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Abstract. We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator

(DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle

hydrodynamics simulation of a multiphase interstellar medium. The comparison between the two methods clearly demonstrates

the superior performance of the DTFE with respect to conventional SPH methods, in particular at locations where SPH appears

to fail. Filamentary and sheetlike structures form telling examples. The DTFE is a fully self-adaptive technique for reconstruct-

ing continuous density fields from discrete particle distributions, and is based upon the corresponding Delaunay tessellation.

Its principal asset is its complete independence of arbitrary smoothing functions and parameters specifying the properties of

these. As a result it manages to faithfully reproduce the anisotropies of the local particle distribution and through its adaptive

and local nature proves to be optimally suited for uncovering the full structural richness in the density distribution. Through

the improvement in local density estimates, calculations invoking the DTFE will yield a much better representation of physical

processes which depend on density. This will be crucial in the case of feedback processes, which play a major role in galaxy

and star formation. The presented results form an encouraging step towards the application and insertion of the DTFE in astro-

physical hydrocodes. We describe an outline for the construction of a particle hydrodynamics code in which the DTFE replaces

kernel-based methods. Further discussion addresses the issue and possibilities for a moving grid-based hydrocode invoking the

DTFE, and Delaunay tessellations, in an attempt to combine the virtues of the Eulerian and Lagrangian approaches.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) has established itself

as the workhorse for a variety of astrophysical fluid dynami-

cal computations (Lucy 1977; Ginghold & Monaghan 1977).

In a wide range of astrophysical environments this Lagrangian

scheme offers substantial and often crucial advantages over

Eulerian, usually grid-based, schemes. Astrophysical applica-

tions such as cosmic structure formation and galaxy formation,

the dynamics of accretion disks and the formation of stars and

planetary systems are examples of its versatility and succesful

performance (for an enumeration of applications, and corre-

sponding references, see e.g. the reviews by Monaghan 1992;

Bertschinger 1998).

A crucial aspect of the SPH procedure concerns the proper

estimation of the local density, i.e. the density at the location

of the particles which are supposed to represent a fair – dis-

crete – sampling of the underlying continuous density field.

The basic feature of the SPH procedure for density estimation

Send offprint requests to: F. I. Pelupessy,
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is based upon a convolution of the discrete particle distribution

with a particular user-specified kernel function W. For a sample

of N particles, with masses m j and locations r j, the density ρ at

the location ri of particle i is given by

ρ(ri) =

N
∑

j=1

m j W(ri − r j, hi), (1)

in which the kernel resolution is determined through the

smoothing scale hi. Notice that generically the scale hi may

be different for each individual particle, and thus may be set to

adapt to the local particle density. Usually the functional depen-

dence of the kernel W is chosen to be spherically symmetric,

so that it is a function of |ri − r j| only.

The evolution of the physical system under consideration

is fully determined by the movement of the discrete parti-

cles. Given a properly defined density estimation procedure, the

equations of motion for the set of particles are specified through

a suitable Lagrangian, if necessary including additional viscous

forces (see e.g. Rasio 1999).

In practical implementations, however, the SPH procedure

involves a considerable number of artefacts. These stem from
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the fact that SPH particles represent functional averages over a

certain Lagrangian volume. This averaging procedure is further

aggravated by the fact that it is based upon a rather arbitrary

user-specified choice of both the adopted resolution scale(s) hi

and the functional form of the kernel W. Such a description of a

physical system in terms of user-defined fuzzy clouds of matter

is known to lead to considerable complications in realistic as-

trophysical circumstances. Often, these environments involve

fluid flows exhibiting complex spatial patterns and geometries.

In particular in configurations characterized by strong gradients

in physical characteristics – of which the density, pressure and

temperature discontinuities in and around shock waves repre-

sent the most frequently encountered example – SPH has been

hindered by its relative inefficiency in resolving these gradients.

Given the necessity for the user to specify the characteris-

tics and parameter values of the density estimation procedure,

the accuracy and adaptibility of the resulting SPH implemen-

tation hinges on the ability to resolve steep density contrasts

and the capacity to adapt itself to the geometry and morphol-

ogy of the local matter distribution. A considerable improve-

ment with respect to the early SPH implementations, which

were based on a uniform smoothing length h, involves the use

of adaptive smoothing lengths hi (Hernquist & Katz 1989),

which provides the SPH calculations with a larger dynamic

range and higher spatial resolution. The mass distribution in

many (astro) physical systems and circumstances is often char-

acterized by the presence of salient anisotropic patterns, usu-

ally identified as filamentary or planar features. To deal with

such configurations, additional modifications in a few sophis-

ticated implementations attempted to replace the conventional

– and often unrealistic and restrictive – spherically symmetric

kernels by ones whose configuration is more akin to the shape

of the local mass distribution. The corresponding results do in-

deed represent a strong argument for the importance of using

geometrically adaptive density estimates. A noteworthy exam-

ple is the introduction of ellipsoidal kernels by Shapiro et al.

(1996). Their shapes are stretched in accordance with the lo-

cal flow. Yet, while evidently being conceptually superior, their

practical implementation does constitute a major obstacle and

has prevented widescale use. This may be ascribed largely to

the rapidly increasing number of degrees of freedom needed to

specify and maintain the kernel properties during a simulation.

Even despite their obvious benefits and improvements,

these methods are all dependent upon the artificial parametriza-

tion of the local spatial density distribution in terms of the

smoothing kernels. Moreover, the specification of the informa-

tion on the density distribution in terms of extra non physi-

cal variables, necessary for the definition and evolution of the

properties of the smoothing kernels, is often cumbersome to

implement and may introduce subtle errors (Hernquist 1993,

see however Nelson & Papaloizou 1994; Springel & Hernquist

2002). In many astrophysical applications this may lead to sys-

tematic artefacts in the outcome for the related physical phe-

nomena. Within a cosmological context, for example, the X-ray

visibility of clusters of galaxies is sensitively dependent upon

the value of the local density, setting the intensity of the emitted

X-ray emission by the hot intergalactic gas. This will be even

more critical in the presence of feedback processes, which for

sure will be playing a role when addressing the amount of pre-

dicted star formation in simulation studies of galaxy formation.

Here, we seek to circumvent the complications induced by

the kernel parametrization and introduce and propose an alter-

native to the use of kernels for the quantification of the den-

sity within the SPH formalism. This new method, based upon

the Delaunay Tessellation Field Estimator (DTFE, Schaap &

van de Weygaert 2000), has been devised to mould and fully

adapt itself to the configuration of the particle distribution.

Unlike conventional SPH methods, it is able to deal self-

consistently and naturally with anisotropies in the matter dis-

tribution, even when it concerns caustic-like transitions. In ad-

dition, it manages to succesfully treat density fields marked by

structural features over a vast (dynamic) range of scales.

The DTFE produces density estimates on the basis of the

particle distribution, which is supposed to form a discrete

spatial sampling of the underlying continuous density field.

As a linear multidimensional field interpolation algorithm it

may be regarded as a first-order version of the natural neigh-

bour algorithm for spatial interpolation (Sibson 1981; also see

e.g. Okabe et al. 2000). In general, applications of the DTFE

to spatial point distributions have demonstrated its success in

dealing with the complications of anisotropic geometry and

dynamic range (Schaap & van de Weygaert 2000). The key

ingredient of the DTFE procedure is that of the Delaunay tri-

angulation, serving as the complete covering of a sample vol-

ume by mutually exclusive multidimensional linear interpola-

tion intervals.

Delaunay tessellations (Delaunay 1934; see e.g. Okabe

et al. 2000 for extensive review) form the natural framework in

which to discuss the properties of discrete point sets, and thus

also of discrete samplings of continuous fields. Their versatil-

ity and significance have been underlined by their widespread

applications in such areas as computer graphics, geographical

mapping and medical imaging. Also, they have already found

widespread application in a variety of “conventional” grid-

based fluid dynamical computation schemes. This may concern

their use as a non-regular application-oriented grid covering

of physicalsystems, which represents a prominent procedure in

technological applications. More innovating has been their use

in Lagrangian “moving-grid” implementations (see Mavripilis

1997 for a review, and Whitehurst 1995 for a promising astro-

physical application).

It seems therefore a good idea to explore the possibilities

of applying the DTFE in the context of a numerical hydrody-

namics code. Here, as a first step, we wish to obtain an idea

of the performance of a hydro code involving the use of DTFE

estimates with respect to an equivalent code involving regular

SPH density estimates. The quality of the new DTFE method

with respect to the conventional SPH estimates, and their ad-

vantages and disadvantages under various circumstances, are

evaluated by a comparison between the density field which

would be yielded by a DTFE processing of the resulting SPH

particle distribution and that of the regular SPH procedure it-

self. In this study, we operate along these lines by a comparison

of the resulting matter distributions in the situation of a repre-

sentative stochastic multiphase density field. This allows us to

make a comparison between both density estimates in a regime
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for which an improved method for density estimates would be

of great value. We should point out a major drawback of our

approach, in that we do not really treat the DTFE density es-

timate in a self-consistent fashion. Instead of being part of the

dynamical equations themselves we only use it as an analysis

tool of the produced particle distribution. Nevertheless, it will

still show the value of the DTFE in particle gasdynamics and

give an indication of what kind of differences may be expected

when incorporating in a fully self-consistent manner the DTFE

estimate in an hydrocode.

On the basis of our study, we will elaborate on the poten-

tial benefits of a hydrodynamics scheme based on the DTFE.

Specifically, we outline how we would set out to develop a

complete particle hydrodynamics code whose artificial kernel

based nature is replaced by the more natural and self-adaptive

approach of the DTFE. Such a DTFE based particle hydrody-

namics code would form a promising step towards the develop-

ment of a fully tessellation based quasi-Eulerian moving-grid

hydrodynamical code. Such would yield a major and signifi-

cant step towards defining a much needed alternative and com-

plement to currently available simulation tools.

2. DTFE and SPH density estimates

The methods we use for SPH and DTFE density estimates have

been extensively described elsewhere (Hernquist & Katz 1989;

Schaap & van de Weygaert 2000). Here, we will only summa-

rize their main, and relevant, aspects.

2.1. SPH density estimate

Amongst the various density recepies employed within avail-

able SPH codes, we use the Hernquist & Katz (1989) sym-

metrized form of Eq. (1), using adaptive smoothing lengths:

ρ̂i =
1

2

∑

j

m j

{

W(|ri − r j|, hi) +W(|ri − r j|, h j)
}

. (2)

The smoothing lengths hi are chosen such that the sum in-

volves around 40 nearest neighbours. For the kernel W we take

the conventional spline kernel described by Monaghan (1992).

Other variants of the SPH estimate produce comparable results.

2.2. DTFE density estimate

The DTFE density estimating procedure consists of three basic

steps.

Starting from the sample of particle locations, the first step

involves the computation of the corresponding Delaunay tes-

sellation. Each Delaunay cell Tm is the uniquely defined tetra-

hedron whose four vertices (in 3D) are the set of 4 sample

particles whose circumscribing sphere does not contain any

of the other particles in the set. The Delaunay tessellation is

the full covering of space by the complete set of these mutu-

ally disjunct tetrahedra. Delaunay tessellations are well known

concepts in stochastic and computational geometry (Delaunay

1934; for further references see e.g. Okabe et al. 2000; Møller

1994; van de Weygaert 1991).

The second step involves estimating the density at the lo-

cation of each of the particles in the sample. From the def-

inition of the Delaunay tessellation, it may be evident that

there is a close relationship between the volume of a Delaunay

tetrahedron and the local density of the generating point pro-

cess (telling examples of this may be seen in e.g. Schaap &

van de Weygaert 2002a). Evidently, the “empty” cirumscribing

spheres corresponding to the Delaunay tetrahedra, and the vol-

umes of the resulting Delaunay tetrahedra, will be smaller as

the number density of sample points increases, and vice versa.

Following this observation, a proper density estimate ρ̂ at the

location xi of a sampling point i is obtained by determining the

properly calibrated inverse of the volumeWVor,i of the corre-

sponding contiguous Voronoi cell. The contiguous Voronoi cell

WVor,i is the union of all Delaunay tetrahedra Tm,i of which the

particle i forms one of the four vertices, i.e.WVor,i =
⋃

m Tm,i.

In general, when a particle i is surrounded by NT Delaunay

tetrahedra, each with a volume V(Tm,i), the volume of the re-

sulting contiguous Voronoi cell is

WVor,i =

NT
∑

m=1

V(Tm,i) . (3)

Note that NT is not a constant, but in general may acquire a

different value for each point in the sample. For a Poisson dis-

tribution of particles this is a non-integer number in the order

of 〈NT 〉 ≈ 27 (van de Weygaert 1994). Generalizing to an ar-

bitrary D-dimensional space, and assuming that each particle i

has been assigned a mass mi, the estimated density ρ̂i at the lo-

cation of particle i is given by (see Schaap & van de Weygaert

2000)

ρ̂(ri) = (D + 1)
mi

WVor,i

· (4)

In this, we explicitly express WVor,i for the general

D-dimensional case. The factor (D + 1) is a normalization fac-

tor, accounting for the (D + 1) different contiguous Voronoi

hypercells to which each Delaunay hyper “tetrahedron” is as-

signed, one for each vertex of a Delaunay hyper “tetrahedron”.

The third step is the interpolation of the estimated densi-

ties ρ̂i over the full sample volume. In this, the DTFE bases

itself upon the fact that each Delaunay tetrahedron may be con-

sidered the natural multidimensional equivalent of a linear in-

terpolation interval (see e.g. Bernardeau & van de Weygaert

1996). Given the (D + 1) vertices of a Delaunay tetrahedron

with corresponding density estimates ρ̂ j, the value ρ̂(r) at any

location r within the tetrahedron can be straightforwardly de-

termined by simple linear interpolation,

ρ̂(r) = ρ̂(ri0) + (∇̂ρ)Del,m · (r − ri0), (5)

in which ri0 is the location of one of the Delaunay vertices i.

This is a trivial evaluation once the value of the (linear) den-

sity gradient (∇̂ρ)Del,m has been estimated. For each Delaunay

tetrahedron Tm this is accomplished by solving the the sys-

tem of D linear equations corresponding to each of the re-

maining D Delaunay vertices constituting the Delaunay tetra-

hedron Tm. The “minimum triangulation” property of Delaunay

tessellations underlying this linear interpolation, minimum in
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the sense of representing a volume-covering network of opti-

mally compact multidimensional “triangles”, has been a well-

known property utilized in a variety of imaging and surface

rendering applications such as geographical mapping and vari-

ous computer imaging algorithms.

2.3. Comparison

Comparing the two methods, we see that in the case of SPH

the particle “size” and “shape” (i.e. its domain of influence) is

determined by some arbitrary kernel W(r, hi) and a fortuitous

choice of smoothing length hi (assuming, along with the ma-

jor share of SPH procedures, a radially symmetric kernel). In

the case of the DTFE method the particles’ influence region

is fully determined by the sizes and shapes of the Delaunay

cells Tm,i, themselves solely dependent on the particle distribu-

tion. In other words, in regular SPH the density is determined

through the kernel function W(x), while in DTFE it is solely

the particle distribution itself setting the estimated values of the

density. Contrary to the generic situation for the kernel depen-

dent methods, there are no extra variables left to be determined.

One major additional advantage is that it is therefore not nec-

essary to worry about the evolution of the kernel parameters.

Both methods do display some characteristic artefacts in

their density reconstructions (see Fig. 1). To a large extent these

may be traced back to the implicit assumptions involved in

the interpolation procedures, a necessary consequence of the

finite amount of information contained in a discrete represen-

tation of a continuous field. SPH density fields implicitly con-

tain the imprint of the specified and applied kernel which, as

has been discussed before, may seriously impart its resolving

power and capacity to trace the true geometry of structures. The

DTFE technique, on the other hand, does produce triangular

artefacts. At instances conspicuously visible in the DTFE re-

constructed density fields, they are the result of the linear inter-

polation scheme employed for the density estimation at the lo-

cations not coinciding with the particle positions. In principle,

this may be substantially improved by the use of higher order

interpolation schemes. Such higher-order schemes have indeed

been developed, and the ones based upon the natural neighbour

interpolation prescription of Sibson (1981) have already been

succesfully applied to two-dimensional problems in the field of

geophysics (Sambridge et al. 1995; Braun & Sambridge 1995)

and solid state physics (Sukumar 1998).

3. Case study: Two-phase interstellar medium

For the sake of testing and comparing the SPH and DTFE meth-

ods, we assess a snapshot from a simulation of the neutral ISM.

The model of the ISM is chosen as an illustration rather than as

a realistic model.

The “simulation” sample of the ISM consists of HI gas con-

fined in a periodic simulation box with a size L = 0.6 kpc3. The

initially uniform density of the gas is nH = 0.3 cm−3, while its

temperature is taken to be T = 10 000 K. No fluctuation spec-

trum is imposed to set the initial featureless spatial gas distri-

bution. To set the corresponding initial spatial distribution of

the N = 64 000 simulation particles, we start from relaxed

initial conditions according to a “glass” distribution (e.g. White

1994).

The evolution of the gas is solely a consequence of fluid

dynamical and thermodynamical processes. No self gravity is

included. As for the thermodynamical state of the gas, cool-

ing is implemented using a fit to the Dalgarno-McCray (1972)

cooling curve. The heating of the gas is accomplished through

photo-electric grain heating, attributed to a constant FUV back-

ground (1.7 G0, with G0 the Habing field) radiation field.

The parameters are chosen such that after about 15 Myrs a

two-phase medium forms which consists of warm (10 000 K)

and cold (>100 K) HI gas.

The stage at which a two-phase medium emerges forms a

suitable point to investigate the performance of the SPH and

DTFE methods. At this stage we took a snapshot from the sim-

ulation, and subjected it to further analysis. For a variety of

reasons, the spatial gas distribution of the snapshot is expected

to represent a challenging configuration. The multiphase char-

acter of the resulting particle configuration is likely to present a

problem for regular SPH. Density contrasts of about four orders

of magnitude separate dense clumps from the surrounding dif-

fuse medium through which they are dispersed. Note that a fail-

ure to recover the correct density may have serious repercus-

sions for the computed effects of cooling. In addition, we notice

the presence of physical structures with conspicuous, aspheri-

cal geometries (see Figs. 1 and 2), such as anisotropic sheets

and filaments as well as dense and compact clumps, which cer-

tainly do form a challenging aspect for the different methods.

3.1. Results

Figure 1 offers a visual impression of the differences in per-

formance between the SPH and DTFE density reconstructions.

The greyscale density maps in Fig. 1 (lower left: SPH, lower

right: DTFE) represent 2D cuts through the corresponding 3D

density field reconstructions (note that contrary to the finite

width of the corresponding particle slice, upper left frame,

these constitute planes with zero thickness).

Immediately visible is the more crispy appearance of the

DTFE density field, displaying substantially more contrast in

conjunction with more pronounced structural features. Look

e.g. at the compact clump in the lower righthand corner (X ≈

0.5, Y ≈ 0.12), forming a prominent and tight spot in the DTFE

density field. The clump at (X ≈ 0.48, Y ≈ 0.52) represents

another telling example, visible as a striking peak in the DTFE

rendering while hardly noticeable in the SPH reconstruction.

Structures in the SPH field have a more extended appearance

than their counterparts in the DTFE field, whose matter con-

tent has been smeared out more evenly, over a larger volume,

yielding features with a significantly lower contrast. In this as-

sessment it becomes clear that the DTFE reconstruction ad-

heres considerably closer to the original particle distribution

(top lefthand frame). Apparently the DTFE succeeds better in

rendering the shapes, the coherence and the internal composi-

tion in the displayed particle distribution. At various locations,

the DTFE even manages to capture structural details which

seem to be absent in the SPH density field.
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DTFESPH
Fig. 1. Comparison of the DTFE performance versus that of the regular SPH method in a characteristic configuration, that of a hydrodynamic

simulation of the multiphase interstellar medium. Top left panel: the particle distribution in a 0.6 × 0.6 kpc simulation region, within a slice

with a width of 0.005 kpc. Bottom left frame: 2D slice through the resulting (3D) SPH density field reconstruction. Bottom right frame: the

corresponding (3D) density field reconstruction produced by the DTFE procedure. Top righthand frame: summary, in terms of a quantitative

point-by-point comparison between the DTFE and SPH density estimates, ρDTFE and ρSPH. Abscissa: the value of the SPH density estimate

(normalized by the average density 〈ρ〉). Ordinate: the ratio of DTFE estimate to the SPH density estimate, ρDTFE/ρSPH. These quantities are

plotted for each particle location in the full simulation box.

To quantify the visual impressions of Fig. 1, and to ana-

lyze the nature of the differences between the two methods, we

plot the ratio ρDTFE/ρSPH as a function of the SPH density es-

timate ρSPH/〈ρ〉 (in units of the average density 〈ρ〉). Doing so

for all particles in the sample (Fig. 1, top righthand, Fig. 2, top

lefthand) immediately reveals interesting behaviour. The scat-

ter diagram does show that the discrepancies between the two

methods may be substantial, with density estimates at various

instances differing by a factor of 5 or more.

Most interesting is the finding that we may distinguish

clearly identifiable and distinct regimes in the scatter diagram

of ρDTFE/ρSPH versus ρSPH/〈ρ〉. Four different sectors may be

identified in the scatter diagram. Allowing for some arbitrari-

ness in their definition, and indicating these regions by digits 1

to 4, we may organize the particles according to density-related
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2

4

3

3

1

1 2 4

Fig. 2. Systematic analysis of the differences between the DTFE and SPH density estimates, ρDTFE and ρSPH. Basis of the analysis is a point-by-

point comparison of these two density estimates. Top lefthand frame: diagram of the value of the ratio ρDTFE/ρSPH (ordinate) versus ρSPH/〈ρ〉

(abscissa) for each of the points in the simulation volume. Indicated in this scatter diagram are four sectors, each of which corresponds

to particles residing in a physically different regime/phase. On the basis of this identification, the full set of particles is dissected into the

corresponding four composing particle samples. Top righthand frame: the spatial distribution of the full set of particles in a 0.04 kpc wide slice.

The subsequent 4 frames (from central left to bottom right) show, for each indicated sector in the scatter diagram, the spatial distribution of the

corresponding particles (within the same 0.04 kpc slice).
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criteria, roughly specified as (we refer to Fig. 2, top left frame,

for the precise definitions of the domains):

1. low density regions:

ρSPH/〈ρ〉 < 1;

2. medium density regions, DTFE smaller than SPH:

ρDTFE < ρSPH; 1 < ρSPH/〈ρ〉 < 10;

3. medium density regions, DTFE larger than SPH:

ρDTFE > ρSPH; 1 < ρSPH/〈ρ〉 < 10;

4. high density regions:

ρDTFE & ρSPH; ρSPH/〈ρ〉 > 10.

The physical meaning of the distinct sectors in the scatter dia-

gram becomes apparent when relating the various regimes with

the spatial distribution of the corresponding particles. This may

be appreciated from the five subsequent frames in Fig. 2, each

depicting the related particle distribution in the same slice of

width 0.04 kpc. The centre and bottom frames, numbered 1

to 4, show the spatial distribution of each group of particles,

isolated from the complete distribution (top right frame, Fig. 2).

These particle slices immediately reveal the close correspon-

dence between any of the sectors in the scatter diagram and

typical features in the spatial matter distribution of the two-

phase interstellar medium. This systematic behaviour seems to

point to truly fundamental differences in the workings of the

SPH and DTFE methods, and would be hard to understand in

terms of random errors. The separate spatial features in the gas

distribution seem to react differently to the use of the DTFE

method.

We argue that the major share of the disparity between the

SPH and DTFE density estimates has to be attributed to SPH,

mainly on the grounds of the known fact that SPH is poor in

handling nontrivial configurations such as encountered in mul-

tiphase media. By separately assessing each regime, we may

come to appreciate how these differences arise. In sector 1, in-

volving the diffuse low density medium, the DTFE and SPH es-

timates are of comparable magnitude, be it that we do observe a

systematic tendency. In the lowest density realms, whose rela-

tively smooth density does not raise serious obstacles for either

method, DTFE and SPH are indeed equal (with the exception

of variations to be attributed to random noise). However, near

the edges of the low density regions, SPH starts to overesti-

mate the local density as the kernels do include particles within

the surrounding high density structures. The geometric inter-

polation of the DTFE manages to avoid this systematic effect

(see e.g. Schaap & van de Weygaert 2002a,b), which explains

the systematic linear decrease of the ratio ρDTFE/ρSPH with in-

creasing ρSPH/〈ρ〉. To the other extreme, the high density re-

gions in sector 4 are identified with compact dense clumps

as well as with their extensions into connecting filaments and

walls. On average DTFE yields higher density estimates than

SPH, frequently displaying superior spatial resolution (see also

greyscale plot in Fig. 1). Note that the repercussions may be

far-reaching in the context of a wide variety of astrophysi-

cal environments characterized by strongly density dependent

physical phenomena and processes! The intermediate regime of

sectors 2 and 3 clearly connects to the filamentary structures in

the gas distribution. Sector 2, in which the DTFE estimates are

larger than those of SPH, appears to select out the inner parts

of the filaments and walls. By contrast, the higher values for

the SPH produced densities in sector 3 are related to the outer

realms of these features. This characteristic distinction can be

traced back to the failure of the SPH procedure to cope with

highly anisotropic particle configurations. While it attempts to

maintain a fixed number of neighbours within a spherical ker-

nel, it smears out the density in a direction perpendicular to

the filament. This produces lower estimates in the central parts,

which are compensated for with higher estimates in the periph-

ery. Evidently, the adaptive nature of DTFE does not appear to

produce similar deficiencies.

4. The DTFE particle method

Having demonstrated the improvement in quality of the DTFE

density estimates, this suggests a considerable potential for in-

corporating the DTFE in a self-consistent manner within a hy-

drodynamical code. Here, we first wish to indicate a possible

route for accomplishing this in a particle hydrodynamics code

through replacement of the kernel based density estimates (1)

by the DTFE density estimates. We are currently in the pro-

cess of implementing this. The formalism on which this

implementation is based can be easily derived, involving non-

trivial yet minor modifications. Essentially, it uses the same dy-

namic equations for gas particles as those in the regular SPH

formalism, the fundamental adjustment being the insertion of

the DTFE densities instead of the regular SPH ones. In addi-

tion, a further difference may be introduced through a change

in treatment of viscous forces. Ultimately, this will work out

into different equations of motion for the gas particles. A fun-

damental property of a DTFE based hydrocode, by construc-

tion, is that it conserves mass exactly and therefore obeys the

continuity equation. This is not necessarily true for SPH imple-

mentations (Hernquist & Katz 1989).

The start of the suggested DTFE particle method is formed

by the discretized expression for the Lagrangian L for a com-

pressible, nondissipative flow,

L =
∑

i

mi

(

1

2
v2i − ui(ρi, si)

)

, (6)

where mi is the mass of particle i, vi its velocity, si the cor-

responding entropy and ui its specific internal energy. In this

expression, ρi is the density at location i, as yet unspecified.

The resulting Euler-Lagrange equations are

midvi

dt
= −

∑

j

m j

(

∂u j

∂ρ j

)

s

∂ρ j

∂xi

· (7)

The standard SPH equations of motion then follow after insert-

ing the SPH density estimate (Eq. (1)). Instead, insertion of the

DTFE density (Eq. (4)) will lead to the corresponding equa-

tions of motion for the DTFE-based formalism. Note that the

usual conservation properties related to Eq. (6) remain intact.

After some algebraic manipulation, thereby using the basic

thermodynamic relation for a gas with equation of state P(ρ),

(

∂ui

∂ρi

)

s

=
Pi

ρ2
i

, (8)
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we finally obtain the equations of motion for the gas particles

(moving in D-dimensional space),

midvi

dt
=

1

D + 1

NT
∑

m=1

P(Tm,i)
∂V(Tm,i)

∂xi

· (9)

This expression involves a summation over all NT Delaunay

tetrahedra Tm,i, with volumesV(Tm,i), which have the particle i

as one of its four vertices. The pressure term P(Tm,i) is the sum

over the pressures P j at the four vertices j of tetrahedron Tm,i,

P(Tm,i) =
∑

P j.

As an interesting aside, we point out that unlike in the con-

ventional SPH formalism, this procedure implies an exactly

vanishing acceleration dvi/dt in the case of a constant pressure

P at each of the vertices of the Delaunay tetrahedra containing

particle i as one of their vertices. The reason for this is that one

can then invoke the definition of the volume of the contiguous

Voronoi cell corresponding to point i (Eq. (3)), yielding

midvi

dt
=

1

D + 1
P
∂WVor,i

∂xi

· (10)

Since the volume of the contiguous Voronoi cell does not de-

pend on the position of particle i itself (it lies in the inte-

rior of the contiguous Voronoi cell), the resulting acceleration

vanishes. Another interesting notion, which was pointed out

by Icke (2002), is that Delaunay tessellations also provide a

unique opportunity to include a natural treatment of the vis-

cous stresses in the physical system. We intend to elaborate on

this possibility in subsequent work dealing with the practical

implementation along the lines sketched above.

5. Delaunay tessellations

and “moving grid” hydrocodes

Ultimately, the ideal hydrodynamical code would combine

the advantages of the Eulerian as well as of the Lagrangian

approach. In their simplest formulation, Eulerian algorithms

cover the volume of study with a fixed grid and compute the

fluid transfer through the faces of the (fixed) grid cell vol-

umes to follow the evolution of the system. Lagrangian for-

mulations, on the other hand, compute the system by following

the ever changing volume and shape of a particular individual

element of gas (interestingly, the “Lagrangian” formulation is

also due to Euler 1862, who employed this formalism in a letter

to Lagrange, who later proposed these ideas in a publication by

himself, 1762; see Whitehurst 1995).

For a substantial part the success of the DTFE may be as-

cribed to the use of Delaunay tessellations as an optimally cov-

ering grid. This suggests that they may also be ideal for the

use in moving grid implementations for hydrodynamical cal-

culations. As in our SPH application, such hydrocodes with

Delaunay tessellations at their core would warrant a close con-

nection to the underlying matter distribution. Indeed, attempts

towards such implementations have already been introduced in

the context of a few specific, mainly two-dimensional, appli-

cations (Whitehurst 1995; Braun & Sambridge 1995; Sukumar

1998). Alternative attempts towards the development of mov-

ing grid codes, in an astrophysical context, have shown their

potential (Gnedin 1995; Pen 1998).

For a variety of astrophysical problems it is indeed essen-

tial to have such advanced codes at one’s disposal. An exam-

ple of high current interest may offer a good illustration. Such

an example is the reionization of the intergalactic medium by

the ionizing radiation emitted by the first generation of stars,

(proto)galaxies and/or active galactic nuclei. These radiation

sources will form in the densest regions of the universe. To

be able to resolve these in sufficient detail, it is crucial that the

code is able to focus in onto these densest spots. Their emphasis

on mass resolution makes Lagrangian codes – including SPH –

usually better equipped to do so, be it not yet optimally. On the

other hand, it is in the low density regions that most radiation

is absorbed at first. In the early stages the reionization process

is therefore restricted to the huge underdense fraction of space.

Simulation codes should therefore properly represent and re-

solve the gas density distribution within these voidlike regions.

The uniform spatial resolution of the Eulerian codes is better

suited to accomplish this. Ideally, however, a simulation code

should be able to combine the virtues of both approaches, yield-

ing optimal mass resolution in the high density source regions

and a proper coverage of the large underdense regions. Moving

grid methods, of which Delaunay tessellation based ones will

be a natural example, may indeed be the best alternative, as

the reionization simulations by Gnedin (1995) appear to indi-

cate. There have been many efforts in the context of Eulerian

codes towards the development of Adaptive Mesh Refinement

(AMR) algorithms (Berger 1989), which have achieved a de-

gree of maturity. Their chief advantage is their ability to con-

centrate computational effort on regions based on arbitrary re-

finement criteria, where, in the basic form at least, moving grid

methods refine on a mass resolution criterion. However they

are still constrained by the use of regular grids, which may

introduce artifacts due to the presence of preferred directions

in the grid. The advantages of a moving grid fluid dynamics

code based on Delaunay tessellations have been most explic-

itly demonstrated by the implementation of a two-dimensional

lagrangian hydrocode (FLAME) by Whitehurst (1995). These

advantages will in principle apply to any such algorithm, in par-

ticular also for three-dimensional implementations (of which

we are currently unaware). Whitehurst (1995) enumerated var-

ious potential benefits in comparison with conventional SPH

codes, most importantly the following:

1. SPH needs a smoothing length h.

2. SPH needs an arbitrary kernel function W.

3. The moving grid method does not need an (unphysical) ar-

tificial viscosity to stabilize solutions.

The validity of the first two claims has of course also been

demonstrated in this study for particle methods based on

DTFE. Whitehurst showed additionally that there is an advan-

tage of moving grid methods over Eulerian grid-based ones.

The implementation of Whitehurst, which used a first-order

solver and a limit on the shape of grid cells to control the ef-

fects of shearing of the grid, was far superior to all tested first-

order Eulerian codes, and superior to many second-order ones

as well. The adaptive nature of the Lagrangian method and

the fact that the resulting grid has no preferred directions are

key factors in determining the performance of moving grid
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methods such as FLAME. For additional convincing argu-

ments, including the other claims, we may refer the reader

to the truly impressive case studies presented by Whitehurst

(1995).

6. Summary and discussion

Here we have introduced the DTFE as an alternative density

estimator for particle fluid dynamics. Its principle asset is that

it is fully self-adaptive, resulting in a density field reconstruc-

tion which closely reproduces, usually in meticulous detail,

the characteristics of the spatial particle distribution. It may

do so because of its complete independence of arbitrary user-

specified smoothing functions and parameters. Unlike conven-

tional methods, such as the kernel estimators used in SPH, it

manages to faithfully reproduce the anisotropies in the local

particle distribution. It therefore automatically reflects the gen-

uine geometry and shape of the structures present in the under-

lying density field. This is in marked contrast with kernel based

methods, which almost without exception produce distorted

shapes of density features, the result of the convolution of the

real structure with the intrinsic shape of the smoothing func-

tion. Its adaptive and local nature also makes it optimally suited

for reconstructing the hierarchy of scales present in the den-

sity distribution. In kernel based methods the internal structural

richness of density features is usually suppressed on scales be-

low that of the characteristic (local) kernel scale. DTFE, how-

ever, is solely based upon the particle distribution itself and

follows the density field wherever the discrete representation

by the particle distribution allows it to do so. Its capacity to re-

solve structures over a large dynamic range may prove to be

highly beneficial in many astrophysical circumstances, quite

often involving environments in which we encounter a hier-

archical embedding of small-scale structures within more ex-

tended ones.

In this study we have investigated the performance of the

DTFE density estimator in the context of a Smooth Particle

Hydrodynamics simulation of a multiphase interstellar medium

of neutral gas. The limited spatial resolution of current parti-

cle hydrodynamics codes are known to implicate considerable

problems near regions with e.g. steep density and temperature

gradients. In particular their handling of shocks forms a source

of considerable concern. SPH often fails in and around these re-

gions, so often playing a critical and vital role in the evolution

of a physical system. Our study consists of a comparison and

confrontation of the conventional SPH kernel based density es-

timation procedure with the corresponding DTFE density field

reconstruction method.

The comparison of the density field reconstructions demon-

strated convincingly the considerable improvement embodied

by the DTFE procedure. This is in particular true at locations

and under conditions where SPH appears to fail. Filamentary

and sheetlike structures provide telling examples of the supe-

rior DTFE handling with respect to the regular SPH method,

with the most pronounced improvement occurring in the direc-

tion of the steepest density gradient.

Having shown the success of the DTFE, we are convinced

that its application towards the analysis of the outcome of SPH

simulations will prove to be highly beneficial. This may be un-

derlined by considering a fitting illustration. Simulations of the

settling and evolution of the X-ray emitting hot intracluster gas

in forming clusters of galaxies do represent an important and

cosmologically relevant example (see Borgani & Guzzo 2001

and Rosati et al. 2002 for recent reviews). The X-ray luminos-

ity is strongly dependent upon the density of the gas. The poor

accuracy of the density determination in regular SPH calcula-

tions therefore yields deficient X-ray luminosity estimates (see

Bertschinger 1998 and Rosati et al. 2002 for relevant recent re-

views). Despite a number of suggested remedies, such as sep-

arating particles according to their temperature, their ad hoc

nature does not evoke a strong sense of confidence in the re-

sults. Numerical limitations will of course always imply a de-

gree of artificial smoothing, but by invoking tools based upon

the DTFE technique there is at least a guarantee of an optimal

retrieval of information contained in the data.

Despite its promise for the use in a variety of analysis

tools for discrete data samples, such as particle distributions

in computer simulations or galaxy catalogues in an observa-

tional context, its potential would be most optimally exploited

by building it into genuine new fluid dynamics codes. Some

specific (two-dimensional) examples of succesful attempts in

other scientific fields were mentioned, and we argue for a sim-

ilar strategy in astrophysics. One path may be the upgrade of

current particle hydrodynamics codes by inserting DTFE tech-

nology. In this study, we have outlined the development of such

a SPH-like hydrodynamics scheme in which the regular kernel

estimates are replaced by DTFE estimates. One could interpret

this in terms of the replacement of the user-specified kernel by

the self-adaptive contiguous Delaunay cell, solely dependent

on the local particle configuration. An additional benefit will

be that on the basis of the localized connections in a Delaunay

tessellations it will be possible to define a more physically mo-

tivated artificial viscosity term.

The ultimate hydrodynamics algorithm would combine the

virtues of Eulerian and Lagrangian techniques. Considering the

positive experiences with DTFE, it appears to be worthwhile

within the context of “moving grid” or “Lagrangian grid” meth-

ods to investigate the use of Delaunay tessellations for solving

the Euler equations. With respect to a particle hydrodynamics

code, the self-adaptive virtues of DTFE and its ability to handle

arbitrary density jumps with only one intermediate point may

lead to significant improvements in the resolution and shock

handling properties. Yet, for grid based methods major compli-

cations may be expected in dealing with the non-regular nature

of the corresponding cells, complicating the handling of flux

transport along the boundaries of the Delaunay tetrahedra.

The computational cost of DTFE resembling techniques

is not overriding. The CPU time necessary for generating the

Delaunay tessellation corresponding to a point set of N parti-

cles is in the order of O (N log N), comparable to the cost of

generating the neighbour list in SPH. Within an evolving point

distribution these tessellation construction procedures may be

made far more efficient, as small steps in the development in the

system will induce a correspondingly small number of tetrahe-

dron (identity) changes. Such dynamic upgrading routines are

presently under development.
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In summary, in this work we have argued for and demon-

strated the potential and promise of a natural computational

technique which is based upon one of the most fundamen-

tal and natural tilings of space, the Delaunay tessellation.

Although the practical implementation will undoubtedly en-

counter a variety of complications, dependent upon the physi-

cal setting and scope of the code, the final benefit of a natural

moving grid hydrodynamics code for a large number of astro-

physical issues may not only represent a large progress in a

computational sense. Its major significance may be found in its

ability to address fundamental astrophysical problems in a new

and truely natural way, leading to important new insights in the

workings of the cosmos.
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