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1. Introduction

In their seminal paper from 1973, Haralick et al (1973) introduced 14 texture feature descriptors computed 

from grey-level co-occurrence matrices (GLCMs, containing the joint frequency of neighbouring pixel grey-

levels). These were used in the classification of photomicrographs, aerial, and satellite image data. The Haralick 

texture features were computed as functions of a GLCM. Such features are simple to implement, easily computed, 

and result in a set of interpretable and easy-to-understand texture descriptors. Each Haralick feature captures 

a different aspect of the GLCM, and the features taken together are assumed to capture the characteristics of a 

particular texture in an image. Thus, the texture features are useful when e.g. classifying either whole images, or 

regions in images, based on texture characteristics.

The Haralick texture features have been applied in many different fields. For instance, they have been used in 

many aspects of remote sensing applications, such as forest inventory (Tokola and Kilpelainen 1999), land-use 

and forest-type classification (Ulaby et al 1986) and tree species identification (Kukunda et al 2018); in automatic 

detection of pollen (Marcos et al 2015), finger print analysis (Agarwal et al 2016), classification of hydrophobicity 
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Abstract

The Haralick texture features are common in the image analysis literature, partly because of their 

simplicity and because their values can be interpreted. It was recently observed that the Haralick 

texture features are very sensitive to the size of the GLCM that was used to compute them, which led 

to a new formulation that is invariant to the GLCM size. However, these new features still depend on 

the sample size used to compute the GLCM, i.e. the size of the input image region-of-interest (ROI).

The purpose of this work was to investigate the performance of density estimation methods for 

approximating the GLCM and subsequently the corresponding invariant features.

Three density estimation methods were evaluated, namely a piece-wise constant distribution, 

the Parzen-windows method, and the Gaussian mixture model. The methods were evaluated on 29 

different image textures and 20 invariant Haralick texture features as well as a wide range of different 

ROI sizes.

The results indicate that there are two types of features: those that have a clear minimum error 

for a particular GLCM size for each ROI size, and those whose error decreases monotonically with 

increased GLCM size. For the first type of features, the Gaussian mixture model gave the smallest 

errors, and in particular for small ROI sizes (less than about 20 × 20).

In conclusion, the Gaussian mixture model is the preferred method for the first type of features 

(in particular for small ROIs). For the second type of features, simply using a large GLCM size is 

preferred.
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in polymers insulators (Thomazini et al 2012), classification of lamellar graphite in cast iron (Roberts et al 2005), 

and have even been compared favourably to deep learning methods (Basu et al 2016).

Further, they have been used in medical image analysis, in the analysis of ultrasound and MRI images of the 

liver (Lerski et al 1979, Mayerhoefer et al 2010), the heart (Skorton et al 1983); in the analysis of x-ray mammo-

graphic images (Chan et al 1995, Soltanian-Zadeh et al 2004, Mustra et al 2012, Garma and Hassan 2014); and 

in the analysis of MRI images in the study of breast cancer (Chen et al 2007, Nie et al 2008, Ahmed et al 2013,  

Nagarajan et al 2013a, 2013b, Gensheimer et al 2015, Prasanna et al 2016, Wu et al 2016) and of brain cancer 

(Georgiadis et al 2009, Assefa et al 2010, Eliat et al 2012).

There are of course other features and methods that can be used to describe image texture and to classify tex-

ture, such as e.g. fractal dimensions (Lopes et al 2011), wavelets (Livens et al 1997), local binary patterns (Ojala 

et al 1994) and Gabor filters (Zacharaki et al 2009), and not least convolutional neural networks (Le Cun et al 

1998). However, the Haralick texture features, computed from GLCMs, have been very successful and are still 

widely used, in large part due to their simplicity and intuitive interpretations.

When creating a GLCM from a region in an image, the number of grey-levels in the image is often reduced in 

a process called quantisation. It turns out that the Haralick texture feature values depend strongly on the image 

quantisation (Brynolfsson et al 2017), which means that features cannot be compared directly between images 

when different numbers of grey-levels have been used, even when they are computed on images with the same 

underlying texture.

The number of grey-levels determines the size of the GLCM, and this in turn influences the feature values 

computed from the GLCM. This relation was investigated by Löfstedt et al (2017), and an approach was proposed 

to construct similar features that are asymptotically invariant to the number of grey-levels. Although this is a very 

attractive property, the result may still depend heavily on the size of the GLCM if the GLCM is constructed from 

an insufficient number of samples (i.e. small ROIs).

The purpose of this work was therefore to evaluate whether the GLCM can be better estimated as a density 

(the alternative interpretation of the GLCM that was employed by Löfstedt et al (2017)) to construct GLCMs 

for different sample sizes and to see how these estimates affect the (asymptotically invariant) Haralick features. 

A particular focus was on how the methods performed when the sample sizes were small. This is an important 

domain, since the invariant texture features have their largest errors for small sample sizes (Löfstedt et al 2017); 

hence, reduced errors for small sample sizes may improve e.g. radiomic or other clinical applications, where small 

ROIs are common (e.g. small tumours).

Three density estimation methods were evaluated in terms of the errors of the resulting feature values com-

pared to ground truth values. The methods were evaluated on constructed texture images (the Kylberg texture 

dataset v.1.0 (Kylberg 2011)) and a real prostate cancer data set (Kuess et al 2017).

2. Theory

In this section, we will give a brief description of the GLCM, the original Haralick texture features, and the 

invariant Haralick texture features proposed by Löfstedt et al (2017). Finally, we will describe the theory and the 

details regarding the density estimation methods we investigate, with which we can avoid having to select the 

number of grey-levels to use.

An overview of how to produce GLCMs from image data can be found in e.g. Brynolfsson et al (2017) and 

Löfstedt et al (2017).

2.1. The Haralick texture features

The Haralick texture features are functions of a normalised GLCM (from now on denoted simply as GLCM), 

P = X/N ∈ R
n×n, where X is the un-normalised GLCM and N =

∑
i

∑
j Xij  is the sample size. The Haralick 

texture features can all be written on the general form (Löfstedt et al 2017)

f =

A
∑

i=a

B
∑

j=b

φ
(

i, j, g(P)
)

ψ(Pij), (1)

where ψ is a function of the elements of the GLCM, Pij, and φ is a function of the indices and a vector-valued 

function, g, of the whole GLCM. For instance, the function g could return the marginal means, µx  and µy , and 

marginal standard deviations, σx  and σy, of the GLCM, as in the feature Correlation, fcorr, (see Löfstedt et al 

(2017)). In that case we have

a = b = 1, A = B = n, g(P) = (µx,µy,σx,σy),

φ
(

i, j, g(P)
)

=

(

i − µx

σx

)(

j − µy

σy

)

and ψ(Pij) = Pij,
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and hence

fcorr =

A
∑

i=a

B
∑

j=b

φ
(

i, j, g(P)
)

ψ(Pij) =

n
∑

i=1

n
∑

j=1

(

i − µx

σx

)(

j − µy

σy

)

Pij.

The Haralick texture features used in this work were the same as those used in Löfstedt et al (2017). We thus 

evaluated 20 features in total. The features evaluated are also listed in table 1.

2.2. The invariant texture features

The asymptotically invariant texture features, proposed in Löfstedt et al (2017), interprets the GLCM as a discrete 

approximation of a probability density function (i.e. as piece-wise constant densities), instead of as a mass 

function. In this interpretation, the features are expressed as integrals over functions of this distribution by

∫ 1

0

∫ 1

0

φ
(

i, j, g( p∗)
)

ψ
(

p∗(i, j)
)

djdi, (2)

where p∗ is the true underlying probability density function. The normalised GLCM must therefore integrate to 

1, i.e.

∫ 1

0

∫ 1

0

p∗(i, j) djdi = 1.

Note that the bounds of the integrations are arbitrary, but also that they must be independent of n, the size of 

the GLCM. Ideally they should be constant. In this study, they were set to 0 and 1 for simplicity.

The integral in equation (2) can be approximated by a Riemann sum as

∫ 1

0

∫ 1

0

φ
(
i, j, g( p∗)

)
ψ
(

p∗(i, j)
)

djdi ≈

n∑

i=1

n∑

j=1

φ

(
i

n
,

j

n
, g(P̃)

)
ψ
(
P̃ij

)
∆j∆i,

where

∆j = ∆i =
1

n
,

and

P̃ =
P

∆i∆j

. (3)

In short, the indices, i and j, are normalised to the half-open interval (0, 1], the summands are multiplied by a 

differential, and the GLCM is normalised such that its Riemann sum is 1.

The invariant texture features are presented together with the corresponding original features in table 2 in 

Löfstedt et al (2017).

While the approximation of the integral depends on the discretisation of the distribution, (i.e. the 

number of grey-levels), the approximation is equal to the integral in the limit as n → ∞, assuming that 

φ
(

i, j, g( p∗)
)

ψ
(

p∗(i, j)
)

 is Riemann integrable. The original Haralick features do not have this property that they 

Table 1. The identified two types of features. Those in the left column have a clear minimum relative RMSE, while those in the right 
column benefit when using the largest possible GLCM size.

Clear optimum Decreases monotonically

Angular second moment Autocorrelation

Difference entropy Cluster shade

Entropy Cluster prominence

Information measure of correlation 1 Contrast

Information measure of correlation 2 Correlation

Maximal correlation coefficient Difference average

Sum entropy Difference variance

Maximum probability Inverse difference

Inverse difference moment

Sum average

Sum of squares: variance

Sum variance

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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give the same approximated values for different discretisations, and in fact, many of the original Haralick features 

either approach zero or infinity when n → ∞, as was illustrated in Löfstedt et al (2017).

3. Methods

Three density estimation methods were compared to the traditional approach, where the number of grey-levels 

is set to an arbitrary fixed value, in order to see which had the smallest expected error when used to estimate 

the invariant Haralick texture features for a range of different sample sizes (or equivalently, image ROI sizes). 

The methods differ in the step where the GLCM is estimated. GLCM estimation is, in the new interpretation, 

essentially the problem of estimating a probability density function from data. Therefore, two parametric density 

estimation methods, a method that automatically selects an appropriate GLCM size (equivalent to a piece-wise 

constant density), and the traditional approach (with fixed numbers of grey-levels) were compared to the true 

values. The evaluated methods were:

 •  Fixed number of grey-levels, which corresponds to the traditional approach of a priori selecting a fixed 

number of grey-levels.

 •  Variable number of grey-levels, where the numbers of grey-levels are estimated using cross-validation. This is 

more flexible than selecting a fixed value and thus have the potential to give better results.

 •  Parzen windows, a non-parametric method that estimates a density using kernel smoothing.

 •  Gaussian mixture model, which is a parametric model that estimates a density as a sum of weighted 

Gaussians.

Finally, the methods were compared to an approach that we refer to as the Optimal method. In this case, the 

number of grey-levels were found by comparing the computed feature values to feature values computed from 

a GLCM generated from a very large number of samples; the number of grey-levels that minimised the error 

relative to the estimated true feature value was selected by this method. This method requires knowledge about 

the true feature values, but since those are rarely available in practical applications, an approximation computed 

from a very large number of samples was assumed to be sufficient when used here as a benchmark.

3.1. Evaluation metric

A metric of the methods’ performance was required in order to evaluate them. For this purpose we used the 

relative root mean-squared error (relative RMSE) of the estimated texture features. Let fi, for i = 1, ..., 20, be 

estimates of the 20 different invariant Haralick texture features investigated in this work. Further, let f k
i  be a 

sample of the random variable fi ∼ p( fi), then the relative RMSE of that feature is defined as

RelRMSE( fi) :=

√

E
[

( fi − f ∗i )
2
]

|E[ fi]|

≈

√

1

K

∑K
k=1

( f k
i − f ∗i )

2

|f ∗i |
,

 (4)

where K is the number of samples and f ∗i = E[ fi] is the true value of the parameter we want to estimate.

This metric was selected since the scale of different features, fi, can vary substantially, both between features 

and depending on the texture in the analysed images. The magnitudes of the RMSE are thus less important than 

their relative sizes.

3.2. Data

Two data sets were used in the evaluation of the methods. These were the Kylberg texture dataset v.1.0 (Kylberg 

2011) and a prostate cancer data set (Kuess et al 2017). The first data set was selected because of its size and 

diversity, with many different textures and a large number of images for each texture. The prostate data was 

selected to represent a typical medical image application.

3.2.1. The Kylberg texture dataset

This image data set contains 28 texture classes with 160 images in each class, capturing the textures of rice, sand, a 

floor, etc. Figure 2 contains five example images and corresponding GLCM shapes, produced from the Kylberg data.

3.2.2. The prostate cancer data set

This data set contained 25 patients diagnosed with prostate cancer. The patients were a sub-cohort from a 

multimodal imaging study (approved by the local institutional review board of the Medical University of Vienna) 

and was identical to the patient cohort in Kuess et al (2017).

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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The imaging was performed on a 3 T MAGNETOM TimTrio MRI scanner (Siemens Healthcare, Erlangen, 

Germany) and contained an anatomical high resolution T2-weighted turbo spin echo in three planes and a 

DWI (single-shot echo-planar) with inversion recovery fat suppression from which ADC maps were computed 

directly using the scanner software (four b-values were used, namely: 0, 100, 400, and 800 s mm−2). Other images 

were also acquired, but they were not used in this study. The ADC images were subsequently resampled to the 

voxel size of the T2-weighted images (i.e. 0.625 × 0.625 × 3.6 mm3), and the different regions of the prostate 

were manually delineated on the T2-weighted images by two radiation oncologists (Kuess et al 2017). The texture 

features were subsequently computed from the resampled ADC images.

3.3. Data processing

The images from the Kylberg data set were resized to 288 × 288, but where otherwise not altered.

The central gland from the prostate images was extracted using the oncologists’ delineations. Image slices 

were extracted as transversal planes. The ROIs containing the central glands of all patients were used to generate 

the GLCMs.

After these steps, sample points were generated from the underlying GLCM distribution of each texture class 

or of the prostate data by considering a pixel and one of its neighbours in an image as a sample point from that 

distribution. Neighbours were defined as spatially adjacent pixels in eight directions, defined by the displacement 

vectors

δ ∈

{

(−1, 1), (0, 1), (1, 1), (0,−1), (0, 1), (−1,−1), (−1, 0), (−1, 1)
}

.

3.3.1. The ‘true’ feature values

The true feature values, f ∗i , for i = 1, . . . , 20, are generally not accessible, since the data does not cover the entire 

population. This is also the case in this work. Therefore, we instead estimated the true invariant feature values 

using very close approximations to the true GLCMs. We will denote these features as the true features below, but 

acknowledge that these are still only approximations (not being computed from their whole populations), albeit 

very good ones, of their true population GLCMs.

In order to have ground truths to compare to, we used a large GLCM size (256 grey-levels), such that the 

invariant features are close to their asymptotic values (all features appeared to have converged for 256 grey-levels 

in Löfstedt et al (2017)), and we used many sampled points. This lead to well-defined GLCMs from which the 

approximations of the true feature values were computed.

The approximated true GLCMs were generated by randomly selecting 60% of the sample points from each 

texture class in the Kylberg texture data set and similarly from the prostate cancer data. For the Kylberg texture 

data set, the approximations of the true GLCMs were generated from 63.4 million samples each, and for the pros-

tate cancer data, the approximation of the true GLCM was generated from 2.0 million samples.

These GLCMs are very well-defined and are assumed to accurately capture the characteristics of the differ-

ent textures classes. Hence, the computed approximations of the true feature values are assumed to be very good 

approximations.

3.4. Comparison

The 40% of sample points not used when approximating the true feature values were used in the comparison 

of the different methods. When drawing samples in the comparison described below, subsets of samples were 

selected uniformly with replacement.

The invariant Haralick texture feature values from each method were compared to the true feature values 

using the relative RMSE, see equation (4), for sample sizes ranging from N  =  200 to N = 100 000 in 21 equi-

distant steps on a logarithmic scale. The number of samples, N, corresponds to a square ROI with side length 

approximately 
√

N/8; hence, the sample sizes correspond roughly to ROI sizes ranging from 5 × 5 to 110 × 110 

pixels. Note that a square ROI is only used as a reference for presentation purposes, and in fact, the ROI can have 

any shape (as in the prostate data example). The number of sampled invariant Haralick feature values, f k
i , used in 

equation (4) were K  =  100 for both the Kylberg data for the prostate data.

The three methods for GLCM estimation introduced above and the Optimal method are described in more 

detail in the following subsections.

3.4.1. Fixed number of grey-levels

The usual way of computing Haralick texture features is to decide on a fixed number of grey-levels and use this 

value irrespective of the ROI size. In the literature, the number of grey-levels varies substantially (Brynolfsson 

et al 2017), and we therefore investigated a wide range of levels, namely n ∈ {8, 16, 32, 64, 128}. We denote this 

method the Fixed method.

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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3.4.2. Variable number of grey-levels

We recall that the GLCM, P̃, in equation (3) is a discrete approximation to an underlying continuous function, 

with n discrete steps in each dimension. We here interpret this as an approximation of the true underlying 

probability density function by a piece-wise constant function, normalised such that it is a probability density. 

The true underlying probability density function is denoted p∗, and the piece-wise constant approximation is 

denoted by pvar(x|n,θ), where x = (i, j) ∈ [0, 1]2, n is the number of grey-levels (i.e. the number of piece-wise 

patches), and θ contains all other parameters that define ̃P.

We consider the sampled points as coordinates in the GLCM, and then pose the log-likelihood function over 

a set of sampled points as

logL(X|n) =
∑

x∈X

log
(

p∗(x)
)

≈
∑

x∈X

log
(

pvar(x|n, θ)
)

≈
∑

x=(i,j)∈X

log

(

P̃⌈ni⌉,⌈ni⌉ +
1

N · n2

)

≡ logLvar(X|n),

 

(5)

where the second term in the second approximation is a Laplace smoothing term (corresponding roughly to a 

Dirichlet prior), that was added to avoid the logarithm of zero. The Laplace smoothing term here distributes a 

mass of 1/N among all elements of the GLCM.

Then, we performed seven-fold cross-validation by splitting the set of points in two for each fold: one train-

ing set containing 6/7 of the points and one validation set containing the other 1/7 remaining points. We gener-

ated a GLCM with n grey-levels from the training set and evaluated the log-likelihood over the validation set. The 

number of grey-levels, n, that corresponded to the largest log-likelihood was selected for each fold. The process 

was repeated over the seven folds of sampled points and the computed mean number of grey-levels (rounded to 

the nearest integer) was used.

Hence, the cross-validated maximum likelihood estimate of the number of grey-levels was

n
∗ =

⌊

1

B

B
∑

b=1

arg max
n∈N+

logLvar(Xb|n)

⌉

,

where ⌊·⌉ denotes the round to nearest integer function, B  =  7, and Xb is the bth fold of the sampled points, X . 

This value of n∗ was used to generate the final GLCM by this method, that we denote the Variable method.

3.4.3. Parzen windows

The third method we investigate is the Parzen-window method (also called kernel density estimation or the 

Parzen–Rosenblatt window) to estimate the true underlying probability density function, p∗ (Parzen 1962, Duda 

et al 2000).

By this method, the approximated probability density function is defined as

ppw(x|h,κ) =
1

|X |

|X |
∑

i=1

1

h2
κ

(

x − xi

h

)

,

where κ is a window function, or kernel, h is the window width, or bandwidth, and |X | denotes the number of 

elements (its cardinality) in the set of samples, X = {x1, . . . , x|X |}.

We used a Gaussian kernel, i.e. one such that

1

h2
κ

(

x − xi

h

)

=

1

2πσ2
e
−

(x−xi)
T(x−xi)

2σ2 ,

where thus h = σ, the standard deviation of the Gaussian kernel.

As with the previous method, we consider the sampled points as coordinates in the GLCM, and pose the log-

likelihood function over the set of sampled points as

logLpw(X|σ) =
∑

x∈X

log
(

ppw(x|σ)
)

.

Similar to the previous method, we used cross-validation to compute the maximum log-likelihood value of 

the window size using the left-out samples, and retained the value of the window size,

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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σ
∗ =

1

B

B∑

b=1

argmax
σ>0

logLpw(Xb|σ),

where each fold maximised the log-likelihood value (Awate 2006). This cross-validated maximum likelihood 

value of σ∗ was then used to generate the final GLCM by this method, that we denote the PW method.

3.4.4. Gaussian mixture models

The fourth method we investigated was the Gaussian mixture model, that also approximates the underlying 

probability density function, p∗, from a set of samples (Duda et al 2000, Hastie et al 2009). The model has the form

pgmm(x|M,θ) =

M∑

m=1

αmN (x|µm,Σm),

where M is the number of Gaussian components and θ contains all other model parameters. The αm are mixing 

coefficients (such that 
∑

m
αm = 1), the N  is the bivariate normal probability density function, the µ

m
 are the 

means of the components, and the Σm are the covariance matrices for the components, m = 1, . . . , M .

In this case, the log-likelihood function over a set of samples, X , is defined as

logLgmm(X|M) =
∑

x∈X

log
(

pgmm(x|M,θ)
)

,

where the model parameters, θ, i.e. the mixing coefficients, means, and covariance matrices, were estimated 

from the data using the gmdistribution class in Matlab 2016b (The MathWorks, Inc., Natick, MA, USA). 

This class initialises the parameters using the K-means++ algorithm and uses the expectation-maximisation 

algorithm to fit the parameters. To avoid singular covariance matrices, we added a small regularisation term that 

corresponds to adding a small value (0.001) to the diagonal of the covariance matrices.

Like in the previous methods, we again used seven-fold cross-validation to estimate the unknown statistic, 

in this case the number of components. The number of components corresponding to the maximum log-likeli-

hood value of the left-out samples was used from each fold, and the mean number of components (rounded to 

the nearest integer),

M
∗ =

⌊

1

B

B
∑

b=1

arg max
M∈N+

logLgmm(Xb|M)

⌉

,

was then used to generate the estimated GLCM. We denote this method the GMM method.

3.4.5. Optimal number of grey-levels

We generated GLCMs of sizes n = 4, 5, . . . , 256, for each sample size, N = 200, . . . , 100 000, in the same 21 

equidistant logarithmic steps as above. Then an optimal GLCM size was selected for each number of samples and 

for each feature as the GLCM size that minimised the relative RMSE, as illustrated in figure 1. This approach will 

be denoted the Optimal method.

3.5. Statistical test of results

In order to determine whether any of the proposed methods outperform any other methods, we performed the 

Friedman test followed by a Nemenyi post-hoc test (Demšar 2006). The minimum relative RMSE over the fixed 

methods and the relative RMSE values of the three proposed methods were compared over all textures (from the 

Kylberg data set and the prostate data set) and all features for each ROI size.

The Friedman test was used in this case to test the hypothesis that all relative RMSE values are equal against 

the alternative that they are not. When the Friedman test determines that the observed data is significantly dif-

ferent from what can be expected by chance under the null hypothesis, the Nemenyi post-hoc test can be used to 

compare each method to each other method. We performed this test for each sample size (i.e. ROI size).

The Nemenyi post-hoc test was computed on the 5% level and was Bonferroni corrected for 21 tests (one 

Nemenyi test for each ROI size).

3.6. Computational time of the results

The wall-clock time of the computations were measured for each method when computed on Intel Xeon E5 2.60 

GHz processors using a single core. We will present the results for each ROI size as medians over the required 

computational time for all textures and all features.

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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4. Results

Figure 1 illustrates the general behaviour of the relative RMSE as functions of the GLCM size, n, for two features. 

The other features also displayed the behaviour that is clearly seen in figure 1, namely that they either have a clear 

minimum, or that the relative RMSE decreases monotonically as a function of n. Similar plots for all features and 

all textures are presented in the supplementary material (stacks.iop.org/PMB/63/195017/mmedia). Table 1 lists 

the two apparent types of features in different columns.

Figure 2 illustrates the general behaviour of the estimated GLCMs for five Kylberg textures and the central 

gland from a prostate. The GLCMs from each method were computed from 10 000 samples, illustrated as a  

high-resolution GLCM in the third column. The GLCMs in the last three columns should be compared to the 

corre sponding approximation of the true GLCMs in the second column.

With sufficient data the computed GLCMs will be smooth, as can be seen in the second column. However, 

when only small ROIs are availble the smoothness cannot be reproduced. If very small bins are used (i.e. large n, 

where points are placed at or close to their coordinates), the resulting GLCMs will be noisy, as seen in the third 

column in figure 2. If larger bins are used (i.e. smaller n), as is often the case in the Variable, Fixed, and Optimal 

methods, the result is a blocky GLCM, as can be seen for the Variable method in the fourth column of figure 2. 

The inherent smoothing in the PW and GMM methods lead to GLCMs that reproduce the smoothness of the  

reference GLCM well, despite the small number of samples.

4.1. Analysis of the relative RMSE

Figures 3 and 4 illustrate the relative RMSE of five representative invariant Haralick texture feature values for 

the ‘blanket1’ texture in the Kylberg data set and the prostate data, respectively. For plots of relative RMSE 

for all features and all textures, see the supplementary material. The behaviour of the different methods is not 

consistent in the sense that certain methods always outperform other methods. However, there are some general 

trends. As expected, the Optimal method give the smallest error in most cases. For features in the second column 

of table 1, larger GLCM sizes consistently give smaller errors for all ROI sizes (this is clearly seen for the Fixed 

method in the figures). Among the Varible method, the PW method, and the GMM method, the GMM method 

usually produces the smallest relative RMSE, but this is not always the case for all features, textures, and ROI sizes 

as can be seen in e.g. figure 3.

By ranking which method produces which relative RMSE for all methods (smallest error ranked first), an 

overview of the performance across all textures can be obtained, despite the fact that the relative RMSE values can 

have different scales for different textures. The results for five representative features are illustrated in figure 5.

4.1.1. Testing all methods on all data

The Friedman test was significant (p ≪ 10
−16) for all ROI sizes. The ranks computed for the Friedman and 

Nemenyi tests are presented in figure 5. The figure contains the mean ranks over all textures (all Kylberg textures 

and the prostate data) for each ROI size, plotted with one standard deviation confidence bands computed point-

wise.

The results from the Nemenyi post-hoc tests are presented in table 2. The first column contains the methods 

for which test results are presented on the same row; the tests were for significantly lower relative RMSE values. 

The top-most row contains the ROI sizes, with columns on distances proportional to the actual ROI sizes. A dash 

(−) indicates a non-significant Nemenyi test and a circle (°) indicates a significant test, i.e. a significantly lower 

Figure 1. The RMSE values for angular second moment (a) and inverse difference moment (b) as functions of the GLCM size, n, and 
computed on the ‘blanket1’ texture class. The optimal GLCM sizes, those that minimises the RMSE, are marked by red circles.

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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relative RMSE value (or, more accurately, significantly lower rank that what can be expected by chance) for the 

method on the left of the less than sign.

4.2. Timing results

The median times for each method over all textures and all features are presented in figure 6. It is clear that the 

GMM method is substantially slower than the other methods.

5. Discussion

The purpose of this work was to evaluate methods to estimate GLCMs for different sample sizes and to see how 

these estimates affect the (asymptotically) invariant Haralick texture features, and in particular how the methods 

performed when the sample sizes were small.

The data suggests that the different methods perform quite different for different textures and features. How-

ever, the following general trends are supported by the statistical test we have performed:

 •  The PW method gives significantly smaller relative RMSE errors compared to the Variable method for ROI 

sizes  ⩽13 pixels.

Figure 2. An illustration of the differences between the three proposed methods on six textures, illustrated by a single image 
each in the first column. The second column contains approximations of the true GLCMs, computed from 60% of all samples. 
The third column contains a high-resolution GLCM, created from 10 000 random samples. The GLCMs in the last three columns 
were generated from the same 10 000 samples. The fourth column contains the GLCMs generated using the Variable method (the 
numbers of grey-levels are indicated above each GLCMs). The fifth column contains the GLCMs generated using the PW method 
(the standard deviation of the Gaussian kernel is indicated above each GLCM). The sixth and final column contains the GLCMs 
generated using the GMM method (the numbers of Gaussian components are indicated above each GLCM).

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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 •  The GMM method gives significantly smaller errors compared to the minimum of the fixed methods for ROI 

sizes  ⩽20 pixels.

 •  The GMM method gives significantly smaller errors compared to the Variable method for all evaluated ROI 

sizes.

 •  The GMM method gives significantly smaller errors compared to the PW method for all evaluated ROI sizes.

 •  None of the proposed methods gives significantly smaller errors than the Optimal method for any ROI size.

 •  The Optimal method does not always give significantly smaller errors than the GMM method for ROI sizes 

smaller than 13, which suggests that the GMM method may perform only marginally worse than the Optimal 

method in this regime.

Further, we can say that the Variable method requires at least ten times longer computational time com-

pared to the Fixed methods, the PW method requires about ten times longer computational time compared to 

Figure 3. The relative RMSE for five invariant Haralick image texture features computed from the ‘blanket1’ texture class.

Figure 4. The relative RMSE for five invariant Haralick image texture features computed from the central glands of the 25 prostate 
cancer patients.

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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the Variable method, and the GMM method requires about ten times longer computational time compared to the 

PW method. There is thus a trade-off between accuracy and computational time that may have to be taken into 

account when selecting a method to use in practice.

The results of this work indicate that the investigated features can be subdivided in two types. The first type 

have a clear optimal number of grey-levels for a given sample size. For the second type, the relative RMSE values 

decreased monotonically (when ignoring the noise) with the number of grey-levels for all sample sizes. This 

observation may be used for selecting GLCM sizes that reduce errors in the estimated feature values, which leads 

to more accurate results in e.g. radiomic applications.

When looking at tables 1 and 2 in Löfstedt et al (2017), we note that the features appearing to belong to the 

second type are all linear in P̃, the probability density (or the corresponding sum and difference distributions; 

also, assuming the means and standard deviations are constant). This means that the second type of features are 

computing expectations over φ with respect to p∗, i.e. Ep∗ [φ | g] ≈ EP̃[φ | g], and we can therefore expect them to 

converge to an asymptotic value as the accuracy in the estimation of ̃P increases. In fact, by the central limit theo-

rem, and under mild assumptions, the convergence speed should be at least O(1/
√

N). We have not analysed this 

rigorously, however, and instead leave this as an hypothesis for future work.

Figure 5. The mean ranks over the textures of the different methods computed from their relative RMSE values. The confidence 
bands are computed point-wise and covers one standard deviation.

Table 2. The results from the null-hypothesis significance test. The left-most column contains the names of the two methods for which 
results are given on that row. The Fixed method is denoted Fix, the Variable method is denoted Var, the PW method is denoted PW, the GMM 
method is denoted GMM, and the Optimal method is denoted Opt. The rows contains the results when testing whether the first method 
has a significantly lower relative RMSE than the second method. The Nemenyi test was performed for each ROI size (top-most row, 
proportional distances). A dash (−) means not significant. A circle (°) means that the first method had a significantly lower error than the 
second method.

Method
ROI size

Var Fix

Var PW

Var GMM

Var Opt

PW Fix

PW Var

PW GMM

PW Opt

GMM Fix

GMM Var

GMM PW

GMM Opt

Opt Fix

Opt Var

Opt PW

Opt GMM

56789 11131517 20 24 28 32 38 44 51 60 70 82 96 112

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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In practical applications, and in particular in medical imaging applications, small ROI sizes are common. 

An example is e.g. small tumours in MRI images, or when feature maps are computed as local texture from small 

ROIs centred at every pixel in the image. Because of this, the ability to compute features from very small ROIs 

is highly valuable, and could e.g. result in more robust diagnoses, better predictions in radiomic applications, 

more accurate predictions of clinical outcomes, and smaller errors in local texture features. The results in this 

work gives an indication regarding how to approach this. For the second type of features (those where the error 

decreases with increased number of grey-levels), the largest possible numbers of grey-levels yields both the high-

est accuracy and the lowest computational time (when compared to the three proposed methods). For the first 

type of features (those with an optimal number of grey-levels for each ROI size), the GMM method appears to be 

preferred for small ROI sizes, and the threshold appears to be at around 20 × 20 pixels. For ROI sizes larger than 

20 × 20 pixels the answer is not as clear. The GMM method is significantly better, on average, than the other meth-

ods evaluated in our test, and would therefore likely suffice for most applications. The GMM method is, however, 

not always the best one for all features and all textures (see the supplementary plots). In fact, it might be in this 

case that further subdivision is required, such that different features are treated differently. The case for the first 

type of features with ROI sizes larger than 20 × 20 pixels could therefore be a subject for future studies.

We would like to stress, though, that (for the first type of features) there is no single fixed value for the GLCM 

size that performs better than the GMM method on average. I.e. if evaluated for different ROI sizes, there is only 

a single ROI size that a fixed value is optimal for (or, at best, a small range for which it performs well), while the 

GMM method will perform at worst moderately well for all ROI sizes.

The practical utility of the proposed methods in e.g. classification or regression models was outside of the 

scope of this paper. However, the results presented here implies that the accuracy in such studies when using e.g. 

the GMM method would be better on average compared to when using a fixed GLCM size—in particular if the 

features used were computed on images of different sizes. This is certainly a highly interesting subject of future 

work.

The methods investigated here are limited in scope, for instance with the use of Gaussian kernels in the PW 

method and a mixture of Gaussians in the GMM method. Using cross-validation for the estimation of hyper-

parameters (e.g. kernel size and number of Gaussian components) was also a choice we made where other meth-

ods could have been of interest. Further investigation into other methods and variations in the model parameters 

we tested was out of the scope of this work but would be interesting for future studies.

A trend recently in medical imaging is to use volumetric images when computing the GLCM, i.e. to also 

include voxels across neighbouring transversal planes when computing the GLCM (Tesař et al 2008). The  

proposed methods would work in this setting as well, but care must be taken (like today) in case the voxels are 

anisotropic.

Another recent trend in longitudinal studies is to use ‘delta-features’ (see e.g. Aerts et al (2016) and Chang 

(2018)), where e.g. post-treatment features are normalised with respect to pre-treatment features. The proposed 

methodology may be particularly beneficial in this case since the ROI sizes are likely to change before and after 

treatment. E.g. the size of a tumour may be reduced after treatment leading to larger errors in the estimated  

feature values after treatment than before. Hence, using the proposed methodology, the errors in the pre-treat-

Figure 6. The computational time of the different methods presented as median times over the textures and features and as 
functions of the ROI size. The top-left plot contains different curves for the Fixed methods (note the log scale, and the line styles are 
the same as in figure 5). Top-right contains the times for the Variable method, bottom left is the PW method and bottom-right is the 
GMM method.

Phys. Med. Biol. 63 (2018) 195017 (14pp)
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ment and post-treatment features would likely be smaller, leading to smaller errors in the delta-features as well. 

This would be an interesting topic for future work.

Another possible continuation of the present work includes improving the speed of the GMM method.  

Cur rently, the estimation of the number of components involve a grid search over a range of plausible values. It is 

likely that this can be made more efficient.

The Optimal method was used in this work as a kind of oracle, giving an ‘objective’ ground truth to which we 

compared the other methods. Another possible future work would be to investigate when this method could be 

used directly to estimate the best GLCM size. For instance, whenever several ROIs of the same texture are avail-

able it is possible that there is sufficient data to compute a good enough (in some sense) estimate of the optimal 

GLCM size using the Optimal method.

6. Conclusion

This study suggests that there might be two main types of (invariant) Haralick texture features and that they 

should be treated differently. This is, as far as the authors are aware, the first time this observation has been 

made about the Haralick texture features. The first type of features (those in the left column of table 1) have a 

clear optimal number of grey-levels for a given sample size. For the second type of features, the relative RMSE 

values appears to decrease monotonically with the number of grey-levels for all sample sizes. For the first type 

of features, the GMM method is preferred among the investigated methods—in particular for ROI sizes smaller 

than about 20 × 20 pixels. For the second type of features, selecting a large (as large as possible) GLCM size 

appears to be the best choice.

Acknowledgments

We are grateful for the financial support obtained from the Cancer Research Foundation in Northern Sweden, 

Karin and Krister Olsson, Umeå University, The Västerbotten regional county, and Vinnova, the Swedish 

innovation agency.

The financial support by the Austrian Federal Ministry of Science, Research and Economy, and the National 

Foundation for Research, Technology and Development is also gratefully acknowledged.

This research was conducted using the resources of the High Performance Computing Center North 

(HPC2N).

Anders Garpebring, Patrik Brynolfsson, Tufve Nyholm, and Tommy Löfstedt are co-owners of Nonpi  

Medical AB, the developer of MICE Toolkit—a software for medical image analysis.

We would also like to thank Dr Gustaf Kylberg for kindly answering our questions regarding the Kylberg  

Texture Dataset v.1.0.

ORCID iDs

Anders Garpebring  https://orcid.org/0000-0002-0532-232X

Patrik Brynolfsson  https://orcid.org/0000-0002-0455-8904

Peter Kuess  https://orcid.org/0000-0003-2961-1692

Dietmar Georg  https://orcid.org/0000-0002-8327-3877

Thomas H Helbich  https://orcid.org/0000-0003-3169-778X

Tufve Nyholm  https://orcid.org/0000-0002-8971-9788

Tommy Löfstedt  https://orcid.org/0000-0001-7119-7646

References

Aerts H J W L, Grossmann P, Tan Y, Oxnard G R, Rizvi N, Schwartz L H and Zhao B 2016 Defining a radiomic response phenotype: a pilot 

study using targeted therapy in NSCLC Sci. Rep. 6 33860

Agarwal A, Singh R and Vatsa M 2016 Fingerprint sensor classification via mélange of handcrafted features 23rd Int. Conf. on Pattern 

Recognition (International Association of Pattern Recognition, IEEE Computer Society) pp 3001–6

Ahmed A, Gibbs P, Pickles M and Turnbull L 2013 Texture analysis in assessment and prediction of chemotherapy response in breast cancer 

J. Magn. Reson. Imaging 38 89–101

Assefa D, Keller H, Menard C, Laperriere N, Ferrari R J and Yeung I 2010 Robust texture features for response monitoring of glioblastoma 

multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation Med. 

Phys. 37 1722–36

Awate S P 2006 Adaptive, nonparametric markov models and information-theoretic methods for image restoration and segmentation PhD 

Thesis The University of Utah

Basu S, Karki M, DiBiano R, Mukhopadhyay S, Ganguly S, Nemani R and Gayaka S 2016 A theoretical analysis of deep neural networks for 

texture classification Int. Joint Conf. on Neural Networks pp 992–9

Phys. Med. Biol. 63 (2018) 195017 (14pp)

https://orcid.org/0000-0002-0532-232X
https://orcid.org/0000-0002-0532-232X
https://orcid.org/0000-0002-0455-8904
https://orcid.org/0000-0002-0455-8904
https://orcid.org/0000-0003-2961-1692
https://orcid.org/0000-0003-2961-1692
https://orcid.org/0000-0002-8327-3877
https://orcid.org/0000-0002-8327-3877
https://orcid.org/0000-0003-3169-778X
https://orcid.org/0000-0003-3169-778X
https://orcid.org/0000-0002-8971-9788
https://orcid.org/0000-0002-8971-9788
https://orcid.org/0000-0001-7119-7646
https://orcid.org/0000-0001-7119-7646
https://doi.org/10.1038/srep33860
https://doi.org/10.1038/srep33860
https://doi.org/10.1109/ICPR.2016.7900094
https://doi.org/10.1109/ICPR.2016.7900094
https://doi.org/10.1002/jmri.23971
https://doi.org/10.1002/jmri.23971
https://doi.org/10.1002/jmri.23971
https://doi.org/10.1118/1.3357289
https://doi.org/10.1118/1.3357289
https://doi.org/10.1118/1.3357289
https://doi.org/10.1109/IJCNN.2016.7727306
https://doi.org/10.1109/IJCNN.2016.7727306


14

A Garpebring et al

Brynolfsson P, Nilsson D, Torheim T, Asklund T, Thellenberg-Karlsson C, Trygg J, Nyholm T and Garpebring A 2017 Haralick texture 

features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters Sci. Rep. 7 4041

Chan H P, Wei D, Helvie M A, Sahiner B, Adler D D, Goodsitt M M and Petrick N 1995 Computer-aided classification of mammographic 

masses and normal tissue: linear discriminant analysis in texture feature space Phys. Med. Biol. 40 857–76

Chang Y 2018 An investigation of machine learning methods for delta-radiomic feature analysis Master’s Thesis Duke Kunshan University 

and Duke University

Chen W, Giger M L, Li H, Bick U and Newstead G M 2007 Volumetric texture analysis of breast lesions on contrast-enhanced magnetic 

resonance images Magn. Reson. Med. 58 562–71

Demšar J 2006 Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 1–30 

Duda R O, Hart P E and Stork D G 2000 Pattern Classification 2nd edn (New York: Wiley)

Eliat P A, Olivié D, Saïkali S, Carsin B, Saint-Jalmes H and de Certaines J D 2012 Can dynamic contrast-enhanced magnetic resonance 

imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol. Res. Int. 

2012 1951–76

Garma F B and Hassan M A 2014 Classification of breast tissue as normal or abnormal based on texture analysis of digital mammogram  

J. Med. Imaging Health Inform. 4 647–53

Gensheimer M F, Hawkins D S, Ermoian R P and Trister A D 2015 Assessing the scale of tumor heterogeneity by complete hierarchical 

segmentation of MRI Phys. Med. Biol. 60 977–93

Georgiadis P, Cavouras D, Kalatzis I, Glotsos D, Athanasiadis E, Kostopoulos S, Sifaki K, Malamas M, Nikiforidis G and Solomou E 2009 

Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features 

and ensemble pattern recognition methods Magn. Reson. Imaging 27 120–30

Haralick R M, Shanmugam K and Dinstein I 1973 Textural features for image classification IEEE Trans. Syst. Man Cybern. 3 610–21

Hastie T, Tibshirani R and Friedman J 2009 The Elements of Statistical Learning: Data Mining, Inference and Prediction 2nd edn (New York: 

Springer)

Kuess P et al 2017 Association between pathology and texture features of multi parametric MRI of the prostate Phys. Med. Biol. 62 7833–54

Kukunda C B, Duque-Lazo J, González-Ferreiro E, Thaden H and Kleinn C 2018 Ensemble classification of individual Pinus crowns from 

multispectral satellite imagery and airborne LiDAR Int. J. Appl. Earth Obs. Geoinf. 65 12–23

Kylberg 2011 The Kylberg Texture Dataset v. 1.0 (External Report (Blue Series) vol 35) (Uppsala: Centre for Image Analysis, Swedish 

University of Agricultural Sciences and Uppsala University) (www.cb.uu.se/∼gustaf/texture/)

Le Cun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document recognition Proc. IEEE 86 2278–324

Lerski R, Barnett E, Morley P, Mills P, Watkinson G and MacSween R 1979 Computer analysis of ultrasonic signals in diffuse liver disease 

Ultrasound Med. Biol. 5 341–3

Livens S, Scheunders P, van de Wouwer G and Van Dyck D 1997 Wavelets for texture analysis, an overview 6th Int. Conf. on Image Processing 

and its Applications IET Conf. Proc. pp 581–5

Löfstedt T, Brynolfsson P, Asklund T, Nyholm T and Garpebring A 2017 Gray-level invariant Haralick texture features. Applications of 

statistical methods in quantitative magnetic resonance imaging PhD Thesis Patrik Brynolfsson and Umeå University

Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S and Betrouni N 2011 Prostate cancer characterization on MR images using fractal 

features Med. Phys. 38 83–95

Marcos J V et al 2015 Automated pollen identification using microscopic imaging and texture analysis Micron 68 36–46

Mayerhoefer M E, Schima W, Trattnig S, Pinker K, Berger-Kulemann V and Ba-Ssalamah A 2010 Texture-based classification of focal liver 

lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas J. Magn. Reson. Imaging 32 352–9

Mustra M, Grgic M and Delac K 2012 Breast density classification using multiple feature selection Automatika 53 362–72

Nagarajan M B, Huber M B, Schlossbauer T, Leinsinger G, Krol A and Wismueller A 2013a Classification of small lesions in breast MRI: 

evaluating the role of dynamically extracted texture features through feature selection J. Med. Biol. Eng. 33 59–68

Nagarajan M B, Huber M B, Schlossbauer T, Leinsinger G, Krol A and Wismueller A 2013b Classification of small lesions in dynamic breast 

MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement Mach. Vis. 

Appl. 24 1371–81

Nie K, Chen J H, Yu H J, Chu Y, Nalcioglu O and Su M Y 2008 Quantitative analysis of lesion morphology and texture features for diagnostic 

prediction in breast MRI Acad. Radiol. 15 1513–25

Ojala T, Pietikainen M and Harwood D 1994 Performance evaluation of texture measures with classification based on Kullback 

discrimination of distributions Proc. of the 12th IAPR Int. Conf. on Pattern Recognition (Conference A: Computer Vision & Image 

Processing) vol 1 (Los Alamitos, CA: IEEE Computer Society Press) pp 582–5

Parzen E 1962 On estimation of a probability density function and mode Ann. Math. Stat. 33 1065–76

Prasanna P, Tiwari P and Madabhushi A 2016 Co-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics 

descriptor Sci. Rep. 6 37241 

Roberts K, Weikum G and Mucklich F 2005 Examinations on the automatic classification of lamellar graphite using the support vector 

machine Pract. Metallography 42 396–410

Skorton D J, Collins S M, Woskoff S D, Bean J A and Melton H E 1983 Range- and azimuth-dependent variability of image texture in two-

dimensional echocardiograms Circulation 68 834–40

Soltanian-Zadeh H, Rafiee-Rad F and Pourabdollah-Nejad S D 2004 Comparison of multiwavelet, wavelet, haralick, and shape features for 

microcalcification classification in mammograms Pattern Recognit. 37 1973–86

Tesař L, Shimizu A, Smutek D, Kobatake H and Nawano S 2008 Medical image analysis of 3D CT images based on extension of Haralick 

texture features Comput. Med. Imaging Graph. 32 513–20

Thomazini D, Gelfuso M V and Altafim R A C 2012 Classification of polymers insulators hydrophobicity basead on digital image processing 

Mater. Res. 15 365–71

Tokola T and Kilpelainen P 1999 The forest stand margin area in the interpretation of growing stock using landsat TM imagery Can. J. Forest 

Res. 29 303–9

Ulaby F T, Kouyate F, Brisco B and Williams T H L 1986 Textural information in SAR images IEEE Trans. Geosci. Remote Sens. 24 235–45

Wu J, Gong G, Cui Y and Li R 2016 Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies 

relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy J. Magn. Reson. Imaging 

44 1107–15

Zacharaki E I, Wang S, Chawla S, Yoo D S, Wolf R, Melhem E R and Davatzikos C 2009 Classification of brain tumor type and grade using 

MRI texture and shape in a machine learning scheme Magn. Reson. Med. 62 1609–18

Phys. Med. Biol. 63 (2018) 195017 (14pp)

https://doi.org/10.1038/s41598-017-04151-4
https://doi.org/10.1038/s41598-017-04151-4
https://doi.org/10.1088/0031-9155/40/5/010
https://doi.org/10.1088/0031-9155/40/5/010
https://doi.org/10.1088/0031-9155/40/5/010
https://doi.org/10.1002/mrm.21347
https://doi.org/10.1002/mrm.21347
https://doi.org/10.1002/mrm.21347
https://doi.org/10.1155/2012/195176
https://doi.org/10.1155/2012/195176
https://doi.org/10.1155/2012/195176
https://doi.org/10.1166/jmihi.2014.1310
https://doi.org/10.1166/jmihi.2014.1310
https://doi.org/10.1166/jmihi.2014.1310
https://doi.org/10.1088/0031-9155/60/3/977
https://doi.org/10.1088/0031-9155/60/3/977
https://doi.org/10.1088/0031-9155/60/3/977
https://doi.org/10.1016/j.mri.2008.05.017
https://doi.org/10.1016/j.mri.2008.05.017
https://doi.org/10.1016/j.mri.2008.05.017
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1088/1361-6560/aa884d
https://doi.org/10.1088/1361-6560/aa884d
https://doi.org/10.1088/1361-6560/aa884d
https://doi.org/10.1016/j.jag.2017.09.016
https://doi.org/10.1016/j.jag.2017.09.016
https://doi.org/10.1016/j.jag.2017.09.016
http://www.cb.uu.se/~gustaf/texture/
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/0301-5629(79)90004-8
https://doi.org/10.1016/0301-5629(79)90004-8
https://doi.org/10.1016/0301-5629(79)90004-8
https://doi.org/10.1049/cp:19970958
https://doi.org/10.1049/cp:19970958
https://doi.org/10.1118/1.3521470
https://doi.org/10.1118/1.3521470
https://doi.org/10.1118/1.3521470
https://doi.org/10.1016/j.micron.2014.09.002
https://doi.org/10.1016/j.micron.2014.09.002
https://doi.org/10.1016/j.micron.2014.09.002
https://doi.org/10.1002/jmri.22268
https://doi.org/10.1002/jmri.22268
https://doi.org/10.1002/jmri.22268
https://doi.org/10.7305/automatika.53-4.281
https://doi.org/10.7305/automatika.53-4.281
https://doi.org/10.7305/automatika.53-4.281
https://doi.org/10.5405/jmbe.1183
https://doi.org/10.5405/jmbe.1183
https://doi.org/10.5405/jmbe.1183
https://doi.org/10.1007/s00138-012-0456-y
https://doi.org/10.1007/s00138-012-0456-y
https://doi.org/10.1007/s00138-012-0456-y
https://doi.org/10.1016/j.acra.2008.06.005
https://doi.org/10.1016/j.acra.2008.06.005
https://doi.org/10.1016/j.acra.2008.06.005
https://doi.org/10.1109/ICPR.1994.576366
https://doi.org/10.1109/ICPR.1994.576366
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1038/srep31858
https://doi.org/10.1038/srep31858
https://doi.org/10.3139/147.100272
https://doi.org/10.3139/147.100272
https://doi.org/10.3139/147.100272
https://doi.org/10.1161/01.CIR.68.4.834
https://doi.org/10.1161/01.CIR.68.4.834
https://doi.org/10.1161/01.CIR.68.4.834
https://doi.org/10.1016/j.patcog.2003.03.001
https://doi.org/10.1016/j.patcog.2003.03.001
https://doi.org/10.1016/j.patcog.2003.03.001
https://doi.org/10.1016/j.compmedimag.2008.05.005
https://doi.org/10.1016/j.compmedimag.2008.05.005
https://doi.org/10.1016/j.compmedimag.2008.05.005
https://doi.org/10.1590/S1516-14392012005000032
https://doi.org/10.1590/S1516-14392012005000032
https://doi.org/10.1590/S1516-14392012005000032
https://doi.org/10.1139/x98-200
https://doi.org/10.1139/x98-200
https://doi.org/10.1139/x98-200
https://doi.org/10.1109/TGRS.1986.289643
https://doi.org/10.1109/TGRS.1986.289643
https://doi.org/10.1109/TGRS.1986.289643
https://doi.org/10.1002/jmri.25279
https://doi.org/10.1002/jmri.25279
https://doi.org/10.1002/jmri.25279
https://doi.org/10.1002/mrm.22147
https://doi.org/10.1002/mrm.22147
https://doi.org/10.1002/mrm.22147

	Density estimation of grey-level co-occurrence matrices for image texture analysis
	Abstract
	1. Introduction
	2. Theory
	2.1. The Haralick texture features
	2.2. The invariant texture features

	3. Methods
	3.1. Evaluation metric
	3.2. Data
	3.2.1. The Kylberg texture dataset
	3.2.2. The prostate cancer data set

	3.3. Data processing
	3.3.1. The ‘true’ feature values

	3.4. Comparison
	3.4.1. Fixed number of grey-levels
	3.4.2. Variable number of grey-levels
	3.4.3. Parzen windows
	3.4.4. Gaussian mixture models
	3.4.5. Optimal number of grey-levels

	3.5. Statistical test of results
	3.6. Computational time of the results

	4. Results
	4.1. Analysis of the relative RMSE
	4.1.1. Testing all methods on all data

	4.2. Timing results

	5. Discussion
	6. Conclusion
	Acknowledgments
	ORCID iDs
	References


