITE NUCLEI

A. Properties of finite nuclei

The density dependent interaction derived in the preceding section for nuclear matter is
now applied to finite nuclei in Hartree calculations. We solve the full meson field equations
(13-17) and the Dirac equation (22) in coordinate space. The Dirac equation is solved for
the upper and lower components of the eigenspinor ψb simultaneously. The set of coupled
equations is solved self-consistently under the assumption of spherical symmetry. Pairing
effects in the particle-particle (p-p) channel have to be taken into account in open shell nuclei.
Since we are mainly interested in the mean-field particle-hole (p-h) channel and especially
in the isovector properties of the interaction, the BCS approximation was used. This is a
standard procedure in relativistic and non-relativistic mean-field approaches. Following [37]
a constant pairing matrix element of G = 2.15 MeV/

√
A was assumed and the standard
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set of BCS equations [38] was solved independently for protons and neutrons, respectively.
In exotic nuclei close to the dripline pairing effects can be very important if the Fermi
energy is close to the continuum. Here, relativistic Hartree-Bogoliubov (RHB) calculations,
taking into account the coupling of bound states to the continuum, have been performed
for phenomenological interactions [39–41] leading to excellent agreement with experimental
results. We found in our calculations that pairing gives only minor to negligible contributions
compared to the effects from the microscopic interaction in the p-h channel (less than 2%
to the total binding energy of the Ni and Sn isotopes).

The center-of-mass correction which gives a significant contribution to the binding energy
of light nuclei is treated in the usual harmonic oscillator approximation

Ecm = −3

4
h̄ω with h̄ω = 41A−1/3MeV. (47)

Then, the total ground state energy that has to be compared with experimental data is
given by

Eg.s. = EMF + Epair + Ecm (48)

where the Hartree ground state energy is obtained from the energy momentum tensor
through spatial integration of its T 00 component.

EMF =
∑

i,εi≤εF

v2
i εi −

∫
d3rρ(r)Σ0(r)(r)

− ∑
b=p,n

1

2

∫
d3r

[
ρs

b(r)Σ
s(0)
b (r)− ρb(r)Σ

0(0)
b (r)

]

+
1

2

∫
d3rρp(r)eA

(γ)
0 (r). (49)

The εi are the Dirac eigenvalues of particles in positive energy eigenstates and energies less
or equal the Fermi energy εF and the v2

i are the occupation probabilities obtained from BSC
pairing.

In order to examine the effects of the density dependent isovector coupling constants,
it is instructive to look at the mean-field potentials. In leading non- relativistic order the
effective central potential UC

b is given by the difference of the strongly attractive scalar and
repulsive vector fields

UC
b = Σ0

b − Σs
b (50)

while the strength of the spin-orbit potential

USO
b =

1

2M

−∂r (Σs
b + Σ0

b)

E +M − (Σs
b + Σ0

b)
(51)

is determined by the sum of these fields.
Interestingly, the spin-orbit potential differs for protons and neutrons since the self-

energies depend on the isospin. We define the isoscalar and isovector spin-orbit potentials
as
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USO
0 =

1

2

(
USO

n + USO
p

)
(52)

USO
τ =

1

2

(
USO

n − USO
p

)
(53)

as a measure for isovector spin-orbit interactions. We expect to see an enhancement of the
isovector potential USO

τ due to the inclusion of the δ meson. While, to a large extend, the
contributions of the ρ and the δ mesons compensate each other in the central potential UC

b ,
producing an effective isovector potential that is comparable in strength to the one obtained
in calculations that include only the ρ meson, the isovector self-energies of the ρ and δ
mesons add up and increase the isovector spin-orbit potential USO

τ . This will be discussed
in detail in the next section.

B. Closed shell nuclei

As a first test of the momentum corrected density dependent interaction we examine
closed shell nuclei. Nuclei considered in our calculations were the doubly magic nuclei 16O,
40Ca, 100Sn, 132Sn, 208Pb, having major shell gaps at 8, 20, 50 and 82 for both protons
and neutrons, as well as nuclei where one or both types of nucleons have only a minor
(semimagic) shell gap at 28 or 40 (48Ca, 48Ni, 56Ni, 68Ni, 90Zr). The nuclei have measured
binding energies with very small errors [42] except for the proton rich nuclei. The binding
energy of 100Sn has been measured with a relatively large error [43]. 48Ni, whose binding
energy can be extrapolated in terms of the mirror binding energy difference to 48Ca [37],
has recently been produced experimentally [44]. The set of nuclei includes stable as well as
β unstable nuclei covering the range from the proton dripline to very neutron rich isotopes
and allows us to investigate the interaction, determined from asymmetric nuclear matter,
extensively on finite nuclei.

1. Binding energies and charge radii

In Table V we display results for closed shell nuclei calculated with the DDRH param-
eterization of the Groningen NN potential derived in Sec. III. Figure 6 shows the relative
error for charge radii and binding energies compared to experimental results. The parame-
terization derived directly from the self-energies without momentum correction completely
fails to describe the experimental results. While the charge radii are described very well,
all nuclei are strongly underbound by about 30%. The proton dripline of the tin isotopes
is already reached before 100Sn due to the weak binding of the protons. But this had to be
expected from the infinite nuclear matter results where the binding energy at saturation is
also too weak. Applying the momentum correction from Sec. IIID, the results are greatly
improved. While the binding energies are still underestimated by about 10%, compared to
the static parameterization the improvement is remarkable. On the other hand, the size
of the charge radii decreases, but with an error of about 4% the general agreement with
experimental data is still satisfying.

Comparing our results with density dependent calculations for the Bonn A interaction
[23,25,27], especially the description of the binding energies is less satisfactory, but the
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reason for this lies in the different NN potentials. While the parameterization of the Bonn
A NN potentials has at a nuclear matter saturation density of ρ0 = 0.162 fm−3 an energy
of about −16.3 Mev and for this reason tends to overbind finite nuclei, the saturation point
of the Groningen NN potential is shifted to higher densities and the saturation energy is
only about −15.6 MeV. These properties are clearly translated to finite nuclei, leading for
the Groningen interaction to an underestimation of the binding energy, and a high nucleon
density and deep mean-field potential inside the nuclei. The high saturation density stronger
localizes the protons inside the nuclei leading to smaller charge radii. We compared the
theoretical charge density to experimental results and found an overestimation of about 5%
to 10% for all considered nuclei. Therefore, to improve results for finite nuclei, Brueckner
calculations and NN potentials have to be improved first.

We were also interested in seeing how sensitive results for finite nuclei are to the momen-
tum correction and if it is possible to improve results by adjusting the momentum correction
factors ζα to finite nuclei. No attempt was made to optimize the parameters in order to ob-
tain a perfect fit of data. Isovector coupling constants remained unchanged. We found that
a correction of ζσ = 0.008 fm−2 and ζω = −0.002 fm−2 provides a reasonable description
of both charge radii and binding energies. This modification essentially corresponds to a
weakening of the repulsion of the vector self-energy compared to the original nuclear matter
parameterization, but other modifications lead to similar results. It should be noted that
our discussion of the momentum correction in infinite nuclear matter only partly applies
to the ζα determined for finite nuclei and that the strict relation to the factor Σ′/ΣDB is
not retained. Obviously, we implicitly take into account higher order effects and especially
correct for the deficiencies of the NN potential in reproducing the binding energies of finite
nuclei. This is demonstrated by the reversed sign of ζω compared to the nuclear matter
value.

Results are shown in Table V. As can be seen from Fig. 6, charge radii are further
decreased while the agreement with the experimental binding energies is satisfying. In
general, an improvement in the binding energies leads to smaller values for the charge radii
and it is not possible to reproduce both observables simultaneously with the same Groningen
parameter set. An improvement of the results would be possible by adjusting the σ mass
to better reproduce the charge radii but a phenomenological fit to experimental results was
not the goal of our investigations.

We also investigated if the momentum correction could possibly improve the description
of finite nuclei for the Bonn nucleon potential. We used the parameterization of the Bonn A
σ and ω meson-nucleon vertices from [20] that was also applied to a few closed shell nuclei
in [23,25]. The ρ coupling strength is chosen as g2

ρ/4π = 5.19 with a mass of mρ = 770
MeV. Adjusting the momentum correction factors to the values ζσ = −0.0030 fm−2 and
ζω = −0.0015 fm−2 leads to a good agreement with the experimental binding energies
(except for some N = Z nuclei where p-n pairing might be important) while preserving the
good results for the charge radii. Results are presented in Table VI and Fig. 7. One realizes
the same behavior as for the Groningen parameterization. Now, a decrease in the binding
energies leads to an overestimation of the charge radii.

The modification of the density dependent vertices is very small. Comparing the original
fit of Haddad and Weigel [20] to the momentum corrected vertices we found that, in the
density range important for finite nuclei, the reproduction of the nuclear matter self-energies
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is of the same accuracy. This leads to the conclusion that the momentum correction is clearly
able to improve results and confirms our statement from Sec. III that bulk properties are
very sensitive to small changes in the vertices.

We also recalculated the equation of state for the Bonn A potential with the modified
vertices. Comparing to the original parameterization we found the agreement with the
DB binding energy at saturation density to be slightly improved but not perfect. At low
densities both parameterizations fail to reproduce the EoS. This seems to be a problem of
the calculations of Brockmann and Machleidt who assumed a priori momentum-independent
self-energies and fitted them only to the positive-energy matrix elements of the scattering
matrix. We tried to adjust the coupling constants with our momentum correction procedure
but were unable to resolve the inconsistency between the DB self-energies and the DB binding
energy, e.g. to reproduce the EoS for all densities. This is not surprising considering the
method of the DB calculations and the fact that the momentum correction is not able to
change the global properties of the density dependence of the self-energies.

As can be seen from Figs. 6 and 7 the momentum correction always leads to a shift of
the relative errors that is nearly identical across all considered nuclei. The reason is that
the general properties of the interaction were not altered, these are already determined by
the density dependence of the meson-nucleon vertices. Also the isovector part of the inter-
action remained unchanged. We conclude that the momentum correction is able to improve
the extraction of the self-energies from Brueckner calculations preserving the microscopic
structure of the NN interaction.

2. Spin-orbit splitting

As stated before, we expect the effects of including the δ meson to manifest in the
isovector spin-orbit potential and in isovector dependent effective masses. In Fig. 8 effective
masses for a representative sample of nuclei are displayed. While in the N = Z nucleus 40Ca
the difference between proton and neutron masses is induced solely by Coulomb effects and
is negligible, in the neutron rich nucleus 132Sn the proton and neutron effective masses differ
by about 10% at central density. This enhancement is caused by the isovector contribution
to the scalar self- energy. The mirror nuclei 48Ca and 48Ni nicely demonstrate the effect of
the scalar isovector density by showing a reversed behavior in the effective masses. We found
that the momentum correction does not strongly effect the effective masses, only slightly
decreasing (increasing) them due to a deeper (flatter) core potential.

The effective masses calculated with the Groningen potential are quite small, leading,
together with the relatively large self-energies, to a large spin-orbit potential as can be seen
from Fig. 9. Analogous to the effective masses no strong dependence on the momentum
correction was found. For comparison we also display the spin-orbit potential of the Bonn
A and the phenomenological NL3 parameter set [8]. The Bonn A spin-orbit potential is
too small with the peak structure at the nuclear surface shifted to larger radii. We found
the same behavior for the effective mass, being larger and less localized in the center of
the nucleus. The properties of the Groningen and NL3 spin-orbit potentials are relatively
similar, but the spin-orbit splitting of the Groningen potential is too large (about a factor
two larger than the one obtained with Bonn A) as can be seen from Table VII. Compared
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to the NL3 parameterization that describes the experimental values well, ∆LS is about 25%
too strong, while for Bonn A it is about 30% too weak.

Figure 10 illustrates the isovector dependence of the spin-orbit potential discussed in
Sec. IVA. While USO

τ has a non-negligible strength in neutron-rich nuclei and the mirror
nuclei 48Ca and 48Ni its main contribution is not located at the nuclear surface. One could
expect to see an effect comparing the spin-orbit splitting of neutrons and protons or mirror
nuclei but we found no systematic behavior. The isovector spin-orbit potential does not
seem to manifest itself strongly in the single particle energies and is probably overshadowed
by the bulk isovector potential.

C. Ni and Sn isotopes

The isotopic chains of Ni and Sn are of particular interest for nuclear structure calcu-
lations because of their proton shell closures at Z=28 (Z=50). They also extend from the
proton dripline that is found nearby the doubly magic 48Ni and 100Sn nuclei to the already
β unstable neutron-rich doubly magic 78Ni and 132Sn isotopes. This allows us to investigate
the isovector properties of the derived density dependent interactions and to test the inter-
actions in regions far off stability. An extensive investigation of these nuclei can be found
in [39,48,49] and the references therein.

1. Binding energies

Theoretical and experimental binding energies per nucleon are compared in Fig. 11 for
nickel and in Fig. 12 for tin. The Groningen interaction derived from nuclear matter strongly
underbinds the Ni and Sn isotopes. The reason for this was already discussed in Sec. IVB.
The adjusted parameter set describes neutron rich nuclei reasonably well but fails on the
neutron-poor side. Agreement for the Sn isotopes is relatively poor. This is mainly caused
by the extremely strong shell closure at N=82 that shifts the minimum of the binding
energy from the experimental value of approximately 115Sn to the doubly magic 132Sn. The
reason is the too strong spin-orbit splitting of the Groningen potential that affects the
subshell structure of the Sn isotopes and enhances the shell gap. Nevertheless, the correct
shell structure is reproduced as can be seen from Fig. 13 where the two-neutron separation
energies

S2n(Z,N) = B(Z,N)− B(Z,N − 2) (54)

are compared with experimental values. The agreement is satisfying except for the too
strong shell gaps for 132Sn and 56Ni. The momentum correction does not strongly affect
S2n since it mainly shifts the binding energy of the isotopic chain not affecting the binding
energy differences.

The Bonn A parameter set describes the neutron-poor Ni isotopes fairly well but
overbinds the neutron-rich Ni and the Sn isotopes. On the other hand, agreement of the
results for the momentum corrected interaction with experimental data on the neutron- rich
side is very good but binding energies of neutron-poor isotopes are underestimated by 0.2
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MeV. Also, comparing the two-neutron separation energies (Fig. 13), experimental results
are reproduced well, but some deviations can be noticed. The shell gaps for 132Sn and 56Ni
are relatively small whereas the gap for 68Ni is too large. This also explains why the min-
imum of the binding energy is found at 68Ni and the isotopes of the 56Ni to 68Ni shell are
underbound. The reason for this probably lies in the weak spin-orbit splitting of the Bonn
A potential.

Realizing that for N → Z nuclei only the Coulomb interaction determines the difference
between the neutron and proton energies while the isovector interaction is strongly sup-
pressed we conclude that the underbinding of the neutron- poor nuclei is caused by a too
weak central isoscalar potential. On the other hand the neutron- rich isotopes are mostly
affected by the isovector interaction that acts attractive for protons, balancing the Coulomb
repulsion, and repulsive for neutrons. Since neutron-rich isotopes are described well this
is an indication that for both the Groningen and the Bonn A potential the microscopic
isovector potentials seem to be too weak. One can visualize this easily by shifting the curves
in Figs. 11 or 12 vertically to reproduce the binding energy of N = Z nuclei. This in-
creases in first order only the isoscalar central potential. Then, the neutron-rich isotopes
are overbound, indicating that the repulsion from the isovector potential is too weak.

2. Density distributions

Self-consistent neutron density distributions and charge densities for the Ni and Sn iso-
topes are displayed in Fig. 14. Closed shell nuclei are marked by bold lines. The distributions
are only presented for the Bonn A potential but for the Groningen potential the same sys-
tematics is obtained. For the calculation of the charge density the theoretical point particle

density distribution ρp is folded with a Gaussian proton form factor [45] with
√
〈r2〉p = 0.8

fm. From 48Ni to 72Ni the charge density in the interior is reduced by about 30% accompanied
by a mild increase of the charge radius by about 5%. For the neutron densities a more drastic
evolution is found. Beyond 78Ni (N=50 shell closure) the 2d5/2 subshell is being filled and a
thick neutron skin is build up. This leads to sudden jump in the neutron rms radii while the
proton rms radii increase only slowly. This behavior is more clearly visible in Fig. 15 where
the differences of the proton and neutron rms radii are shown. Approaching the proton
dripline a relative thick proton skin below N=28 is predicted. We also compare our results
to calculations with the NL3 interaction. In Ref. [39] relativistic Hartree-Bogoliubov calcu-
lations for the Ni and Sn isotopes using this interaction were performed leading to excellent
agreement with experimental data. Figure 15 shows very good agreement for the Bonn A
potential with the results for the NL3 interaction. The Groningen potential has the same
tendency but with smaller values. This is explained by the systematic underestimation of
the rms radii (Fig. 6) that also causes a reduced difference between proton and neutron rms
radii. Nevertheless, the same neutron skin is found. Since the Groningen potential leads to
larger shell gaps for reasons of its strong spin-orbit potential, at the (sub)shell closure N=40
a small increase is already seen. Figure 15 also illustrates that the results are independent
of the momentum correction. This is obvious since the correction only shifts all rms radii
to higher or lower values.
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The same calculations were performed for the Sn isotopes. In Fig. 14 density distribu-
tions from 100Sn to 140Sn are displayed showing the same neutron skin as the Ni isotopes.
Here, one finds a sudden jump beyond N=82 where the 1h11/2 shell is filled and the 2f7/2

subshell becomes populated (Fig. 15). Again the agreement between the Bonn A and the
NL3 parameter set is excellent. In Ref. [47] calculations for the Sn isotopes with non-
relativistic interactions were performed and identical results were found. This shows that
the observed neutron skins in Sn and Ni are relatively independent of the NN interaction
and the theoretical approach.

V. SUMMARY AND CONCLUSION

We have extracted density dependent meson-nucleon vertices from DBHF self- energies
of asymmetric nuclear matter, derived from realistic NN potentials. For the Groningen NN
potential we found that the coupling constants can be expressed solely in terms of the nuclear
matter baryon density ρ and are independent of the asymmetry fraction for which the self-
energies were calculated. The extraction of momentum- independent self-energies introduces
errors in the density dependence of the interaction and leads to difficulties to reproduce the
DB EoS in the DDRH approach. We introduced a momentum correction to account for
this error and found excellent agreement of our calculated EoS for all asymmetry fractions
as = ρp/ρ with the Brueckner results. While the corrections are very small, the sensitivity
of the saturation point of nuclear matter and the binding energies of finite nuclei to this
correction is very high. This indicates the difficulty of extracting momentum independent
coupling constants.

Applying the momentum corrected interaction to finite nuclei, we find that the agreement
with experimental results is satisfactory, taking into account that the used parameterization
contains no free parameters for finite nuclei. For the Groningen parameter set, the binding
energy per nucleon is underestimated by 0.5 to 1 MeV whereas the charge radii are about 0.1
to 0.15 fm too small. These results are comparable with other mean-field calculations [25–27].
Using the Bonn A potential results are improved, indicating that the Groningen potential is
not attractive enough, especially in the low density regime. We also adjusted the momentum
correction factors to improve the description of the properties of finite nuclei. This leads to
a good agreement with experimental data while keeping the excellent reproduction of the
DB self- energies.

The inclusion of the δ meson introduces different effective masses for protons and neu-
trons and strongly enhances the isovector spin-orbit potential. However, we found no sys-
tematic effect in the isovector spin-orbit splitting. In order to further examine this effect,
detailed experimental data for the single- particle energy levels and for exotic nuclei are
necessary. Compared to phenomenological RMF interactions, we found the spin-orbit split-
ting of the Groningen potential to be enhanced and the one of the Bonn A potential to be
suppressed. This becomes visible in the shell structure of some exotic nuclei. We also found
indications that the isovector interaction of both microscopic interactions seems to be too
weak to reproduce the complete isotopic chains of Sn and Ni correctly.

In general, we think that the results of the DDRH approach are quite satisfactory and
that the momentum correction provides a consistent scheme to reproduce DBHF calculations
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and improve the agreement with finite nuclei. Improvements of the results could possibly
be achieved by going beyond the ladder approximation and including, e.g., three-body in-
teractions and ring diagrams. In future investigations we also plan to apply the density
dependent interactions to neutron stars to gain additional insights in the properties of the
isovector density dependence.
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FIG. 1. Effective density dependence of the σ (upper part) and the ω (lower part) me-
son-nucleon vertices. Shown are results extracted from DB selfenergies from the Groningen NN
potential [18] calculated for the asymmetry ratios as = 0.2, 0.3, 0.4. The solid line is the asymmetry
independent fit through the average of the DB results (open squares).
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FIG. 2. Same as Fig. 1 but for the ρ (upper part) and δ (lower part) meson-nucleon vertices.

0.0 0.1 0.2 0.3 0.4 0.5
-20

-10

0

10

20

30

40

 DB a
s
 = 0.0

 DB a
s
 = 0.3

 DB a
s
 = 0.5

 static DDRH fit to DB

 momentum corrected Γ

b
in

d
in

g
 e

n
e
rg

y
 ε

/ρ
 [
M

e
V

]

nuclear density ρ [fm
-3
]
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momentum correction.
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from Fig. 1 (dashed line).
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FIG. 6. Relative errors for charge radii (ρc − ρexp
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c (upper part) and binding energies
(EB − Eexp

B )/Eexp
B (lower part) obtained with the Groningen parameterization. Shown are results

for magic and semimagic nuclei. Results without momentum correction are denoted by upper
triangles, results for ζσ = 0.00804 fm−2 and ζω = 0.00103 fm−2 (adjusted to nuclear matter) by
squares and results for ζσ = 0.008 fm−2 and ζω = −0.002 fm−2 (adjusted to finitite nuclei) by
circles. The lines are drawn to guide the eye.
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FIG. 7. Same as Fig. 6 but for the Bonn A parameterization from [20,23]. Results without
momentum correction are denoted by squares and results for ζσ = −0.003 fm−2 and ζω = −0.0015
fm−2 by circles. The lines are drawn to guide the eye.
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FIG. 14. Charge and neutron density distributions for the isotopic chains of the Sn and Ni
nuclei, calculated with the Bonn A parameter set.
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TABLES

meson α σ ω δ ρ

mα[MeV] 550 783 983 770
aα 13.1334 15.1640 19.1023 12.8373
bα 0.4258 0.3474 1.3653 2.4822
cα 0.6578 0.5152 2.3054 5.8681
dα 0.7914 0.5989 0.0693 0.3671
eα 0.7914 0.5989 0.5388 0.3598

ρ0 = 0.16 [fm−3]

TABLE I. Parameterization of the density dependent couplings from equation (45) extracted
from DB calculations in asymmetric nuclear matter [18].

aα bα cα dα eα

19.6270 1.7566 8.5541 0.7783 0.5746
ρ0 = 0.16 [fm−3]

TABLE II. Parameterization of the ρ meson-nucleon vertex after adjusting the neutron matter
DDRH equation of state to the DB binding energy.

DBHF DDRH DDRH corr.
ρsat [fm−3] 0.182 0.161 0.180
ε/ρ [MeV] -15.5 -13.13 -15.60
K [MeV] – 211 282

m∗/M – 0.592 0.554
a4 [MeV] 25 28.2 26.1

TABLE III. Comparison of infinite nuclear matter properties obtained in the DDRH model with
results from DB calculations for the Groningen NN potential. Results are shown for calculations
with and without momentum correction.
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exp. rc[fm] E/A[MeV/A]
16O 2.74 7.98
40Ca 3.48 8.55
48Ca 3.47 8.67
90Zr 4.27 8.71

208Pb 5.50 7.87
48Ni – 7.27
56Ni – 8.64
68Ni – 8.68
100Sn – 8.26
132Sn – 8.26

TABLE IV. Experimental values of the rms charge radii and binding energies per nucleon for
(semi)magic nuclei. Data are taken from Refs. [37,42,43,46]

Groningen ζσ = 0.0 ζσ = 0.00804 fm−2 ζσ = 0.008 fm−2

ζω = 0.0 ζω = 0.00103 fm−2 ζω = −0.002 fm−2

rc E/A rc E/A rc E/A
16O 2.76 5.65 2.61 7.00 2.56 7.56
40Ca 3.47 5.96 3.30 7.52 3.24 8.16
48Ca 3.48 6.09 3.31 7.79 3.25 8.49
90Zr 4.26 6.00 4.06 7.77 3.99 8.49

208Pb 5.49 5.28 5.24 7.10 5.15 7.84
48Ni 3.77 4.68 3.54 6.28 3.46 6.95
56Ni 3.73 5.78 3.53 7.60 3.46 8.35
68Ni 3.88 6.13 3.69 7.83 3.63 8.52
100Sn (4.46) (5.42) 4.24 7.25 4.16 8.00
132Sn 4.69 5.86 4.47 7.68 4.40 8.42

TABLE V. Root-mean-square charge radii rc[fm] and binding energies per nucleon EB/A

[MeV/A] of (semi)magic nuclei from density dependent relativistic Hartree (DDRH) calculations
using the Groningen NN potential. Results for different momentum correction factors ζσ and ζω

(see text) are shown. The values in parenthesis correspond to unbound nuclei.
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Bonn A ζσ = 0.0 ζσ = −0.0030 fm−2

ζω = 0.0 ζω = −0.0015 fm−2

rc E/A rc E/A
16O 2.75 8.58 2.79 8.30
40Ca 3.46 9.02 3.50 8.69
48Ca 3.49 8.96 3.53 8.63
90Zr 4.26 8.98 4.31 8.63

208Pb 5.53 8.17 5.60 7.82
48Ni 3.84 7.62 3.89 7.31
56Ni 3.79 8.66 3.84 8.31
68Ni 3.88 9.05 3.93 8.71
100Sn 4.51 8.40 4.57 8.04
132Sn 4.74 8.67 4.78 8.32

TABLE VI. Same as Table V but with results for the Bonn A NN potential.

∆LS(n, p) 16O 40Ca 48Ca 48Ni
Gron. 8.0/7.8 8.3/8.0 8.0/7.7 7.5/7.4
Gron. adj. 9.0/8.7 9.6/8.8 8.8/8.5 8.3/8.2
Bonn A 4.2/4.2 4.6/4.6 4.0/4.1 3.9/3.8
Bonn A adj. 4.0/4.0 4.4/4.3 3.7/3.8 3.6/3.6
exp. 6.1/6.3 6.3/7.2 5.6/4.3 –

TABLE VII. Neutron and proton spin-orbit splitting ∆LS(n, p) in MeV for the 1p shell (16O)
and the 1d (40Ca, 48Ca and 48Ni) shell. Results are shown for the Groningen and the Bonn A NN
potential, for the interaction derived from nuclear matter and for the adjustment to finite nuclei,
respectively. For experimental values see Ref. [23]
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