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Theoretical studies of charge transport in organic conducting systems pose a unique challenge

since they must describe both extremely short-ranged and fast processes (charge tunneling) and

extremely long-ranged and slow ones (molecular ordering). The description of the mobility of

electrons and holes in the hopping regime relies on the determination of intermolecular hopping

rates in large-scale morphologies. Using Marcus theory these rates can be calculated from

intermolecular transfer integrals and on-site energies. Here we present a detailed computational

study on the accuracy and efficiency of density-functional theory based approaches to the

determination of intermolecular transfer integrals. First, it is demonstrated how these can be

obtained from quantum-chemistry calculations by forming the expectation value of a dimer Fock

operator with frontier orbitals of two neighboring monomers based on a projective approach.

We then consider the prototypical example of one pair out of a larger morphology of

tris(8-hydroxyquinolinato)aluminium (Alq3) and study the influence of computational

parameters, e.g. the choice of basis sets, exchange–correlation functional, and convergence

criteria, on the calculated transfer integrals. The respective results are compared in order to

derive an optimal strategy for future simulations based on the full morphology.

I. Introduction

The rapidly growing field of organic semiconductors is

driven mainly by two factors: (i) the possibility to combine

electronic properties of semiconductors with mechanical

properties of soft condensed matter, which has clear

advantages for large-scale material processing, and (ii) the

ability to synthetically control both electronic and self-

assembly properties. In spite of recent advancements, the main

limiting factors of state-of-the-art materials is their stability

and low charge carrier mobility. Hence, optimization of

charge transport is essential in order to improve efficiency

of devices. In this situation, computer simulation can help to

pre-screen available compounds by formulating appropriate

structure–processing property (in this case charge mobility)

relationships or even help to rationally design organic

semiconductors.1–5

Several techniques have been used to describe charge

transport in organic semiconductors. For ordered crystals,

the Drude model is often used, with the charge mobility

determined from the mean free relaxation time of the band

states and effective mass of charge carriers.6–9 The simple

band-like picture can be adjusted to take into account

electron–phonon coupling.10–13 If the wavefunction is no

longer completely delocalized and charge transport becomes

diffusion-limited by thermal disorder, the semi-classical

dynamics model based on a Hamiltonian with interacting

electronic and nuclear degrees of freedom can be used.14–16

If charge transport occurs in the non-adiabatic regime or is

strongly limited by trapping, a common approach is to solve

rate equations for charge hopping. In the Gaussian disorder

model, the distributions on the rate parameters17 are chosen

empirically. Another approach is to explicitly compute charge

transfer parameters for a given arrangement of molecules

using temperature-activated non-adiabatic transfer in the

high-temperature regime given by Marcus theory18,19

onm ¼
t2nm
�h

ffiffiffiffiffiffiffiffiffiffiffiffi

p

lkBT

r

exp �
ðDGnm � lÞ2

4kBTl

" #

; ð1Þ

where l is the reorganization energy and DGnm = en � em is

the free energy difference between initial and final states. The

latter approach is technically more complex but has the

advantage of allowing one to relate charge transport

properties directly to morphology.3–5,20–24 The morphology

itself can be determined by using molecular dynamics or

Monte Carlo simulations.

In all of the models used, it is useful to keep in mind an

effective Hamiltonian of the type

Ĥ ¼
X

m

emâ
þ
mâm þ

X

man

ðtmnâ
þ
mân þ c:c:Þ; ð2Þ

where â+m and âm are the creation and annihilation operators

for a charge carrier located at the molecular site m. The

electron site energy is given by em, while tmn is the transfer

integral between two sites m and n. The distribution in em
describes the density of states whereas tmn sets a timescale for

charge tunneling.

In the framework of the frozen-core approximation, the

usual choice for the basis set representing the electron states

from eqn (2) are the frontier orbitals: the highest occupied
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molecular orbital (HOMO) if we are talking of hole transport,

and the lowest unoccupied molecular orbital (LUMO) if we

are talking about electron transfer. The off-diagonal elements

of eqn (2) are the same as the transfer integrals tmn for a pair

of molecules, so long as we ignore the possibility that

neighboring molecules affect the frontier orbitals by

polarization. The situation is more complicated for the site

energies em. We can imagine several different contributions

to energetic disorder: (i) due to change of a molecular

conformation, (ii) due to electrostatic and (iii) polarization

contributions.

Conformational disorder refers to the fact that molecules

often find themselves frozen in positions which do not

correspond to their energetic minimum. For example, in a

conjugated polymer torsional disorder can lead to a distri-

bution in site-energies.25 One of the molecules discussed here,

Alq3, has this sort of ‘‘soft’’ degrees of freedom which affect

the position of its HOMO and LUMO levels. Conformational

disorder can be analyzed by performing calculations on

isolated molecules in the deformed geometries provided by

molecular dynamics. It is important to be careful to only

include those geometry fluctuations which are slow with

respect to charge transport (e.g. dihedral angles).

Electrostatic disorder arises because the electric field

distribution from a charge is far from isotropic. Therefore

molecules in different positions in the lattice have different

electrostatic energies. The importance of electrostatic

disorder has been known for a long time and is best

evidenced in the strong correlation between energetic disorder

and dipole moment for polar molecules diluted in an

inert polymer matrix.26 Since electrostatic interactions are

pairwise-additive, the energy of a whole assembly of molecules

can easily be derived from computations on pairs. It is,

however, not feasible to perform accurate first-principles

calculations on all molecular pairs needed to evaluate the

electrostatic contribution to the energetic disorder. Instead,

partial charges distributed on each molecule are often used

for this purpose.27,28

Polarization itself can lead to disorder because the

polarizability of most conjugated molecules is highly

anisotropic. This, however, is by far the least discussed in

the literature source of disorder.28,29 The polarization contri-

bution is not pairwise-additive and cannot be deduced from

the calculations on the pairs of molecules.

Naturally, we can ask ourselves, what information that is

useful for large-scale simulations can be obtained from a

calculation on a pair of molecules? Evidently, the transfer

integrals will directly be related to the transfer integrals

between those two molecules. The site-energies will however

be specific to the pair configuration and will include all three

disorder effects mentioned above for this specific geometry.

Hence, in general, it will not be at all easy to extract site energy

information for a whole simulation box from many calcula-

tions on pairs. The practical solution to this is to use transfer

integrals for pairs of molecules and site energies from calcula-

tions of monomers with the fast molecular degrees of freedom

constrained to their optimized values. This will take into

account energetic disorder due to soft degrees of freedom,

such as dihedral angles. Finally, electrostatic and polarization

contributions can be estimated from partial charges or

polarizable force-field calculations.

In what follows, we assess the performance of several

schemes designed for efficient calculation of intermolecular

transfer integrals and site energies for pairs of molecules.

Semiempirical approaches such as Zerner’s Intermediate

Neglect of Differential Overlap (ZINDO) have been quite

well established in application to hydrocarbon compounds,

e.g. for different mesophases of discotic liquid crystals such as

perylene and hexabenzocoronene derivatives.20,21 However,

for metal-coordinated molecules, for instance, the ZINDO

parametrization is inappropriate and as a consequence

wrongly predicts the localization of molecular frontier orbitals

which directly relates to incorrect values for the charge

transport properties. This is the case, e.g. for tris(8-hydroxy-

quinolinato)aluminium (Alq3), a common organic semi-

conductor, which in experiment exhibits a higher mobility

for electrons than for holes.30 The first organic light-emitting

diodes were based on Alq3, and subsequently this compound

has become a prototypical system in organic electronics.31 To

understand the relation between charge dynamics and

morphology in such a system, it is essential to determine

intermolecular transfer integrals and site-energies in a qualita-

tively and quantitatively reliable fashion.

Calculating the respective properties from first-principles

density-functional theory (DFT) is far more elaborate and

computationally demanding than semiempirical approaches,

but promises to work well in the cases mentioned above

in which ZINDO fails. Several approaches for the

derivation of charge transport parameters have been discussed

in the literature. Since the interaction of two monomers

in a dimer configuration leads to a splitting of the HOMO

level of the dimer, it is quite common practice (see e.g. ref. 2,

32 and 33) to relate the transfer integral to half of the

difference of HOMO and HOMO� 1 levels resulting from a

closed-shell configuration of the dimer. However, Valeev and

coworkers32 pointed out that polarization effects can have a

decisive influence on the energy splitting, which alone is

therefore not a good measure for the transfer integral. Based

on this procedure, Huang and Kertesz34 studied the conver-

gence of transfer integrals of a p-stacked ethylene dimer with

respect to the basis set of DFT calculations and identified the

effects of diffuse and polarization functions on the results. The

same authors later investigated the effects of different choices

for the exchange–correlation functional33 and found that,

while not negligible, the differences are relatively small. In a

study of carrier transport in crystalline silole-based

compounds, Yin et al.35 determined the electronic coupling

between initial and final states by setting up the dimer Fock

operator using unperturbed monomer orbitals and forming

the Fock matrix elements with the monomer frontier orbitals.

They also applied this approach to triphenylamine dimer

systems.36

The studies mentioned above deal with individual aspects

of the calculation of transfer integrals, such as basis set

convergence or the dependence on the exchange–correlation

functional. To the present day, no systematic evaluation of the

computational efficiency of the different approaches has been

reported. This is in part due to the fact that the authors either
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concentrated on simple model systems, like ethylene, or

studied crystalline organic semiconductors, for instance the

tetrathiafulvalene–tetracyanoquinodimethane (TTF–TCNQ)

complex34 or silole-based compounds,35 with a limited number

of unique molecular pairs due to crystal symmetry. However,

for highly disordered systems like the prototypical Alq3
this number can easily be in the order of 104 and the

calculation of transfer integrals will be a serious bottleneck

for the computation of charge carrier mobilities from either

kinetic Monte-Carlo simulations or the solution of the Master

equation. Therefore, it is vital to find a viable compromise

between accuracy and timing of the calculations. In this

context, the aim of this work is to complement the existing

studies by analyzing the relation between the calculational

parameters, like basis sets and model chemistry, and the

associated computational costs for some representative

cases. Thereby we want to derive an optimal set of parameters

which will allow us to investigate charge transport mecha-

nism in amorphous organic compounds based on multi-scale

simulations with appropriate accuracy at manageable

computational costs.

In order to be able to make a consistent comparison and

explain the different steps of our discussion of several para-

meters, we will first recapitulate based on ref. 32 the general

strategy for obtaining tnm, en, and em between two neighboring

molecules based on DFT calculations. We also pay special

attention to its practical implementation which relies on the

projection of molecular orbitals of monomers onto the mani-

fold of the molecular orbitals of the dimer within a Counter-

poise basis set.37,38 In this paper, we refer to this method as

DIPRO (short for dimer projection). After validating this

strategy and its implementation using ethylene as a simple

model system, we concentrate specifically on the evaluation of

computational efficiency depending on the parameters of the

underlying DFT calculations with the application to large-

scale morphologies of disordered systems in mind. To this

end, we pick representative parameters for the model

chemistry, i.e. one standard hybrid (B3LYP) and one non-

hybrid (PW91) exchange–correlation functional, as well as the

MPW3LYP functional39 that was introduced in application

to weakly interacting systems. We use a Pople-style 6-311G

basis set with and without polarization and diffusive

extensions and compare the computational costs using

sample pairs of Alq3 (out of a large morphology) as a model

system. We also consider various simplifications of the

general DIPRO calculations, including a loosening of self-

consistency requirements and the nature of the Counterpoise

basis set.

This paper is organized as follows: In the first section, we

will present the general methodology of determining inter-

molecular transfer integrals from quantum-chemistry calcula-

tions based on a projective method. The validity of this

approach is first checked in section III using a simple model

system consisting of two ethylene molecules. In order to assess

the efficiency of the method upon changes to computational

parameters such as basis sets, convergence criteria etc., we take

one molecular pair out of a larger Alq3 morphology and

perform testing runs on this configuration. A brief summary

concludes the paper.

II. Methodology

Here, we first recapitulate the findings of Valeev et al.,32 while

also paying special attention to the practical implementation

of the method in the process. Let us write a version of eqn (2)

for two molecules. We label the two individual molecules A

and B and their frontier orbitals fA and fB, respectively.

Throughout the paper we will consider the particular case

of hole transport, where the frontier orbital of interest is

the HOMO. All arguments can be applied to electron transfer

by changing references to HOMOs to LUMOs. We

now assume that the frontier orbitals of a dimer (adiabatic

energy surfaces) result exclusively from the interaction of the

frontier orbitals of monomers. In this approximation, they

can be expanded in terms of fA and fB. The expansion

coefficients, C, can be determined by solving the generalized

secular equation

(�H � E�S)C = 0, (3)

where �H and �S are the Hamiltonian and overlap

matrices of the system, respectively. They can be written

explicitly as

H ¼
eA JAB

JAB eB

 !

;

S ¼
1 SAB

SAB 1

 !

;

ð4Þ

with

eA = hfA|Ĥ|fAi,

eB = hfB|Ĥ|fBi,

JAB = hfA|Ĥ|fBi,

SAB = hfA|fBi. (5)

It should already be stressed at this point that the two

monomer HOMOs that form the basis of this expansion

are not orthonormal in general, so that �S a �1. This is

important when relating the em and Jmn to the site

energies em and transfer integrals tmn defined in eqn (2), where

an orthogonal basis set is assumed. Valeev et al.32 have

pointed out the significance of this in detail. Due to the

non-orthonormality of the monomer HOMOs, the respective

expressions are not identical. It is therefore necessary to

suitably transform eqn (3) into a standard eigenvalue problem

of the form

�H
effC = EC. (6)

According to Löwdin40 such a transformation can be

achieved by multiplying the square-root of the inverted

overlap matrix from the left and to the right to the

Hamiltonian, i.e. by

Heff ¼ S�
1
2HS�

1
2
: ð7Þ
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Suzuki et al.41 showed that �S
�1

2 can efficiently be calculated as

S�
1
2 ¼ US

�
1
2

0 Ut ¼ U

s1 0

0 .
.

.

0

0 sN

0

B

B

B

B

@

1

C

C

C

C

A

�1
2

Ut

¼ U

s
�
1
2

1 0

0 .
.

.

0

0 s
�
1
2

N

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Ut
;

ð8Þ

where the columns of the matrix �U contain the N eigenvectors

of the regular matrix �S, and s1,. . .,sN are the associated

eigenvalues. Applying this procedure to the (2�2) case in

eqn (3) then yields an effective Hamiltonian matrix in

an orthonormalized basis, and its entries can directly be

identified with the site energies em and transfer integrals tmn

in eqn (2):

Heff ¼
eeffA Jeff

AB

Jeff
AB eeffB

 !

¼
eA tAB

tAB eB

 !

: ð9Þ

Explicitly, the elements of the effective Hamilton matrix after

application of eqn (7) read

eeffAðBÞ ¼ eAðBÞ

¼
1

2

1

1� S2
AB

ðeA þ eBÞ�2JABSABðeA�eBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S2
AB

q

� �

Jeff
AB ¼ tAB ¼

JAB � 1
2
ðeA þ eBÞSAB

1� S2
AB

:

ð10Þ

It is apparent from eqn (10) that for orthogonal monomer

HOMOs, i.e. when SAB = 0, the modifications to eA(B) and

JAB vanish. In particular, this is the case for the commonly

used ZINDO approach. In the approximation that the orbitals

of the dimer cD are determined only by the HOMOs of

the monomers, the difference of the eigenvalues of the

effective Hamiltonian in eqn (9), DE, is the value of the

splitting between the HOMO and HOMO� 1 levels of

the dimer:

DE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeA � eBÞ
2 þ ð2tABÞ

2
q

: ð11Þ

This indicates that the resulting energy split between HOMO

and HOMO� 1 in the dimer can in general not be attributed

exclusively to the electronic coupling of the monomers

represented by tAB but can also affected by the difference

in site energies, eA � eB. If one intends to determine the

transfer integral tAB from the dimer energy splitting, one must

evaluate

tAB ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDEÞ2 � ðeA � eBÞ
2

q

: ð12Þ

The difference of the site energies associated to the individual

monomers in the dimer configuration is only zero when

the monomers are identical and their mutual geometric

orientation can be generated by symmetry transformations

that are compatible with the point group of the monomer,

i.e. when the dimer is symmetric. In a non-symmetric dimer,

monomer sites A and B polarize each other asymmetrically

and consequently contribute differently to the energetics of the

dimer. This also means that in general quantum-chemical

information is needed from both monomers and the dimer

to accurately determine the transfer integral.

Up to this point we have not mentioned in detail how to

suitably calculate the matrix elements JAB. Direct numerical

integration in real space as in

JAB = hfA|Ĥ|fBi =
R

fA(r)ĤfB(r) d3r (13)

is certainly very inefficient and potentially inaccurate. We can,

however, be a little more resourceful. Let us consider the set of

molecular orbitals for the dimer {cD
i }. As eigenfunctions

of the Hamiltonian operator of the dimer Ĥ they form a

complete orthonormal system and the unity operator can be

written as

1 ¼
X

i

jciihcij: ð14Þ

By inserting two unity operators into eqn (13) one finds that

JAB ¼ fA
X

i

jciihcijĤj
X

j

jcjihcj jf
B

* +

¼
X

i

X

j

hfAjciihcijĤjcjihcj jf
Bi:

ð15Þ

In the basis of its eigenfunctions {ci} the Hamiltonian

operator Ĥ is diagonal with hci|Ĥ|cji = Ei�dij, where the Ei

are the molecular orbital energies of the dimer. The terms

gAi := hfA|cii and gBj := hcj|f
Bi are the projections of

the monomer orbitals fA and fB on the dimer orbitals ci

and cj, respectively. With this the determination of JAB

reduces to

JAB ¼
X

i

gAi Eig
B
i ¼ c

A � diagðEiÞc
B
: ð16Þ

What is left to do is determine these projections gA(B)
i . Again it

is inconvenient to perform a real-space integration. In all

practical calculations the molecular orbitals are expanded in

basis sets of either plane waves or of localized atomic orbitals

{ja}. We will first consider the case that the calculations for

the monomers are performed using a counterpoise (CP) basis

set that is commonly used to deal with the basis set super-

position error (BSSE).37,38 The basis set of atom-centered

orbitals of a monomer is extended to the one of the dimer

by adding the respective atomic orbitals at virtual coordinates

of the second monomer. We can then write the respective

expansions as

jfAðBÞi ¼
X

a

zAðBÞ
a jjai;

jcii ¼
X

a

zDa jjai:
ð17Þ
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The projections can then be determined within the common

basis set:

hfAðBÞjcii ¼
X

a

zAðBÞ
a hjaj

X

b

zDb jjbi

¼
X

a

X

b

zAðBÞ
a zDb hjajjbi

¼
X

a

X

b

zAðBÞ
a Sabz

D
b

¼ fAðBÞðSfDÞ;

ð18Þ

where the S is the overlap matrix of the atomic orbitals.

We summarize this methodology, which we will from now

on refer to as DIPRO, as the projection of monomer orbitals

on dimer orbitals, by the schematics in Fig. 1. After comple-

tion of the quantum-chemical calculations for both monomers

and dimers, the elements JAB can be calculated using eqn (16)

and (18) by simple matrix-vector (or matrix–matrix) multi-

plications. From a quantum-chemical calculation the overlap

matrix of atomic orbitals S, the expansion coefficients for

monomer zA(B)
a and dimer orbitals zDa , as well as the orbital

energies Ei of the dimer are required as input.

III. Results

In this section we will evaluate the efficiency of DIPRO using

DFT calculations of different levels of sophistication in terms

of employed basis sets, exchange–correlation functionals and

self-consistency requirements with the specific application to

large-scale morphologies of disordered systems in mind. To

check the validity of the method and in particular its imple-

mentation we first consider a simple model system consisting

of two ethylene molecules. Reference values from ZINDO

calculations using the Molecular Orbital Overlap (MOO)

package42 and also DFT results from the literature will be

used to assess the accuracy of the procedure.

After that we gauge the efficiency using a more complicated

model system. To this end, we take a pair of neighboring Alq3
molecules out of a larger morphology obtained by molecular

dynamics simulation43 using the VOTCA package.44 For this

configuration we analyze the dependence of the calculated

values for the transfer integrals and site-energies as well as the

required computational costs on the choice of the parameters

for the density-functional calculations.

All of the following calculations on the quantum-chemical

level have been performed using the software package

Gaussian 0345 on eight processors of the IBM p575 Power5

system at MPG-RZGGarching. The evaluation of the transfer

integrals and site-energies based on the output of these

calculations is done with in-house code written in Python

using cclib.46

A. Ethylene

As mentioned above, the first dimer configuration we consider

is a co-facial orientation of two ethylene molecules (see inset of

Fig. 2). As a first step, the geometry of a single molecule is

optimized using the B3LYP hybrid-functional47 and the

6-311++G(d,p) basis set, including diffuse and polarization

functions. Based on this optimized geometry, we determine the

transfer integral |JAB| for hole transport as a function of

center-to-center distance d using both the ZINDO/MOO code

and the DFT/DIPRO approach as given by eqn (10), for

comparison.

The respective resulting transfer integrals are shown in

Fig. 2. For the considered geometry, one can in general expect

an exponential decay of the charge transfer parameter since

the probability for charge hopping is mainly driven by the

overlap of the HOMO orbitals of the monomers which decays

exponentially with their mutual distance. This qualitative

behavior is reflected in both the ZINDO and DFT results.

In terms of absolute values, ZINDO/MOO and DFT/DIPRO

approaches yield slightly different results. For small distances

Fig. 1 Schematics of the DIPRO method.

Fig. 2 Transfer integral |JAB| for hole transport (in eV) as a function

of the displacement (in Å) between two C2H4 molecules in co-facial

orientation as resulting from ZINDO-based (filled squares) and

DFT-based (open squares) approaches, respectively.
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between the monomers, the transfer integral determined by

ZINDO is higher than that resulting from DFT. At the same

time, it decays faster with increasing center-to-center distance

and a crossover appears at about 4.3 Å. This appears to be a

result of different orbital localizations in both approaches. By

definition, the ZINDO basis set consists of more strongly

localized functions. Hence, the overlap is high for small

distances, while it also can account for the faster decay.

Similar observations of the differences between the semi-

empirical and ab inito methods have been made in ref. 33

and 42, for instance.

We note at this point that we also compared the results

shown in Fig. 2 as obtained from eqn (10) to the respective

energy level splits in the dimer. As was expected from eqn (12),

both approaches yield identical transfer integrals for this

symmetric dimer configuration, which further validates the

implementation of the DIPRO method.

The fact that our DIPRO calculations are performed

correctly is additionally supported by the comparison to

results from literature. In ref. 32 Valeev et al. investigated

the situation depicted in the inset of Fig. 3 in which the center-

to-center distance between the two ethylene molecules is fixed

at 5 Å. Then one of the monomers is rotated along its CQC

double bond and the dependence of the transfer integral on the

angle of rotation O is studied. The authors also employed

DFT calculations on hybrid-functional level with only slightly

different basis functions, allowing for a direct comparison to

our DIPRO results. The results of the respective calculations

are shown in Fig. 3. DFT/DIPRO results are indicated by

open squares, while filled triangles represent data points taken

from Fig. 1 of ref. 32. As reference, we also added ZINDO/

MOO results (filled squares). Clearly, the transfer integral is

maximal for the co-facial orientation where the overlap

between the p-orbitals is maximal and then gradually

decreases to zero at an angle of 901. In this face-to-edge

orientation the p-orbitals of the two monomers are perpendi-

cular and hence do not overlap. On a quantitative level,

our DIPRO results and those from ref. 32 are in excellent

agreement. The transfer integrals from both DFT-based methods

result higher than the respective ZINDO values, which is in

accord with the findings in Fig. 2 for a distance of 5 Å.

From the above comparison, we can deduce that the

DIPRO method as implemented allows for a reliably accurate

DFT-based description of intermolecular transfer integrals.

B. Tris(8-hydroxyquinolinato)aluminium

While a simple molecule like ethylene is a suitable model

system to study the basic functionality of the previously

presented approach, it is not so convenient to investigate its

computational cost and to evaluate its practical applicability

to disordered systems of scientific interest, which are charac-

terized by more complex molecules in large-scale morpho-

logies. To investigate the charge-transport properties of such

systems, e.g. based on Marcus theory for charge hopping in a

kinetic Monte-Carlo simulation, it is essential that the

required transfer integrals and site-energies are computed with

satisfactory accuracy within a reasonable amount of time. For

the quantum-chemical calculations in our DIPRO approach,

several parameters for the DFT calculations significantly

influence the quality of results and time required to obtain

the results. Among those parameters are the choice of the

basis set, the employed exchange–correlation functional,

convergence criteria etc. In the following we will consider

two sample pairs of Alq3 taken from a larger morphology,

as depicted in Fig. 4. Panel (a) shows a nearly ideal mutual

orientation of the two molecules for hole transport.

Fig. 3 Transfer integral |JAB| (in eV) as a function of rotation around

the CQC double bond of one ethylene molecules as resulting from

ZINDO (filled squares) and DFT-based approaches (DIPRO: open

squares, ref. 32: filled triangles), respectively. The center-to-center

distance of the two molecules is 5 Å.

Fig. 4 Two sample Alq3 pairs taken out of a morphology containing

512 molecules. The upper panel (a) shows a nearly ideally p-stacked

orientation, while the more common twisted configuration is depicted

in panel (b). Isosurface representations of molecular HOMO densities

have been added.
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The respective arms of the molecules that host the HOMO are

almost p-stacked, similar to the co-facial orientation of

ethylene that we discussed in the preceding section. More

common, however, is the configuration shown in Fig. 4(b),

where the molecules are twisted against each other and also

show a considerable amount of internal deformation. We will

analyze how the computational parameters mentioned above

affect the calculated transfer integrals and computational costs

for these two cases. The latter we determine as the total run

time T of the two-monomer and the one-dimer calculations

on eight processors of the IBM p575 Power5 system at

MPG-RZG Garching.

1. Basis sets. Let us first consider the results for hybrid-

functional calculations for different levels of sophistication of

the 6-311G basis set. We start with the 6-311++G(d,p) basis

set, i.e. the most complete basis set including polarization

[(d,p)] and diffuse [++] functions, and then gradually remove

these from the basis set to assess their effect on the calculated

properties. The respective results for the transfer integrals and

site-energies of electrons and holes in the two sample configur-

ations are listed in Table 1 (p-stacked) and Table 2 (twisted).

In the case of the p-stacked configuration, it is evident that

the calculated transport parameters are fairly robust against

changes in the basis set. Transfer integrals for holes are large,

which is expected for this mutual arrangement of the two

molecules. Even the simple 6-311G basis set already describes

the transfer integrals and site-energies satisfactorily. Since the

molecular orbitals, in particular the respective HOMOs, are

strongly localized, they can be described in sufficient accuracy

without additional basis functions. This is of great significance

in terms of the computational costs listed in Table 1, from

which it is obvious that the addition of polarization functions

and in particular of diffuse functions increase the calculation

times dramatically.

For the twisted configuration in Fig. 4(b), the situation is

slightly different. The individual HOMOs show a more

delocalized character compared to the p-stacked variant due

to the twisting of the three arms of the Alq3 molecules.

Overall, the resulting hole transfer integrals listed in Table 2

(note that they are given in meV) are roughly one order of

magnitude lower that in the above case. Since the states are

less localized, the addition of more delocalized functions to the

basis set becomes relevant. The dependence of the results for

the twisted Alq3 configuration on the basis sets is given in

Table 2. Let us start with the case of the 6-311++G(d,p)

basis set, i.e. the set containing both polarization and diffuse

functions, as a reference. Hole and electron transfer integrals

are of the same order of magnitude so that the basis set

analysis has to take both into account. The resulting transfer

integral for holes is smaller by 0.49 meV after removal of the

polarization functions (6-311++G) and smaller by 0.60 meV

when also the polarization functions are not taken into

account (6-311G). When only the diffuse functions are

removed (6-311G(d,p)), the loss of accuracy is slight. Similar

qualitative observations can be made for the electron transfer,

so that the use of the 6-311G(d,p) basis set appears the most

convenient in terms of accuracy. Unlike in the case of the

p-stacked dimer, the simple 6-311G set cannot appropriately

describe the charge transport properties.

2. Functionals. The use of a hybrid functional like B3LYP,

which mixes Hartree–Fock exchange with a non-local DFT

exchange–correlation functional, is in many cases more suita-

ble to study properties of occupied and virtual molecular

orbitals with high quantitative accuracy on an absolute scale,

particularly with respect to single-particle transitions between

the occupied and unoccupied manifolds. That said, it is also

much more demanding computationally due to the explicit

calculation of the Hartree–Fock exchange. Non-hybrid

exchange–correlation functionals which only depend on the

(local) charge density and its gradient are much less

demanding but the resulting molecular properties show

systematic errors, e.g. the underestimate of the HOMO–

LUMO gap or the overestimation of energies of strongly-

localized (correlated) electrons with d- or f-character.

Still, the use of a non-hybrid exchange–correlation

functional such as PW9148 as the basis of the DIPRO calcula-

tions of the transfer integrals is worth investigating, since only

energy splittings within the occupied (hole transport) and

unoccupied (electron transport) manifolds are relevant. This

notion has also been studied, for instance by Huang and

Kertesz,33 who found only slight differences in the calculated

transfer integrals for ethylene depending on the sophistication

of the used functional. They compared calculated transfer

integrals for TTF-TCNQ to experimental data and found

slightly better agreement of results obtained from PW91 than

from B3LYP. In this context, it is known that the hybrid-

functional is often problematic to describe interactions in van

der Waals and hydrogen-bonded systems.49 For our investiga-

tion, we limit ourselves to the twisted dimer configuration

which showed a higher dependence of the calculated transport

Table 1 Dependence of the calculated transfer integrals and site-
energies for the p-stacked Alq3 pair for hole (h) and electron (e)
transport on the choice of basis set for hybrid-functional DFT

B3LYP JeffAB [eV] eeffA [eV] eeffB [eV] T

6-311++G(d,p) h 0.076 �4.79 �4.54 13 h 30 m
e 0.255 � 10�3 �2.45 �2.16

6-311++G h 0.077 �4.73 �4.47 7 h 00 m
e 0.251 � 10�3 �2.42 �2.15

6-311G(d,p) h 0.077 �4.73 �4.56 1 h 40 m
e 0.203 � 10�3 �2.23 �2.06

6-311G h 0.077 �4.62 �4.39 43 m
e 0.291 � 10�3 �2.31 �2.03

Table 2 Dependence of the calculated transfer integrals and site-
energies for the twisted Alq3 pair for hole (h) and electron (e) transport
on the choice of basis set for hybrid-functional DFT. Note that the
JeffAB are given in meV, while eeffA and eeffB are in eV

B3LYP JeffAB [meV] eeffB [eV] eeffB [eV] T

6-311++G(d,p) h 1.80 �5.47 �5.08 6 h 16 m
e 2.52 �2.25 �2.38

6-311++G h 1.31 �5.49 �5.03 3 h 17 m
e 2.31 �2.23 �2.36

6-311G(d,p) h 1.74 �5.36 �4.98 1 h 12 m
e 2.39 �2.12 �2.25

6-311G h 1.20 �5.37 �4.95 35 m
e 2.21 �2.13 �2.26
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properties from the basis set before. Table 3 contains the

relevant data for a calculation using the PW91 exchange–

correlation functional analogous to the data listed in Table 2

in the case of B3LYP. On average, the transfer integrals

resulting from PW91 are about 30% smaller than their

respective B3LYP counterparts due to the lack of Hartree–

Fock exchange. Similarly, the absolute values of the site-

energies are smaller. However, their difference, eeffA � eeffB , is

hardly affected by the change in functional. With respect to the

basis set dependence, the conclusions hold that have been

drawn in the case of the hybrid-functional calculations. The

slight reduction of the value of the transfer integrals is

paralleled by a substantial reduction in computational costs.

In this case, the non-hybrid DFT simulation is faster by about

a factor of two. For more localized charge distributions, as in

the p-stacked case, this can even be a factor of three due to

the more localized states and the inherently more elaborate

evaluation of the Hartree–Fock exchange.

We have also tested the use of the MPW3LYP functional39

that is, along with other similarly modified functionals,

considered more appropriate for application to non-covalently

bonded systems. The respective results are summarized in

Table 4, and the comparison to the results from standard

B3LYP calculations in Table 2 indicates negligible effects on

the determined transfer integrals and site-energies.

As can be seen from Tables 2–4, the computational cost T

for calculating transport properties based on DFT – roughly

in the order of one to two hours – is still substantial. This is

particularly critical, since a realistic morphology typically

consists of several thousands of individual molecules and a

respectively large number of neighbor pairs Np for which the

transfer integrals and site-energies are required. The total

computational costs than can be estimated to amount to

Ttot = NpT. It is evident that the applicability of the DIPRO

approach as it is presented above is limited to small morpho-

logies and only very specific cases.

3. Convergence criteria. Up to this point, we have studied

the effects of basis sets and exchange–correlation functionals

on the calculated charge transport properties. All calculations

were performed under the tacit assumption that we require

full convergence for the individual monomer and dimer

configurations.

In practical calculations, it might be considerable to loosen

the convergence criteria and save computer time in the

process. The default criterion used by Gaussian 03 is that

the root-mean-square (RMS) density matrix is smaller that

10�4. For higher RMS values the respective calculations will

need fewer cycles to reach self-consistency. We repeated the

calculations on the 6-311G(d,p)/B3LYP level50 for RMS

values of 10�3, 10�2 and 10�1, and list the results in Table 5.

We find that the resulting transfer integrals and site-energies

are relatively robust when a RMS density of 10�3 is used as

convergence criterion instead of the default. Concomitantly,

the computation time is reduced to about three-quarters of the

previous value. Further loosening of the convergence require-

ments only reduces the computation times marginally, while

accuracy is lost. In the case of a RMS density of 10�2 the

transfer integrals for holes and electrons are still within

acceptable limits. Site-energies, however, are more strongly

affected so that the energetic disorder in DGAB in eqn (1) will

be inaccurate.

Another possible simplification of the DIPRO approach is

motivated by the following: First of all, we determine the

molecular orbitals of the monomers {fA
j } and {fB

k} self-

consistently, as usual. Since the dimer is a combined

configuration of these two monomers, one can construct an

initial guess for the manifold of occupied molecular orbitals of

the dimer {cD
i }

(0)
occ as a superposition of the respective occupied

manifolds of the monomers, i.e.

{cD
i }

(0)
occ = {fA

j }occ" {fB
k}occ. (19)

As long as inter-molecular interactions are weak in the dimer

configuration, one can assume that the self-consistent ground-

state of the dimer is well approximated by this initial guess.

The practical idea is therefore to supply the superposition of

Table 3 Dependence of the calculated transfer integrals and site-
energies for one Alq3 pair for hole (h) and electron (e) transport on the
choice of basis set for classical DFT using the PW91 functional. Note
that the JeffAB are given in meV, while eeffA and eeffB are in eV

PW91 JeffAB [meV] eeffA [eV] eeffB [eV] T

6-311++G(d,p) h 1.26 �4.84 �4.50 3 h 01 m
e 2.10 �2.90 �3.07

6-311++G h 0.87 �4.81 �4.42 1 h 35 m
e 1.92 �2.88 �3.01

6-311G(d,p) h 1.47 �4.78 �4.41 40 m
e 1.94 �2.74 �2.91

6-311G h 0.67 �4.68 �4.41 19 m
e 1.91 �2.71 �2.93

Table 4 Dependence of the calculated transfer integrals and site-
energies for one Alq3 pair for hole (h) and electron (e) transport on the
choice of basis set using the MPW3LYP functional. Note that the JeffAB

are given in meV, while eeffA and eeffB are in eV

MPW3LYP JeffAB [meV] eeffA [eV] eeffB [eV] T

6-311++G(d,p) h 1.81 �5.50 �5.11 8 h 06 m
e 2.45 �2.29 �2.41

6-311++G h 1.32 �5.49 �5.06 3 h 55 m
e 2.24 �2.26 �2.40

6-311G(d,p) h 1.72 �5.38 �5.00 1 h 13 m
e 2.40 �2.14 �2.27

6-311G h 1.20 �5.39 �4.97 30 m
e 2.21 �2.15 �2.29

Table 5 Dependence of the calculated transfer integrals and site-
energies for one Alq3 pair for hole (h) and electron (e) transport on the
convergence criterion for hybrid DFT using the B3LYP functional and
the 6-311G(d,p) basis set. Note that the JeffAB are given in meV, while
eeffA and eeffB are in eV

6-311G(d,p)/B3LYP JeffAB [meV] eeffA [eV] eeffB [eV] T

RMS density o 10�4 h 1.74 �5.36 �4.98 1 h 12 m
e 2.39 �2.12 �2.25

RMS density o 10�3 h 1.67 �5.39 �4.97 53 m
e 2.36 �2.12 �2.23

RMS density o 10�2 h 1.63 �5.38 �5.17 50 m
e 2.16 �2.28 �2.48

RMS density o 10�1 h 1.84 �5.44 �4.71 40 m
e 2.56 �2.38 �2.46
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occupied monomer manifolds as initial guess for the

occupied dimer orbitals, set up the Fock matrix with H(0)
ij =

hc(0)
i |Ĥ|c(0)

j i and solve the generalized secular equation. After

this single iteration step, the dimer molecular orbitals {cD
i }

(1)

and their energies Eif gð1Þ are printed out. This variant will be

referred to as noSCF in the following, while we will label the

standard procedure with a fully self-consistently converged

dimer calculation as SCF, for the sake of clarity. The noSCF

approach is closely related to the approach used in ref. 35

and 36. In Table 6 we summarize the results of noSCF

DIPRO calculations based on a RMS density convergence

for the monomers of 10�4 and 10�3, respectively. For easier

comparison, we also repeat the respective results of the

standard calculations (referred to as SCF) from Table 5. It is

obvious from the given transfer integrals and site-energies that

the noSCF variant of the DIPRO calculation yields transport

properties in very good agreement with the respective results

from SCF calculation for the standard RMS density conver-

gence criterion of 10�4 for the monomers. For a criterion of

10�3, in contrast, the deviations of the calculated transfer

integrals are slightly larger, and again, it is the site-energies

that are affected more strongly. It is particularly noteworthy

that in case of electron transport the site-energy difference

changes sign, which would lead to significant modifications in

the calculated transport rates. From the results, it can be

concluded that a noSCF DIPRO calculation is only reliable

if the convergence of the monomer orbitals is appropriate. In

the case of the Alq3 molecule, a noSCF calculations saves

about 30% of computation time compared to a SCF run. Of

the 50 min computation time per pair using the default

convergence criterion, only seven minutes (or about 15%)

are attributed to the noSCF dimer calculation. Any further

significant reduction in computation time must therefore be

achieved concentrating on the monomer calculations.

4. Abandoning the counterpoise basis set. In all previous

calculations for the monomers, the use of a counterpoise basis

set was assumed explicitly. This extension of the purely

atom-centered molecular basis set is in principle more exact;

however, it also increases the computational costs

significantly. Also, since in the kind of morphologies we are

interested in the average distances between the individual

molecules are not excessively small, the effect on the calculated

molecular orbitals is expected to be slight. It is also known

from the literature that the BSSE is critical mainly for total

energies and less so for molecular orbitals and their single-

particle energies. We therefore investigate also the case in

which the monomer calculations are performed without

additional ghost atoms located at the virtual positions of the

second monomer. In this case the dimer basis set is the direct

sum of the two monomer bases {jD
a } = {jA

b } " {jB
g }.

To evaluate the transfer integrals and site-energies using this

noCP variant of the DIPRO method, we can hence rely on

eqn (16) and (18) as long as we add an appropriate number of

zeros to zA(B) accounting for the differences in basis-sets.

A schematic that illustrates the combination of the noCP

and noSCF simplifications to the DIPRO method discussed

above is given in Fig. 5.

To assess the accuracy and efficiency of the noCP basis, we

again consider the two RMS density convergence criteria 10�4

and 10�3 and compare the results of noCP DIPRO calcula-

tions to the standard ones. At the same time, we also analyze

the combination of noCP and noSCF in Table 7. For the

standard density criterion, we find that both noCP and

noCP + noSCF methods agree well with the results obtained

using the counterpoise basis. The computation time can be

reduced to as little as only 23 min, or 30% of the original

value. For the convergence criterion 10�3 we note very similar

behavior. Just as when using the counterpoise basis, a noSCF

calculation with this criterion results in an inconsistent

description of the site-energies in the case of electron

transport.

5. Conclusions. To summarize the findings of the discussion

on the accuracy and efficiency of the different variants of the

DIPRO method, we show in Fig. 6 a comparison of average

runtimes �T estimated for a larger morphology, calculated

transfer integrals, as well as site-energies, referenced to the

respective values obtained using the general CP + SCF

method. The use of the noCP variant of the DIPRO approach

is even more advisable for large-scale simulations than the

discussion on single pairs might indicate. Since the monomer

calculations are no longer coupled for each dimer configura-

tion due to the counterpoise basis, only one single DFT

calculation has to be performed for each individual molecule

in the morphology. This can be done before the dimer

calculations are started. When Nm and Nd are the number of

molecules and dimer pairs in the morphology, respectively,

estimates for the total computation time of the four

variants are

TCP,i = Nd(2T
CP
m + Ti

d)

TnoCP,i = NmT
noCP
m + NdT

i
d, (20)

where i can be either SCF or noSCF. If we assume an average

number of unique neighbors per molecule, i.e. Nb = kNm,

we can write the average time per dimer �T = T/Nd as

�T
CP;i

¼ 2TCP
m þ T i

d

�T
noCP;i

¼
TnoCP
m

k
þ T i

d

ð21Þ

Table 6 Dependence of the calculated transfer integrals and site-
energies for one Alq3 pair for hole (h) and electron (e) transport on the
dimer calculation mode (SCF or noSCF) for hybrid DFT using the
B3LYP functional and the 6-311G(d,p) basis set. The RMS densities
of the monomers are converged to 10�4 and 10�3, respectively. Note
that the JeffAB are given in meV, while eeffA and eeffB are in eV

6-311G(d,p)/B3LYP JeffAB [meV] eeffA [eV] eeffB [eV] T

RMS density o 10�4

SCF h 1.74 �5.36 �4.98 1 h 12 m
e 2.39 �2.12 �2.25

noSCF h 1.70 �5.36 �4.99 50 m
e 2.31 �2.10 �2.26

RMS density o 10�3

SCF h 1.67 �5.39 �4.97 53 m
e 2.36 �2.12 �2.23

noSCF h 1.78 �5.21 �4.65 38 m
e 2.46 �2.00 �1.93
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In our sample morphology we have 512 molecules with 3046

unique neighbor pairs, so that there are six dimers per

molecule on average. The determination of the transport

properties for this morphology would then require total

(average) computation times of B155 days (72 min) in the

SCF variant or B108 days (50 min) in the noSCF variant

using the counterpoise basis. In the noCP mode, the times

are B64 days (27 min) and B18 days (8 min) for SCF and

noSCF, respectively. Since the use of noCP+ noSCF does not

result in any significant loss of accuracy, we conclude that this

is the variant recommended for studies of charge transport in

large-scale morphologies of amorphous organic compounds.

IV. Summary

In this work we have presented a projective method to

determine intermolecular transfer integrals and site-energies

required for the calculation of Marcus rates based on

density-functional calculations. The accuracy and efficiency

of this method depending on computational parameters

such as basis sets, exchange–correlation functionals, and

convergence criteria, has been investigated in detail in order

to establish a suitable strategy for the simulation of charge

transport in large morphologies. Using sample pairs of

tris(8-hydroxyquinolinato)aluminium, we found that adding

polarization functions to the 6-311G basis set is required to

obtain reliable results. We recommend to use only the

atom-centered basis set (noCP) for monomer and dimer

Fig. 5 Schematics of the noCP + noSCF variant of the DIPRO

method. In this variant the monomer calculations can be performed

independently from their mutual orientations in the dimer

configurations.

Table 7 Dependence of the calculated transfer integrals and site-
energies for one Alq3 pair for hole (h) and electron (e) transport on the
basis set choice (CP or noCP) for hybrid DFT using the B3LYP
functional and the 6-311G(d,p) basis set. The RMS densities are
converged to 10�4 and 10�3, respectively. Note that the JeffAB are given
in meV, while eeffA and eeffB are in eV

6-311G(d,p)/B3LYP JeffAB [meV] eeffA [eV] eeffB [eV] T

RMS density o 10�4

CP h 1.74 �5.36 �4.98 1 h 12 m
e 2.39 �2.12 �2.25

noCP h 1.94 �5.36 �4.98 45 m
e 2.38 �2.12 �2.25

noCP + noSCF h 1.89 �5.36 �4.99 23 m
e 2.30 �2.10 �2.26

RMS density o 10�3

CP h 1.67 �5.39 �4.97 53 m
e 2.36 �2.12 �2.23

noCP h 1.84 �5.39 �4.97 33 m
e 2.30 �2.17 �2.23

noCP + noSCF h 1.92 �5.21 �4.64 18 m
e 2.32 �2.00 �1.92

Fig. 6 Comparison of the development of average computational

cost �T , transfer integrals, and site-energies, referred to the values

associated to the CP + SCF variant of the DIPRO method. Results

are shown for the standard convergence criterion.
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calculations in combination with the noSCF simplification for

the dimer geometry as the most reasonable compromise

between accuracy and computational costs. The use of

PW91 instead of B3LYP on average reduces computation

times by 30–40%, with transfer integrals also being system-

atically smaller by that percentage. Without experimental

data, no preference for either functional can be made a priori.
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Mater., 2009, 8, 421.

4 J. Nelson, J. Kwiatkowski, J. Kirkpatrick and J. Frost, Acc. Chem.
Res., 2009, 42, 1768.

5 V. Marcon, D. Breiby, W. Pisula, J. Dahl, J. Kirkpatrick,
S. Patwardhan, F. Grozema and D. Andrienko, J. Am. Chem.
Soc., 2009, 131, 11426.

6 Y. Cheng, R. Silbey, D. da Silva, J. Calbert, J. Cornil and
J. Bredas, J. Chem. Phys., 2003, 118, 3764.

7 G. R. Hutchison, Y.-J. Zhao, B. Delley, A. J. Freeman,
M. A. Ratner and T. J. Marks, Phys. Rev. B: Condens. Matter
Mater. Phys., 2003, 68, 035204.

8 E.-G. Kim, V. Coropceanu, N. Gruhn, R. Sánchez-Carrera,
R. Snoeberger, A. Matzger and J.-L. Brédas, J. Am. Chem. Soc.,
2007, 129, 13072.

9 O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, J. E. Anthony,
V. Podzorov, M. E. Gershenson, O. D. Jurchescu and T. T. M.
Palstra, Appl. Phys. Lett., 2006, 88, 162101.

10 R. W. Munn and R. Silbey, J. Chem. Phys., 1985, 83, 1843.
11 R. W. Munn and R. Silbey, J. Chem. Phys., 1985, 83, 1854.
12 K. Hannewald and P. A. Bobbert, Appl. Phys. Lett., 2004, 85,

1535.
13 K. Hannewald and P. A. Bobbert, Phys. Rev. B: Condens. Matter

Mater. Phys., 2004, 69, 075212.
14 A. Troisi and G. Orlandi, Phys. Rev. Lett., 2006, 96, 086601.
15 A. Troisi, Adv. Mater., 2007, 19, 2000.
16 D. L. Cheung and A. Troisi, Phys. Chem. Chem. Phys., 2008, 10,

5941.

17 P. M. Borsenberger, L. Pautmeier and H. Bassler, J. Chem. Phys.,
1991, 94, 5447.

18 R. A. Marcus, Rev. Mod. Phys., 1993, 65, 599.
19 G. R. Hutchison, M. A. Ratner and T. J. Marks, J. Am. Chem.

Soc., 2005, 127, 2339.
20 D. Andrienko, J. Kirkpatrick, V. Marcon, J. Nelson and

K. Kremer, Phys. Status Solidi B, 2008, 245, 830.
21 J. Kirkpatrick, V. Marcon, J. Nelson and D. Andrienko, Phys.

Status Solidi B, 2008, 245, 835.
22 V. Marcon, J. Kirkpatrick, W. Pisula and D. Andrienko, Phys.

Status Solidi B, 2008, 245, 820.
23 V. Rühle, J. Kirkpatrick and D. Andrienko, J. Chem. Phys., 2010,

132, 134103.
24 Y. Olivier, L. Muccioli, V. Lemaur, Y. Geerts, C. Zannoni and

J. Cornil, J. Phys. Chem. B, 2009, 113, 14102.
25 Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin and A. R. Bishop,

Phys. Rev. Lett., 2000, 84, 721.
26 P. M. Borsenberger and M. B. O’Regan, Chem. Phys., 1995, 200,

257.
27 J. J. Kwiatkowski, J. Nelson, H. Li, J. L. Bredas, W. Wenzel and

C. Lennartz, Phys. Chem. Chem. Phys., 2008, 10, 1852.
28 Y. Nagata and C. Lennartz, J. Chem. Phys., 2008, 129, 034709.
29 J. Kirkpatrick, V. Marcon, K. Kremer, J. Nelson and

D. Andrienko, J. Chem. Phys., 2008, 129, 094506.
30 S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi and T. Tsutsui,

Synth. Met., 2000, 111–112, 331.
31 W. Brütting, Physics of Organic Semiconductors, Wiley-VCH,

Berlin, 2005, pp. 95–126.
32 E. F. Valeev, D. A. d. S. F. V. Coropceanu, S. Salman and
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49 S. Tsuzuki and H. P. Lüthi, J. Chem. Phys., 2001, 114, 3949.
50 We use B3LYP for the remainder of the paper as it better allows us

to define an upper limit for the computational cost T. This does not
constitute any preference of this level of theory over non-hybrid
functionals for the systems under study.

D
o
w

n
lo

ad
ed

 o
n
 1

8
 A

u
g
u
st

 2
0
1
0

P
u
b
li

sh
ed

 o
n
 0

5
 A

u
g
u
st

 2
0
1
0
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

0
0
2
3
3
7
J

View Online

http://dx.doi.org/10.1039/C002337J

