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The problem of estimating the marginal densities of a spatial linear process, observed over a grid of

ZN , is considered. Under general conditions, kernel density estimators computed at any k-tuple of

sites are shown to be asymptotically multivariate normal. Their limiting covariance matrix is also

computed. Despite the huge development of nonparametric estimation methods in the analysis of time

series data, little has so far been done to introduce them into the context of random ®elds. The

generalization is far from trivial since the points of ZN do not have a natural ordering when N . 1.

No mixing conditions are required, but linearity is assumed.
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1. Introduction

Data collected at different sites on the surface of the earth often have an associated two- or

three-dimensional coordinate. Spatial data arise in various areas of research, including

agricultural ®eld trials, astronomy, econometrics, epidemiology, environmental science,

geology, hydrology, image analysis, meteorology, neurology and oceanography. Numerous

applications of spatial models and important developments in the general area of spatial

statistics are found in Cressie (1991), Basawa (1996a; 1996b), Guyon (1995), and the

references therein. Despite the attention devoted to models of this type, their statistical

analysis seldom goes beyond the traditional second-order approach, which is somewhat

surprising in view of the huge development of nonparametric estimation methods.

We assume a simple setting where these sites are points s � (s1, . . ., sN ) 2 ZN , N > 1. A

spatial linear process Xn, n 2 ZN , is de®ned by

Xn :�
X
s2ZN

øs Znÿs: (1:1)

The øs are coef®cients and the Zn are real-valued independently and identically distributed

(i.i.d.) random variables with zero mean and variance ó 2. Convergence, in (1.1) and below, is

to be understood in the quadratic mean. An in-depth study of the theoretical properties of

such models has been carried out by Tjùstheim (1978; 1983).
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Assume that we observe fX ig on In, where In is a rectangular region given by

In � fi : i 2 ZN , 1 < ik < nk , k � 1, . . ., Ng:
We use 1 to denote the lattice point with all coordinates equal to one. The letter C will

denote constants whose values are unimportant. We write n!1, where n :� (n1, . . ., nN ),

if min1<k<Nfnkg ! 1 with jnj=nk j, C for some 0 , C ,1, 1 < j, k < N , where C is a

generic constant (independent of n). Denote by n̂ the product n1 . . . nN and note that

n̂ < C nN , where n � (n1 � n2 � . . . � nN )=N . All limits are taken as n!1 unless

indicated otherwise. The integer part of a number z is denoted by [z], the Euclidean norm������������������������������
n2

1 � . . . � n2
N

p
of n by knk.

De®ne the kernel density estimator fn of f by

f n : x 7! fn(x) :� (n̂bn)ÿ1
X
i2 In

K((xÿ X i)=bn), x 2 R,

where K is some kernel function and bn a bandwidth tending to zero as n tends to in®nity.

Our objective in this paper is to investigate the limiting distribution of fn. Under general

conditions, we show (Theorem 2.1) that ( f n(x1), . . ., ( fn(xk)), where x1, . . ., xk are k arbitrary

points in R, is asymptotically multivariate normal. This result is useful for the construction of

asymptotic con®dence intervals for f , but also has other potential applications, such as

adaptive estimation, optimal testing, and forecasting, which we do not investigate here. The

asymptotic normality of fn has been established by Hallin and Tran (1996) for the case N � 1.

Tran (1990) and Tran and Yakowitz (1993) have investigated density estimators for strongly

mixing random ®elds. Mixing assumptions, however, are particularly dif®cult, if not

impossible, to verify for spatial processes, even for linear ones. The class of linear processes

considered here is fairly general, and contains processes that are not strongly mixing.

The points of ZN do not have a natural ordering. As a result, most techniques available for

one-dimensional processes do not extend to random ®elds. Differences as well as similarities

between spatial series (N . 1) and time series (N � 1) are highlighted in Tjùstheim (1987),

who also discusses some of the dif®culties inherent in the spatial context and provides some

caveats. For background reading on random ®elds and spatial statistics, the reader is referred

to Whittle (1954; 1963), Tjùstheim (1978; 1983; 1987), Ripley (1981), Possolo (1991),

Anselin and Florax (1995), Guyon (1995), Dedecker (1998) and the references therein.

Our paper is organized as follows. In Section 2, we deal with some preliminaries and state

all our assumptions and the main theorem. In Section 3, we present in detail the blocking of

spatial random variables which plays a crucial role in the proof of the main theorem. The

proof of the theorem and preliminary lemmas are gathered in Section 4. Finally, the proofs of

lemmas requiring complicated arguments are presented in the Appendix.

2. Assumptions and main result

The following assumptions are made on the kernel K, the linear model (1.1), and the

bandwidth bn.
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Assumption 1. The kernel function K is a density function with integrable radial majorant

Q(x) :� supfj yj>jxjgjK(y)j, x 2 R, and satis®es the Lipschitz condition jK(x)ÿ K(y)j
< Cjxÿ yj, for x, y 2 R.

Assumption 2. The density of X i is uniformly bounded. The coef®cients of the linear

representation (1.1) satisfy jøsj < Ckskÿa for some a . maxfN � 3, 2N � 1
2
g. In addition,

Zi has mean zero, ®nite variance ó 2 and absolutely integrable characteristic function.

Assumption 3. The bandwidth bn tends to zero slowly enough that

n̂b(2aÿ1�6N )=(2aÿ1ÿ4N )
n !1.

As an example, consider the two-dimensional autoregressive model

X (n1,n2) ÿ áX (n1ÿ1,n2) ÿ ãX (n1,n2ÿ1) � Z(n1,n2), n � (n1, n2) 2 Z2, (2:1)

for some á, ã with jáj � jãj, 1, where Z(n1,n2) are i.i.d. random variables with mean 0 and

variance ó 2. The stationary solution of (2.1) is given in Kulkarni (1992) as

X n �
X1
s1�0

X1
s2�0

s1 � s2

s1

� �
ás1ãs2 Z(n1ÿs1,n2ÿs2) �

X
s>0

s1 � s2

s1

� �
ás1ãs2 Znÿs:

Thus X n is a linear process with

øs � s1 � s2

s1

� �
ás1ãs2 ,

and Assumption 2 is clearly satis®ed.

Under Assumptions 1±3, we will prove the following asymptotic normality theorem,

which is the main result of this paper.

Theorem 2.1. Let x1, . . ., xk be k arbitrary ®xed points in R, k 2 N. Then,

(n̂bn)1=2( fn(x1)ÿ E fn(x1), . . ., fn(xk)ÿ E fn(xk))T!L N (0, C),

where C is a diagonal matrix with diagonal elements Cii � f (xi)
�1
ÿ1 K2(u) du, i � 1, . . ., k.

The proof of Theorem 2.1 is based on the de®nition of a sequence gn which is more tractable

than f n, but asymptotically equivalent (see Lemma 2.1). The asymptotic distribution of gn,

and hence that of f n, is obtained through a delicate blocking technique and a series of

lemmas. The blocking technique is presented in Section 3, the lemmas and the proof of the

theorem in Section 4.

Choose h1(n) and h2(n) to be arbitrary positive functions with h1(n) " 1 and h2(n) # 0

as n!1, such that

ã(n) :� (n̂b(2aÿ1�6N )=(2aÿ1ÿ4N )
n )(2aÿ1�4N )=(4Naÿ2N )(h2(n)=h1(n))!1:

Since (2aÿ 1ÿ 4N )=(4Naÿ 2N ) . 0 by Assumption 2, such functions exist by Assumption 3.

De®ning m :� [(n̂2bÿ3
n )1=(2aÿ1) h1(n)], put
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X m
i :�

X
jsk j<mÿ1

øs Ziÿs and ~X i � X m
i � Ãi,

where the Ãi are independent random variables, with fZig independent of fÃig, and (denoting

by � equality in distribution) Ãi � X i ÿ X m
i . Here the summation

P
js k j<mÿ1 runs over all

lattice points s � (s1, . . ., sN ), with jsk j < mÿ 1 for all 1 < k < N . Clearly, X i and ~X i have

the same marginal distribution, but ~X i has the characteristic feature of ®nite-order moving

averages, that is ~X i and ~X j are independent if jik ÿ jk j > 2m for some 1 < k < N .

Considering the kernel estimator gn(x) de®ned by

gn(x) :� (n̂bn)ÿ1
X
i2 In

K((xÿ ~X i)=bn), (2:2)

the following lemma, proved in the Appendix, establishes the asymptotic equivalence of fn

and gn.

Lemma 2.1. For any x 2 R, j fn(x)ÿ gn(x)j � oP(n̂bn)ÿ1=2 as n!1.

In view of this lemma, we may concentrate on gn. De®ne the average kernel Kn(x), and

the functions Äi(x) and ~Äi(x), respectively, by

Kn(x) :� 1

bn

K
x

bn

� �
,

Äi(x) :� Kn(xÿ X i)ÿ ìn and ~Äi(x) :� Kn(xÿ ~X i)ÿ ~ìn, (2:3)

where ìn :� EKn(xÿ X i) and ~ìn :� EKn(xÿ ~X i). Then fn(x) and gn(x) can be written as

f n(x) � 1

n̂

X
i2 In

Kn(xÿ X i) and gn(x) � 1

n̂

X
i2 In

Kn(xÿ ~X i),

respectively. Since X i and ~X i have the same distribution, we have ìn � ~ìn. Observe that

gn(x)ÿ Egn(x) � 1

n̂

X
i2 In

~Äi(x): (2:4)

Without loss of generality, we consider the case k � 2 and, in order to avoid subscripts,

we refer to x1 and x2 as x and y. By the CrameÂr±Wold device, it suf®ces to prove

asymptotic normality of cîn(x)� dîn(y) for arbitrary constants c and d, where

în(x) � (n̂bn)1=2(gn(x)ÿ Egn(x)) and în(y) � (n̂bn)1=2(gn(y)ÿ Egn(y)):

3. The blocking technique

We ®rst describe the blocking technique. Clearly,
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cîn(x)� dîn(y) �
X
i2 In

ji � Sn, (3:1)

say, where ji � n̂ÿ1=2b1=2
n (c~Äi(x)� d ~Äi(y)). Let l � ln :� [(n̂bn)1=(2N) h2(n)]. The random

variables ji are now set into large and small blocks. The large blocks have all sides equal to

l and the small ones have at least one side equal to 2m. Assume without loss of generality

that for some integers r1, . . ., rN , we have n1 � r1(l � 2m), . . ., nN � rN (l � 2m). Denote by

U (1, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., N

ji

a sum of random variables running over a large block with all sides equal to l. Next, de®ne

U (2, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ1

X( jN�1)( l�2m)

iN� jN ( l�2m)� l�1

ji,

U (3, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ2

X( jNÿ1�1)( l�2m)

iNÿ1� j Nÿ1( l�2m)� l�1

XjN ( l�2m)� l

iN� jN ( l�2m)�1

ji,

U (4, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ2

X( jNÿ1�1)( l�2m)

iNÿ1� j Nÿ1( l�2m)� l�1

X( jN�1)( l�2m)

iN� jN ( l�2m)� l�1

ji,

and so on. Observe that U (2, n, j), U (3, n, j), U (4, n, j) contain random variables in blocks

with one side equal to 2m and N ÿ 1 sides equal to l, two sides equal to 2m and N ÿ 2 equal

to l, three sides equal to 2m and N ÿ 3 sides equal to l, respectively. More generally,

U (2Nÿ1, n, j) :�
X( jk�1)( l�2m)

ik� jk ( l�2m)� l�1
k�1,..., Nÿ1

XjN ( l�2m)� l

iN� jN ( l�2m)�1

ji

contains random variables in a small block with one side equal to l and N ÿ 1 sides equal to

2m. Finally,

U (2N , n, j) :�
X( jk�1)( l�2m)

ik� jk ( l�2m)� l�1
k�1,..., N

ji

contains random variables in a small block with all sides equal to 2m.

For each integer 1 < i < 2N , de®ne T (n, i) :�P0< j k <rkÿ1U (i, n, j). Then the sum of

random variables Sn de®ned in (3.1) equals
P2 N

i�1T (n, i). Note that T (n, 1) is the sum of

the random variables ji in large blocks with all sides equal to l. The statistics T (n, i),

2 < i < 2N , are sums of random variables in small blocks. If it is not the case that

n1 � r1(l � 2m), . . ., nN � rN (l � 2m) for some integers r1, . . ., rN , then a term,
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T (n, 2N � 1), say, containing all the ji at the ends which are not included in the large or in

the small blocks, can be added. This term will not change the proof much.

4. Proof of Theorem 2.1

Clearly, Sn �
P

i2 In
ji � T (n, 1)�P2N

i�2T (n, i). Theorem 2.1 will thus follow if we can

show that

T (n, 1)!L N (0, ô2) and
X2 N

i�2

T (n, i) � oP(1): (4:1)

The proof of these two statements relies on a series of lemmas.

Lemma 4.1. Let

q1n :� E[fKn(xÿ ~X i)ÿ ìngfKn(yÿ ~X j)ÿ Kn(yÿ ( ~X j ÿ Rj(i)))g],
with

S (i, j) :� fs : jk ÿ m� 1 < sk < jk � mÿ 1g \ fs : ik ÿ m� 1 < sk < ik � mÿ 1g
and

Rj(i) :�
X

S (i,j)

øjÿs Zs: (4:2)

Then, for all sites i, j and all x and y in R, covf~Äi(x), ~Äj(y)g � q1n.

For the proof of this lemma, see the Appendix.

Lemma 4.2. For all sites i, j and all x and y in R,

jcovf~Äi(x), ~Äj(y)gj < Cbÿ3
n

X
ktk>kiÿjk= ���Np jøtj: (4:3)

Proof. Since K is bounded, jKn(xÿ ~X i)ÿ ìnj < Cbÿ1
n . Hence, in view of Lemma 4.1,

jcovf~Äi(x), ~Äj(y)gj < Cbÿ2
n E

����K yÿ ~X j

bn

 !
ÿ K

yÿ ~X j � Rj(i)

bn

 !����: (4:4)

By the Lipschitz property of K, the last term of (4.4) is bounded by Cbÿ3
n EjRj(i)j. Using (4.2)

and the fact that jEZsj is ®nite, we ®nally obtain

jcovf~Äi(x), ~Äj(y)gj > Cbÿ3
n

X
s2S (i,j)

jøiÿsj: (4:5)
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Since jcovf~Äi(x), ~Äj(y)gj and jcovf~Äj(x), ~Äi(y)gj are equal, (4.5) remains valid if Rj(i) is

replaced by Ri( j). Therefore,

jcovf~Äi(x), ~Äj(y)gj < Cbÿ3
n min

X
s2S (i,j)

jøiÿsj
X

s2S ( j,i)

jøjÿsj
( )

:

The lemma then follows directly from the geometry of N -dimensional Euclidean spaces. h

Lemma 4.3. For any ç > 0,
P
ktk>çjøtj < CçNÿa.

Proof. In view of Assumption 2, we haveX
ktk>ç

jøtj <
X
ktk<ç

Cktkÿa < C
X
ç, i

iNÿ1iÿa < CçNÿa:

h

Lemma 4.4. If X is a random variable with bounded density, then, for some constant C

independent of w, jEfKn(wÿ X )gj < C.

Proof. The proof follows from Assumption 1 and the boundedness of the density of X . h

Lemma 4.5. For all sites i, j and all x and y in R, jcovf~Äi(x), ~Äj(y)gj < Cbÿ3
n kiÿ jkNÿa.

Proof. Lemma 4.5 is a direct consequence of Lemmas 4.2 and 4.3. h

Lemma 4.6. For all sites i and j, sup(x, y)2R2 jcovf~Äi(x), ~Äj(y)gj < C.

Proof. Note that yÿ ~X j � yÿ Rj(i)ÿ ( ~X j ÿ Rj(i)). Hence,

jcovf~Äi(x), ~Äj(y)gj � jE[fKn(xÿ ~X i)ÿ ìngfKn(yÿ Rj(i)ÿ ( ~X j ÿ Rj(i)))g]j:

By Assumption 2, ~X j ÿ Rj(i) has a bounded density. Since ~X j ÿ Rj(i) is independent of

( ~X i, Rj(i)), by Lemma 4.4, we obtain

jcovf~Äi(x), ~Äj(y)gj

�
�����1ÿ1E

�
fKn(xÿ ~X i)ÿ ìngfKn(yÿ r ÿ ( ~X j ÿ Rj(i)))g]jRj(i) � r

�
f Rj(i)(r)dr

����
< CEj[fKn(xÿ ~X i)ÿ ìng]j < C:

Lemma 4.7. If Assumption 1 holds, then
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�1
ÿ1

Kn(xÿ u) f (u)du! f (x) (4:6)

and �1
ÿ1

[K((xÿ u)=bn)]2 f (u)duÿ! f (x)

�1
ÿ1

[K(u)]2 du: (4:7)

Proof. Relations (4.6) and (4.7) both follow from the Lebesgue density theorem (Devroye

and GyoÈr®, 1985, p. 7) by noting that
�1
ÿ1[K(u)]2 f (u)du ,1. h

Lemma 4.8. Let gn be the kernel density estimator de®ned in (2.2). Then,

lim
n!1n̂bnvar[gn(x)] � f (x)

�1
ÿ1

K2(y)dy:

The proof of this lemma is given in the Appendix.

Lemma 4.9. Let x 6� y 2 R. Then limn!1 n̂bncovfgn(x), gn(y)g � 0.

The proof is similar to that of Lemma 4.8, and is omitted.

Lemma 4.10 Under Assumption 2, each T (n, i), 2 < i < 2N, tends to zero in probability.

This ®nal lemma is proved in the Appendix.

We now may proceed with the proof of Theorem 2.1. Without loss of generality, assume

k � 2. De®ne s2
n :� var[T (n, 1)]. By Lemma 4.10, E[T (n, i)]2 ! 0 for each 2 < i < 2N . In

addition, Lemmas 4.8 and 4.9 imply that ES2
n ! ô2, where Sn is de®ned in (3.1). Following

the proof of Lemma 3.2 in Hallin and Tran (1996), we have sn ! ô2. To complete the proof

of the theorem, it is thus suf®cient to show that

T (n, 1)

sn

!L N (0, 1): (4:8)

Recall that T (n, 1) is the sum of r1 3 � � � 3 rN independent random variables U (1, n, j). By

the Lindeberg central limit theorem, (4.8) follows if, for every E. 0,

X
0< jk <rkÿ1

�
(jxj>E)

x2 dF(1,n,j) ! 0, (4:9)

where F(1,n,j) is the distribution function of U (1, n, j). A simple computation gives

jU (1, n, j)j < ClN (n̂bn)ÿ1=2, which tends to zero by the de®nition of l. Thus the left-hand

side of (4.9) is zero for n̂ suf®ciently large.
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Appendix

Proof of Lemma 2.1. The proof of this lemma follows an argument similar to that of Lemma

2.9 in Hallin and Tran (1996). From the Lipschitz property of K in Assumption 1, we have

(n̂bn)1=2j fn(x)ÿ gn(x)j < (n̂bn)1=2(n̂bn)ÿ1
X
i2 In

����K xÿ X i

bn

� �
ÿ K

xÿ ~X i

bn

 !����
< Cn̂ÿ1=2bÿ3=2

n

X
i2 In

jX i ÿ ~X ij:

Therefore, given any E. 0,

P[(n̂bn)1=2j fn(x)ÿ gn(x)j. E] < P
X
i2 In

jX i ÿ ~X ij. Cÿ1En̂1=2b3=2
n

" #
: (A:1)

Since In contains n̂ elements, the event within brackets on the left-hand side of (A.1) occurs

only if jX i ÿ ~X ij. Cÿ1En̂1=2b3=2
n =n̂ for some i 2 In. Thus, the right-hand side of (A.1) is

bounded by
P

i2 In
P[jX i ÿ ~X ij. Cÿ1En̂ÿ1=2b3=2

n ] which in turn, by Chebyshev's inequality, is

less than

C2Eÿ2n̂2bÿ3
n var(X i ÿ ~X i): (A:2)

Note that var(X i ÿ ~X i) � var(X i ÿ X m
i ÿ Ãi), with

X i ÿ X m
i �

X
s2ZN

øs Ziÿs ÿ
X

jsk j<mÿ1

øs Ziÿs:

Thus X i ÿ X m
i is the sum of random variables øs Ziÿs over all lattice points s with jsk j > m

for some 1 < k < N . Using Assumption 2 and the fact that X i ÿ X m
i and Ãi are i.i.d.,

var(X i ÿ X m
i ÿ Ãi) < CEZ2

1

X
s2Z N

ø2
s ÿ

X
jsk j<mÿ1

ø2
s

 !
< Cmÿ2a�1:

A simple computation now shows that (A.2) is O(n̂2bÿ3
n mÿ2a�1), hence O((h1(n))ÿ2a�1),

hence o(1), which completes the proof. h

Proof of Lemma 4.1. Note that ~X i �
P

i kÿ2m�1<s k <i k
øiÿs Zs � Ãi, and that ~X j � Rj(i) �

( ~X j ÿ Rj(i)). Since ~X j ÿ Rj(i) is measurable with respect to the sigma-®eld generated by Ãj

and the random variables Zj with j outside the set of sites fs : ik ÿ m� 1 < sk <
ik � mÿ 1g, the random variables ~X j ÿ Rj(i) and ~X i are independent. Clearly,

covf~Äi(x), ~Äj(y)g � q1n � E[fKn(xÿ ~X i)ÿ ìngKn(yÿ ( ~X j ÿ Rj(i)))],

where the last term equals zero by the independence of ~X i and ~X j ÿ Rj(i). h

Proof of Lemma 4.8. Using (4.6) and (4.7), and noting that bn ! 0,

Density estimation for spatial linear processes 665



bn var[~Äi(x)] �
�1
ÿ1

1

bn

K
xÿ y

bn

� �� �2

f (y)dyÿ bn

�1
ÿ1

1

bn

K
xÿ y

bn

� �
f (y)dy

" #2

! f (x)

�1
ÿ1

K2(y)dy, (A:3)

where ~Äi(x) is de®ned in (2.3). Put

S � (i, j) 2 In 3 In : ik 6� jk for some 1 < k < Ng: (A:4)

Using (2.4),

n̂bn var[gn(x)] � bn var[~Ä1(x)]� (bn=n̂)
X

S

jcovf~Äi(x), ~Äj(x)gj: (A:5)

Choosing a number è that satis®es 0 , è, (aÿ N ÿ 3)=(aÿ N ÿ 1), set r � b(èÿ1)=N
n .

De®ne S1 to be the set containing all pairs (i, j) with jik ÿ jk j no greater than r for all

1 < k < N , that is, S1 � f(i, j) 2 S : jik ÿ jk j < r for all 1 < k < Ng. Let S2 � f(i, j) 2
S \ SC

1 g, where SC
1 denotes the complement of S1. By Lemmas 4.6 and 4.5,X

S1

jcovf~Äi(x), ~Äj(x)gj < C n̂rN and
X

S2

jcovf~Äi(x), ~Äj(x)gj < C n̂bÿ3
n rN (Nÿa�1):

Lemmas 4.2±4.5 and Assumption 2 imply that the last term on the right-hand side of (A.5) is

bounded by

C(bn=n̂)(n̂rN � n̂bÿ3
n rN(Nÿa�1)) < C(bnrN � bÿ2

n rN (Nÿa�1))) < C(bè
nbÿ2�(1ÿè)(aÿNÿ1)

n ):

Since aÿ N ÿ 1 . 2 by Assumption 2, we can choose è suf®ciently close to zero so that

(1ÿ è)(aÿ N ÿ 1) . 2. Thus, the last term of (A.6) tends to zero. h

Proof of Lemma 4.10. The lemma will follow if we show that E[T 2(n, i)]! 0 for each

2 < i < 2N . Without loss of generality, we will restrict ourselves to showing that

E[T 2(n, 2)]! 0. Note that

T (n, 2) �
X

0< jk <rkÿ1

U (2, n, j) � cn̂ÿ1=2
X

0< jk<rkÿ1

V (2, n, j)� d n̂ÿ1=2
X

0< jk<rkÿ1

W (2, n, j),

where

V (2, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ1

X( jN�1)( l�2m)

iN� jN ( l�2m)� l�1

b1=2
n

~Äi(x)

and

W (2, n, j) :�
Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ1

X( jN�1)( l�2m)

iN� jN ( l�2m)� l�1

b1=2
n

~Äi(y):
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By Minkowski's inequality,

(E[T 2(n, 2)])1=2 < jcj 1

n̂
E

X
0< jk<rkÿ1

V (2, n, j)

 !2
24 351=2

�jdj 1

n̂
E

X
0< jk <rkÿ1

W (2, n, j)

 !2
24 351=2

:

(A:6)

It is suf®cient to show that the two terms on the right-hand side of (A.6) tend to zero. Since

the V (2, n, j) are independent random variables with zero means,

1

n̂
E

X
0< jk <rkÿ1

V (2, n, j)

 !2

� 1

n̂

X
0< jk <rkÿ1

var[V (2, n, j)]

<
1

n̂

X
0< jk <rkÿ1

Xjk ( l�2m)� l

ik� jk ( l�2m)�1
k�1,..., Nÿ1

X( jN�1)( l�2m)

iN� jN ( l�2m)� l�1

var[b1=2
n

~Äi(x)] (A:7)

� bn

n̂

X
S

jcovf~Äi(x), ~Äj(x)gj:

Recall from Lemma 4.8 that (bn=n̂)
P

S jcovf~Äi(x), ~Äj(x)gj ! 0, where S is de®ned in (A.4).

By (A.3) and (A.7),

1

n̂
E

X
0< jk <rkÿ1

V (2, n, j)

 !2

< C n̂ÿ1 r1 � � � rN lNÿ1 m� o(1)

� C
r1 l

n1

3 � � � 3 rNÿ1 l

nNÿ1

3
m

l � 2m
� o(1) < C

m

l � 2m
� o(1),

which tends to zero since m=l tends to zero. The proof for the second term on the right-hand

side of (A.7) is entirely similar.
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