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O método DFTB, bem como a sua extensão com carga corrigida auto-consistente SCC-DFTB, tem 
ampliado a faixa de aplicações das ferramentas teóricas com fundamentos bem estabelecidos. Como 
uma aproximação do método do funcional de densidade, o método DFTB mantém aproximadamente 
a mesma precisão, mas com custo computacional menor, permitindo a investigação da estrutura 
eletrônica de sistemas grandes que não podem ser explorados com métodos ab initio convencionais. No 
presente artigo, os fundamentos dos métodos DFTB, SCC-DFTB e da inclusão das forças de dispersão 
de London são revisados. Para mostrar um exemplo da aplicabilidade do método DFTB, o equilíbrio 
zwitteriônico de glicina em solução aquosa é investigado. Foram realizadas simulações de dinâmica 
molecular usando o hamiltoniano SCC-DFTB corrigido para incluir a dispersão e uma caixa periódica 
contendo 129 moléculas de água, a partir de uma abordagem puramente mecânico-quântica. 

The DFTB method, as well as its self-consistent charge corrected variant SCC‑DFTB, has 
widened the range of applications of fundamentally well established theoretical tools. As an 
approximate density-functional method, DFTB holds nearly the same accuracy, but at much lower 
computational costs, allowing investigation of the electronic structure of large systems which can not 
be exploited with conventional ab initio methods. In the present paper the fundaments of DFTB and 
SCC‑DFTB and inclusion of London dispersion forces are reviewed. In order to show an example of 
the DFTB applicability, the zwitterionic equilibrium of glycine in aqueous solution is investigated 
by molecular-dynamics simulation using a dispersion-corrected SCC‑DFTB Hamiltonian and a 
periodic box containing 129 water molecules, in a purely quantum-mechanical approach.
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1. Introduction

Density functional theory (DFT) methods are the 
standard and the most used theoretical techniques for 
electronic structure calculations.1-5 The advent of the 
generalized gradient approximation (GGA) for the 
exchange-correlation functional enhanced the DFT 
accuracy6 and the predicted molecular structures, relative 
energies and frequencies are nearly comparable to the 
second order Møller-Plesset perturbation theory (MP2) 
method, with remarkable success to treat transition 
metal complexes.7 Efficient algorithms to solve the 
Kohn-Sham equations have been implemented, scaling 
to N3 with respect to the size of the basis sets and, 
hence, being much more efficient than the N5 of the 

MP2 methods. DFT is the method chosen for a huge 
range of applications. The formalism of the DFT and 
its extension to the reactivity indexes are subject of 
intensive research and many empirical concepts such as 
electronegativity, chemical potential and hardness are 
now formally defined within the DFT framework.3,5,8-10 
With respect to the methodology, developments 
concerning improved exchange-correlation functionals 
and hybrid quantum-mechanics/molecular-mechanics 
(QM/MM) methods are still the main subjects of research 
of many theoreticians.11 Chemical property estimates 
based on DFT are now well established, and even optical 
properties are accessible through the generalization to 
time-dependent DFT,7,12,13 a method which is nowadays 
implemented in many different computer codes. 

Notwithstanding the marvelous ability of the DFT 
to treat systems of increasing complexity, many systems 
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are still intractable at the actual stage of computer 
technology development. Biosystems, adsorption 
processes, nanostructures, molecular dynamics, clusters 
and aggregates with thousands of atoms, self-assembling 
systems, nanoreactors and supramolecular chemistry are 
some of the fields in which ab initio methods cannot be used 
with adequate chemical models. For this range of systems, 
semi-empirical methods seem to have their applicability. 
Semi-empirical methods such as AM1,14 PM315-17 and, 
more recently, RM118 have many empirical parameters that 
are fitted to a set of molecular properties, estimated either 
theoretically or experimentally. Therefore, the applicability 
of such methods is restricted.

Density-functional tight-binding (DFTB) is an 
approximate method based on the density functional 
framework which does not require large amounts of 
empirical parameters. The virtues and weaknesses of the 
DFTB are a heritage from DFT. In fact the parameters 
are consistently obtained from DFT calculations of a 
few molecules per pair of atom types. On the other side, 
DFTB is closely connected to the tight-binding methods. 
In fact, it can be seen as a non-orthogonal tight-binding 
method parameterized from DFT. The self-consistent 
charge extension of DFTB (SCC-DFTB) improves very 
much the accuracy of the method. For improvement of 
physical approximations, all DFT extensions, such as 
treatment of relativistic effects and London dispersion, 
can be easily used in the DFTB method. Large number 
of applications has been reported showing its usefulness 
in the calculations of hyperfine coupling constants, 
magnetic properties, vibrational spectra of solids 
and molecules, nuclear magnetic shielding tensors, 
geometries, dynamic properties and many others.19-24 
Calculation of optical properties is also possible due to 
the time-dependent DFTB,25-27 which is not covered in the 
present paper.

The goal of the present review is to call the attention of 
the chemistry community to the DFTB method, which can 
be a good complement of the set of semi-empirical methods 
available. Its advantages and weaknesses are highlighted. 
As an example of application, the zwitterionic and neutral 
forms of glycine in aqueous solution are discussed in terms 
of fully quantum mechanical molecular dynamics of this 
molecule in water.

2. Background Fundaments

Density functional theory has been extensively 
reviewed.7,28 In this section a very brief review of DFT 
is done in order to highlight its crucial aspects to the 
formulation of the DFTB method.

The Hohenberg-Kohn (HK) theorems29 have rigorously 
made the electronic density acceptable as basic variable to 
electronic-structure calculations. However, development of 
practical DFT methods only became relevant after W. Kohn 
and L. J. Sham published their famous set of equations: the 
so-called Kohn-Sham (KS) equations.30

The use of the electronic density within the KS scheme 
allows a significant reduction of the computational demand 
involved in quantum calculations. Furthermore, the KS 
method paved the way for studying systems that could not 
be investigated by conventional ab initio methods (which 
use the wave function as basic variable).

Even though DFT methods have been successfully 
applied for systems of increasing complexity, methods 
which can include approximations to reduce even more 
the computational demand, without compromising the 
reliability of results, are still required. 

The application of tight-binding (TB) to the calculation 
of electronic structures starts with the paper by J. Slater 
and G. Koster.31 The main idea behind this method is to 
describe the Hamiltonian eigenstates with an atomic-like 
basis set and replace the Hamiltonian with a parameterized 
Hamiltonian matrix whose elements depend only on the 
internuclear distances (this requires the integrals of more 
than two centers to be neglected) and orbital symmetries.

Although the Slater‑Koster method was conceived for 
the calculation of band structures in periodic systems, it was 
later generalized to an atomistic model, capable of treating 
finite systems as well. The transition to atomistic has three 
main requirements, as discussed by Goringe et al.32

First, the elements of the Hamiltonian matrix must have 
a functional dependence on the interatomic distance. In 
the case of band structures one just has to know the matrix 
elements for discrete values of distance. This requirement 
was solved by Froyen and Harrison,33 who proposed that 
the interatomic distance was related to the Hamiltonian 
elements by 1/r 2.

The second requirement is to obtain an expression for 
the total energy and not only for the band energy. In 1979 
Chadi34 proposed that the total energy could be described 
as a sum of two contributions,

E = E
bnd

 + E
rep

	  (1)

where E
bnd

 is the sum over the energies of all occupied 
orbitals obtained by diagonalization of the parameterized 
Hamiltonian matrix, and E

rep
 is the repulsive contribution, 

obtained by the sum of the atomic-pair terms,

	 (2)

in which N is the number of atoms in the system.
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The third and last requirement is the possibility to 
derive the atomic forces from the total energy. This is 
especially important for geometry optimization and 
molecular dynamics. By assuming differentiability of Uab 
in equation 2, the only problem is to derive E

bnd
, which 

depends on the parameterization method chosen for the 
Hamiltonian matrix.

The DFTB method attends these three requirements 
with the additional advantage of completely avoiding any 
empirical parameterization, since the Hamiltonian and 
overlap matrices are calculated using atom-like valence-
orbitals which are derived from DFT. Therefore, the 
DFTB method can be considered as a simplification of the 
Kohn‑Sham method.

3. The Kohn‑Sham Method

Although the Hohenberg and Kohn theorems29 have 
proven that the electronic energy of a system can be 
totally determined from its electronic density through the 
variational principle, they did not propose any procedure 
to perform this calculation. This was done about one year 
later, by Kohn and Sham,30 with the publication of their 
equations known as Kohn-Sham equations.

The solution of Kohn and Sham starts from the idea 
of using monoelectronic orbitals to calculate the kinetic 
energy in a simple, yet reasonably precise, way leaving 
a residual correction that could be calculated apart. Thus, 
one starts with a reference system of M non-interacting 
electrons subjected to the external potential n

S
, with 

Hamiltonian

	 (3)

Where

	 (4)

in which there are no electron‑electron repulsion terms 
and for which the electronic density is exactly the 
same as in the corresponding system of interacting 
electrons. By introducing the single particle orbitals 
ψ

i
 all electronic densities physically acceptable for 

the system of non-interacting electrons can be written  
in the form

	 (5)

Therefore, the HK functional can be written as

	 (6)

where T
S
 represents the kinetic-energy functional for the 

reference system of M non-interacting electrons, given by

	 (7)

J represents the classic Coulomb interaction functional

	 (8)

and the remaining interactions are grouped in E
xc

, the 
exchange-correlation functional, which contains the 
difference between the exact kinetic energy T and T

S
, 

besides the non-classic part of the electron-electron 
interactions V

ee
, i.e.

	 (9)

After combining equations 6, 7 and 8 within the second 
HK theorem, the chemical potential can be written as

	 (10)

with the KS effective potential

\
	 (11)

where n
ext

 is the external potential, normally due to the 
atomic nuclei, and the exchange-correlation potential n

xc
 

is defined as

	 (12)

Equation 10, restricted by ∫r(r)dr = M, is exactly the 
same equation that would be obtained for a system of M non-
interacting electrons submitted to the external potential n

S
 = n

KS
. 

Thus, for a given n
KS

 a suitable value of r can be calculated for 
equation 10 by solving the M monoelectronic equations

	 (13)

and by using the calculated ψ
i
 in equation 5.

Equations 5 and 11-13 are the so-called Kohn-Sham 
equations. Since n

KS
 depends on r through n

xc
 the KS equations 

must be solved iteratively using a self-consistent procedure 
similar to the one depicted in Figure 1. An electronic density 
model r0 is normally chosen to start the iterative procedure. 
In principle, any positive function normalized for the number 
of electrons would be applicable, but a good initial estimate 
of r can significantly accelerate convergence.
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At the end of the iterative procedure, the total energy 
can be calculated, which is given in the KS method by the 
following expression:

	 (14)

The most difficult part of the KS scheme is to calculate 
n

xc
 in equation 12. The existence of an exact density 

functional is assured by the first HK theorem, but the exact 
form of the E

xc
 functional remains unknown. However, 

many approximations of this functional have been described 
in the scientific literature over the last 30 years. In practice, 
the approximation chosen for E

xc
 and the way by which 

the KS orbitals are represented define the different DFT 
methods.

4. DFT as Basis for a Tight‑Binding Method

Following Foulkes and Haydock35 the electronic density is 
written as a reference density r

0
 plus a small fluctuation dr,

	 (15)

This electronic density is then inserted in equation 14:

	 (16)

where r'
0
 = r

0
(r') and dr' = dr(r') are defined as short-

hand notations. The second term in equation 16 corrects 
the double counting in the Coulomb term; the third term 
corrects the new exchange-correlation contribution; and 
the fourth term results from splitting the Coulomb energy 
into one part related to r

0
 and another related to dr. E

nn
 is 

the nuclear repulsion.
Afterwards, E

xc 
[r

0
 + dr] is expanded in a Taylor series 

up to the second-order term:

	

 	 (17)

Substitution of equation 17 into 16 and use of the 
definition (d E

xc
/dr)r0

 = n
xc

[r
0
] results in

	(18)

From equation 18 it is possible to define four important 
terms. The first is a reference Hamiltonian H

^ 0 depending 
only upon r

0

	 (19)

The sum in the first line of equation 18 is analogue to 
E

bnd
 in equation 1. The terms in the second line of equation 

18 define the repulsive contribution,

	(20)

Finally, the last term in equation 18 includes the 
corrections related to the fluctuations in the electronic 
density. This term is defined as

	 (21)

Figure 1. Flow-chart of a typical DFT calculation within the Kohn-Sham 
method.
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Therefore, equation 18 can be rewritten as

	 (22)

In order to obtain a good estimate of the reference 
electronic density, r

0
 is written as a superposition of atom-

like densities centered on the nuclei a,

	 (23)

With this approximation it is assured that E
rep

 does not 
depend on the electronic-density fluctuations. Furthermore, 
due to the neutrality of ra

0
 the Coulomb contributions 

become negligible for long distances. Therefore, E
rep

 can 
be expanded as

	
	 (24)

The contributions of 3 and more centers are rather 
small and can be neglected. These approximations can 
also be justified by Coulomb screening, i.e., since ra

0
 is the 

electronic density of a neutral atom, the electron-electron 
interaction terms with more than two centers are canceled 
by the nucleus-nucleus interactions.

Due to the screening of terms of more than two centers, 
one can assume the two-center contributions to be short 
ranged. However, the repulsion energy does not decay to 
zero for long interatomic distances. Instead, it decays to a 
constant value given by the atomic contributions:

	 (25)

Thus, SN

a E
rep

[ra
0
] is assumed in order to make E

rep
 

dependent only on two-center contributions:

	 (26)

Although it would be possible to calculate E
rep

 for 
known values of ra

0
, it is more convenient to adjust E

rep
 

to ab initio results. Thus, E
rep

 is fitted to the difference 
between the DFT energy and E

bnd
 as a function of the 

interatomic distance Rab using a suitable reference 
structure, i.e.

	 (27)

The value of E
bnd 

 can be obtained by diagonalization 
of the Hamiltonian matrix, which leads to

	 (28)

The value of E
rep 

is usually fitted to a polynomial 
function or to a series of splines. Typical plots of E

DFT
, E

bnd
 

and E
rep

 for a reference structure are shown in Figure 2.

Based on the considerations discussed so far, the DFTB 
model can be derived.

5. The Standard DFTB Model without Self-
Consistency

In the standard DFTB scheme, the second-order 
correction term, E

2nd 
of equation 22, is neglected. Therefore, 

the calculation of the total energy does not depend on the 
electronic-density fluctuations dr and, accordingly, it does 
not have to be solved iteratively.

In DFTB the KS orbitals are represented with a linear 
combination of atomic orbitals (LCAO) centered on the 
nuclei. Denoting the basis functions by fn and the expansion 
coefficients by C

in one can write the KS orbitals in the form

	 (29)

From this LCAO model, one obtains the secular problem

	 (30)

where the elements H 0
mn of the Hamiltonian matrix and Smn 

of the overlap matrix are defined as follows:
 

	 (31)

The second term of equation 22 can be transformed, 
with equations 29 and 11, into

Figure 2. Typical plots of E
DFT

, E
bnd

, E
rep

 and total DFTB energy against 
the interatomic distance for a reference structure.
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	 (32)

in which the elements of the density matrix P are defined 
as follows

	 (33)

In order to restrict the LCAO to valence orbitals only, 
it is necessary to assure the orthogonality of the basis 
functions with respect to the core basis-functions of 
the remaining atoms (by using atomic orbitals as basis 
functions the orthogonality between the core and valence 
functions within the same atoms is already assured). 

Denoting |f) as a non-orthogonalized basis-function and 
|fb

c
) as the core basis-functions of atom b, the corresponding 

orthogonalized basis-function of |f) is obtained by:

	 (34)

By using this orthogonalization procedure, equation 
32 is transformed into

	
	 (35)

where eb
c
 denotes the eigenvalue of the state c in atom b. The 

effective potential n
KS

 and the core correction in equation 
35 can be interpreted as a pseudo-potential (V

pp
). Writing 

n
KS

 as the sum of potentials Va centered on the atoms,

	 (36)

and using this definition in equation 35, the effective 
potential is transformed into a pseudo-potential for all atoms 
in the system, except for atoms to which fm and fn belong. 
Therefore, the pseudo-potential appears in the three-center 
terms and in the two-center terms whose valence orbitals 
belong to the same atom (so called crystal field terms). The 
pseudo-potential contributions are considerably smaller than 
the contributions of the full potentials and are neglected. 
Thus, the Hamiltonian matrix elements are defined as

	 (37)

where dab is the Kronecker’s delta. This approach, the 
potential superposition, has been used since the 1980’s for 
the calculation of DFTB parameters. In 1998, Elstner et al.36 

presented an alternative approach to derive the DFTB 
equations through a second order expansion of the DFT 
total energy with respect to the electron density. As result 
the Hamiltonian matrix elements are calculated as density 
superpositions, which is identical to equation 37 except 
for the contribution of the exchange correlation potential. 
Indeed, due to the non-linear nature of n

xc
, the effective 

potential cannot be described as a simple sum of reference 
potentials within this approach, instead one obtains 

	 (38)

Both approaches are physically motivated and their 
results are similar, which is not surprising if the potential 
difference between equations 37 and 38 is explicitly 
calculated. Both approaches have been used extensively in 
the past, the potential superposition being more popular for 
standard DFTB calculations, and the density superposition 
more widely used for SCC-DFTB.

The fn basis functions and the reference atom-like 
densities ra

0
 are obtained by solving the Schrödinger 

equation

	 (39)

for the free atom within a self-consistent DFT method, 
as shown in Figure 1. The contraction potential (r/r

0
)2 in 

equation 39  constrains the wave functions, resulting in 
better basis sets for the study of condensed-phase systems 
and free molecules as well. The value for the parameter 
r

0
 is normally chosen between 1.85r

cov
 and 2r

cov
, with r

cov
 

being the atomic covalent radius.37

In practice, the Hamiltonian matrix elements are calculated 
as follows: For the diagonal elements the energy level of the 
free atom is chosen, which ensures correct dissociation 
limits. Due to the orthogonality of the basis functions the off-
diagonal elements of the intra-atomic blocks are exactly zero. 
The interatomic blocks are computed as given in equation 
37 or 38, depending on the choice of potential generation. 
Within the density superposition approach the Hamiltonian 
matrix elements unfold as follows:

	
	 (40)

It should be noted that the Hamiltonian elements H 0
mn 

depend only on atoms a and b and, therefore, only the two-
center matrix elements are explicitly calculated, as well as 
two-center elements of the overlap matrix. According to 
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equation 40 the free atom eigenvalues form the diagonal 
of the Hamiltonian matrix, which assures the correct limit 
for free atoms.

By using fn and ra
0
 the Hamiltonian and overlap matrix 

elements can be calculated and tabulated as a function of 
the distance between atomic pairs. Thus, it is not necessary 
to recalculate any integrals during, e.g., a geometry 
optimization or molecular dynamics simulation.

At last, an analytic expression for atomic forces can be 
derived from the total energy with respect to the atomic 
space-coordinates,

	 (41)

By this approach, the DFTB method covers all three 
requirements for an atomistic tight-binding approach. 

6. The Self‑Consistent Charge Correction: 
SCC-DFTB

The non-self-consistent DFT scheme described so far 
is very suitable to study systems in which the polyatomic 
electronic density can be well represented by a sum of atom-
like densities, i.e. homonuclear covalent systems or highly 
ionic systems. However, the uncertainties in the standard 
DFTB increase when the chemical bonds in the system 
are controlled by a more delicate charge balance between 
atoms, especially in the case of heteronuclear molecules and 
polar semiconductors. In order to have a better description 
of electronic systems and better transferability of DFTB 
in the cases where long-range Coulomb interactions are 
significant, the method has been improved, giving rise to the 
self-consistent charge correction DFTB (SCC-DFTB).36 In 
this new scheme, the electronic density is corrected through 
inclusion of the second-order contributions E

2nd
 in equation 

22, which are neglected in standard DFTB.
In order to include the density fluctuations in a simple 

yet efficient way according to a tight-binding approach, dr 
is written as the superposition of atom-like contributions 
dra, which fast decay along the distance from the 
corresponding atomic center,

	 (42)

where the atom-like contributions can be simplified with 
the monopole approximation:

	 (43)

Here Dqa is the Mulliken charge, difference between the 
atomic Mulliken population qa

38 and the number of valence 

electrons of the neutral free atom q0
a (Dqa = qa - q0

a); F a
00

 denotes 
the normalized radial dependence of the density fluctuation in 
atom a approximated to spherical by the angular function 

00
. 

In other words, the effects of charge transfer are included, but 
changes in the shape of the electronic density are neglected. 
Equation 21 then becomes

	(44)

in which the notation gab was introduced merely for 
convenience.

In order to solve equation 44, gab must be analyzed. In 
the limit case where the interatomic separation is very large 
(|R


a - R


b|=|r - r'| → ∞) one finds, by GGA-DFT, that the 
exchange-correlation term goes to zero and gab  describes 
the interaction of two normalized spherical electronic 
densities, basically reducing to 1/|R



a - R


b |, thus,

	 (45)

In the opposite case, for which the interatomic distance 
tends to zero (|R



a - R


b |=|r - r'| → 0), gab describes the 
electron-electron interaction within the atom a and can 
be related with the chemical hardness ha,39 or Hubbard 
parameter gaa = 2ha = Ua. Typically, the atomic hardness 
can be calculated using the difference between ionization 
potential Ia and electron affinity Aa of atom a: 2ha = Ia -Aa. 
Due to practical problems, in particular related to the 
non-existence of various anions and accordingly missing 
experimental validation of the electron affinity of the 
corresponding elements, it is more convenient to exploit 
DFT to obtain these parameters. Application of Janak’s 
theorem40 relates the atomic hardness to the derivative of 
the HOMO energy with respect to the occupation number 

of the HOMO  and hence the energy 

change with respect to electron change within the HOMO. 
This approach offers the possibility to treat the charge 
contribution shell- or even orbital-wise, which is important 
for the calculation of certain elements with sp and d 
bonding contributions, in particular for transition metals. 

Orbital hardness values  have been reported in the 

literature for elements from H to Xe.41 In the following, 
we concentrate on the atomic SCC procedure, which 
implies that all sums over charges run over the atomic 
index a. For orbital-dependent SCC the summation index 
for the charge would run over the shell index x. Within the 
monopole approximation, Ua can be calculated, using a 
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DFT procedure, as the second derivative of the total atomic 
energy of atom a with respect to its atomic charge:

	 (46)

In order to obtain a well-defined and useful expression 
for systems in all scales, and still keep consistence with 
the afore approximations, an analytical expression was 
developed36 to approximate the density fluctuations with 
spherical electronic densities. In accordance with Slater-
type orbitals (Gaussian-type orbitals can also be employed) 
used to solve the KS equations,42,43 it is assumed an 
exponential decay of the normalized spherical electronic 
density:

	 (47)

Omitting the second-order contributions of E
xc

 in 
equation 44 one obtains:

	 (48)

Integration over r' gives:

	(49)

Setting R = |R


a - R


b|, after some coordinate 
transformations one gets

	 (50)

where s is a short-range function with exponential decay, 
so that

	 (51)

Once it was assumed that the second-order contribution 
can be approximated by the Hubbard parameter when  
R = 0, according to equation 46, the exponents of equation 
51 are obtained:

	 (52)

This result can be interpreted by noting that harder 
elements tend to have localized wave functions. The chemical 
hardness of a spin-depolarized atom is calculated by the 
energy derivative of the highest occupied atomic orbital with 
respect to its occupation number, equation 46, using a fully 
self-consistent ab  initio method. Therefore, the influence 
of second-order contributions of the exchange-correlation 
energy is included in gab for short distances, where it 

is important. The fact that, within GGA, the exchange-
correlation energy vanishes for large interatomic distances 
is taken into account. In the case of periodic systems, 
the long-range part can be calculated using the standard 
Ewald summation, whereas the short-range part s decays 
exponentially and can be summed over a small number of 
unit cells. Thus, equation 50 is a well-defined expression for 
extended and periodic systems.

Finally, the total energy within SCC‑DFTB is written as

	 (53)

with gab = gab(Ua,Ub,| R


a - R


b|). Here the contribution due 
to the Hamiltonian H

^
0
 is exactly the same as in the standard 

DFTB scheme. Note that the first term in equation 53 does 
only simplify to the sum of MO energies, the convenient 
notation for DFTB, if all charges are zero. Like in the non-
self-consistent method, the wave functions y

i
 are expanded 

in a LCAO model, equation 29, and equation 53 gives:

	 (54)

The charge fluctuations are calculated by Mulliken 
population analysis:38

	 (55)

and secular equations similar to those in equation 30 can be 
obtained, with modified elements in the Hamiltonian matrix:

	 (56)

The matrix elements H 0
mn and Smn are identical to those 

defined in the standard DFTB method, in equation 31. 
Since the atomic charges depend on the monoatomic wave 
functions y

i
  it is necessary to use a self-consistent procedure. 

Once the elements Smn extend to some neighboring atoms, 
multi-particle interactions are introduced. The second-order 
correction is achieved by introducing the elements H 1

mn, 
which depend on the Mulliken charges.

Identically to the standard DFTB, the repulsive potential 
is fitted according to equation 27 using a suitable reference 
system.

As the self-consistent charge correction allows for 
the explicit treatment of charge-transfer effects, the 
transferability of E

rep
 is considerably better, in comparison 

with the non-self-consistent scheme.
As in the standard DFTB, a simple analytic expression 

for the atomic forces can be derived accordingly:
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	 (57)

DFTB schemes have been successfully used in a wide 
range of applications, from molecular compounds22,44 to 
systems in solid state.19,45-47 Indeed, a symposium dedicated 
to the DFTB methods was held during the 232nd National 
Meeting of the American Chemical Society, from 10th to 14th 
of September, in 2006. A special section with contributions 
presented in this symposium was published in the Journal 
of Physical Chemistry A, issue 26 of 2007,48 presenting 
the actual development state of DFTB with respect to its 
formalism, implementation and applications.

7. Weak Forces: Dispersion-Corrected (SCC-)
DFTB

London interactions, also called dispersion forces, are 
defined as attractive forces between nonpolar molecules, due 
to their mutual polarizability.49 London dispersion forces are 
several orders of magnitude weaker than typical covalent or 
ionic interactions and also about 10 times weaker than hydrogen  
bridge interactions. Therefore, dispersion forces have negligible 
effect in short-range interactions and can be understood as the 
long-range component of van der Waals forces.

Despite their weak nature, London interactions affect 
many fundamental processes in chemistry, physics, and 
biology. They influence the formation of molecular crystals, 
the structure of biological molecules such as proteins and 
DNA, adsorption processes, π‑π stacking interactions, 
among others.

However, as explained above, both the standard and 
self-consistent DFTB methods treat only short-range 
atomic potentials and terms with more than two centers 
are neglected. Therefore, the Hamiltonian matrix elements 
fall off quickly and become negligible at interatomic 
distances typically found in the region of the van der Waals 
minimum. Hence, DFTB completely disregards van der 
Waals interactions, especially dispersion forces.

Two treatments meant to include dispersion interactions 
a  posteriori have been proposed.50,51 In both cases the 
dispersion energy E

disp
 is calculated separately using 

empirical potentials and then added to the DFTB total 
energy expression. Since van der Waals forces are totally 
absent in DFTB, the addition of E

disp
 does not introduce 

any double-counting errors to the energy. 
Since both treatments are somewhat similar, we 

describe that used in the present work.51 This correction 
was implemented in an experimental version of the deMon 
code52 and makes use of the UFF force field,53 already 

available in deMon. The dispersion interaction Uab between 
atoms a and b at a distance R is given in Lennard-Jones-
type form, which includes two parameters: van der Waals 
distance (Rab) and well depth (dab):

	 (58)

The Rab and dab parameters are reported in the original 
paper53 and are available from H to Lw in the periodic 
table of elements. In UFF the van der Waals term is set 
to zero according to an adjacency criteria; however, this 
imposes an inflexible topology of the system, which is not 
desirable in a quantum-mechanical method. To overcome 
this problem, equation 58 is used only when Uab is attractive 
(London interactions are never repulsive), i.e. R < 2-1/6Rab. 
In addition, a short-range potential is derived using the 
polynomial

	 (59)

where U
0
, U

1
, and U

2
 are calculated to make the interaction 

energy and its first and second derivatives match equation 
58 at R = 2-1/6Rab. The best value suggested for n is 5, which 
gives the following U

0
, U

1
, and U

2
 parameters:51

	 (60)

	 (61)

	 (62)

Therefore, the dispersion potential for the DFTB 
method can be written as

	
	 (63)

and the dispersion energy is given by

	 (64)

This term is then added to the total DFTB energy 
calculated either using standard DFTB (section 5) or the 
SCC scheme (section 6).
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8. Glycine in Aqueous Solution

Glycine (aminoethanoic acid) is the simplest among the 
essential aminoacids. In solution an intramolecular proton 
transfer from the carboxylic group to the amino group takes 
place, establishing the zwitterionic equilibrium shown in 
Figure 3. The charge separation in the zwitterionic form is 
stabilized by the solvent, which must have large dielectric 
constant, as it is the case in water. Thus, the neutral species 
is favored in nonpolar solvents.

In this work, Born-Oppenheimer molecular dynamics 
was carried out using the DC‑SCC‑DFTB method, as 
implemented in the deMon package.52 The glycine molecule 
was placed within a 16 Å periodic box containing 129 
water molecules.

The data were collected during a 100  ps simulation 
time with a 0.5 fs time step. The simulation was carried 
out after a thermalization time of 50 ps. It is important to 
emphasize that both glycine and water molecules were 
calculated within a full quantum-mechanical approach. The 
radial distribution function (RDF) of water with respect to 
the glycine center of mass is shown in Figure 4. The first 
solvation shell integrates to 22 water molecules.

Table 1 shows the calculated geometrical properties of 
glycine in solution. The optimized geometric parameters 
are shown at the PBE/TZVP and DC‑SCC‑DFTB levels of 
theory. The estimated angles are in good agreement with the 

previously published results.54 The O‑C=O angle presents 
the largest discrepancy for the zwitterionic form. The PBE/
TZVP estimated O‑C=O angle is 13 degrees larger than 
the value estimated with DC‑SCC‑DFTB. Furthermore, 
the O‑C=O angle is expected to increase from the neutral 
to the zwitterionic form due to the deprotonation of the 
carboxyl group. However, DC‑SCC‑DFTB seems to be 
insensitive to the large charge on the deprotonated carboxyl 
and the angle remains similar to that in the neutral form. 
The mean values of the angles and dihedrals from MD 
(last column in Table 1) are close to the optimized values 
with a standard deviation of about 4 degrees, except for the 
O‑C‑C‑N dihedral. This dihedral involves rotation around 
a single C‑C bond, therefore, large standard deviation is 
indeed expected, explaining the apparent disagreement with 
the gas phase PBE/TZVP results.

Wada et al.55 estimated the Gibbs free energy variation 
between the two glycine forms in aqueous solution to be 
about ‑7.0 kcal mol-1 (∆H = ‑10.3 kcal mol-1). The change 
of the expected value between the two forms from the 
NVE molecular dynamics (ΔENVE) was estimated to be 
about ‑25.5 kcal mol-1. We have also used the continuum 
model to estimate the ∆G of this reaction at the PBE/TZVP/
PCM level of theory and a value of ‑23.4 kcal mol-1 was 
obtained.

9. Final Remarks

DFTB is an approximate density-functional method 
which, in principle, does not employ any empirical 
parameter, in the sense that all quantities are calculated 
within DFT (Slater-Koster integrals) or they are calculated 
from reference structures by DFT calculations (E

rep
). It has 

been implemented in many different codes.56

Table 1. Calculated angles and dihedrals for neutral and zwitterionic 
glycine

Angle in degrees PBE/TZVP SCC-DFTB DM-SCC-DFTB

neutral form

N‑C‑C 113.2 114.3 114.3 ± 3.6

O‑C‑O 123.0 120.1 119.9 ± 2.8

O‑C‑C‑N -4.0 -13.2 78.9 ± 65.9

O‑C‑C=O 180.0 179.2 175.0 ± 3.8

zwitterionic form

N‑C‑C 103.6 113.7 114.4 ± 3.5

O‑C‑O 132.4 119.3 119.2 ± 2.9

O‑C‑C‑N 0.0 62.5 55.5 ± 55.0

O‑C‑C=O 180.0 178.8 174.8 ± 3.9

Figure 3. Equilibrium between neutral glycine (left) and its zwitterionic 
form (right).

Figure 4. Radial distribution function of water around the glycine 
center of mass.
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Density Functional methods have along the time become 
a standard method for electronic structure calculations and 
substantially helped to unify organic chemistry, inorganic 
chemistry, surface chemistry, materials science and, 
more recently, biochemistry.4 With the advent of DFTB, 
the approximate DFT method, a plethora of challenging 
systems are now accessible for electronic structure 
calculations, enlarging the frontiers of the applicability 
of fundamentally well established theoretical tools. 
Nanostructured, self-assembled and nanoreactor systems 
are some of those for which DFTB can provide substantial 
help in the investigative work. 
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