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We propose a density-functional theory for the isotropic-nematic transition of hard ellipsoids
which is in fair quantitative agreement with the recent computer simulations of this system and
which improves considerably upon the earlier theoretical attempts. The theory has an explicit
oblate-prolate symmetry and leads to simple analytic expressions, ¢.g., for the equation of state of
the isotropic phase. When the free energy of the nematic phase is expanded with respect to the
Maier-Saupe quadrupole order parameter, an explicit Landau theory is produced, which is shown to
underscore considerably the strength and the width of the transition. A virial expansion of the free
energy produces in turn an Onsager theory for finite elongations whose results are shown to tend
only very slowly to their Onsager limiting value. We also propose a Lindemann rule for orientation-

al freezing.

I. INTRODUCTION

The main reason to study systems of hard convex bo-
dies is that they provide us with simple reference systems
for the investigation of more realistic systems. For in-
stance, it is well known that the study of systems of hard
spheres (HS), both by theory' and computer simulations,’
has played an important role in the elaboration of present
day liquid-state theory' and in our understanding of the
liquid-solid phase transition.’ The HS system is also
known to be a very good reference system for a perturba-
tional study of realistic systems of spherical molecules.'
In the case of non-spherical molecules the number of pos-
sible geometric shapes is much larger but within the con-
text of convex bodies the simplest possible reference sys-
tem appears to be a system of hard ellipsoids (HE). It is
well known that such nonspherical molecules can form a
very large variety of liquid-crystal phases or mesophases
with a symmetry in between that of the liquid and of the
crystal.’ Recent computer simulations* have shown that
systems of HE do exhibit some of these liquid-crystal
phases and can thus indeed be used as simple reference
systems for the study of nonspherical convex molecules.
The very existence of a HS crystal’ and a HE nematic
phase® also shows that the attractive forces are not essen-
tial for the occurrence of, respectively, positional freezing
and orientational freezing, and that both phase transi-
tions are thus monitored by the repulsive forces leading to
a competition between entropic and excluded volume
effects. The simulations have, moreover, shown® that
liquid crystal phases can be formed both by prolate (rod-
like) and by oblate (dislike) HE. These various facts tak-
en together indicate that the HE system can be expected
to yield a good reference system for a perturbational
treatment® of more realistic systems of nonspherical con-
vex molecules.

It is the purpose of this investigation to present a sim-
ple, HS-based, theory for two of the simplest phases of
the HE system together with their phase coexistence.
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The two phases which will be considered here are the ful-
ly disordered, uniform and isotropic, fluid phase, and the
orientationally ordered, uniform and anisotropic, nematic
phase, designated hereafter, respectively, as the (isotro-
pic) I phase and the (nematic) N phase. The HE system
considered here will, moreover, be composed of ellipsoids
of revolution so that the corresponding N phase is always
uniaxial.

The most convenient theoretical framework available
at present for the study of several phases and their coex-
istence from a unified point of view appears to be the
density-functional theory (DFT). This approach to equi-
librium statistical mechanics bears its name from the fact
that it views the thermodynamic potential of the system
as a functional of the average one-body density. The ver-
sion of the DFT which will be used here® is based on the
Helmholtz free energy as thermodynamic potential. For
convenience a brief summary is given in Sec. II. Its ap-
plication to the approximate description of the I phase is
then described in Sec. IIl. The N phase and the I-N
coexistence are studied in Sec. IV. The relation to the
classical theories of Landau’ and Onsager® as well as to
some recent theoretical’~'' and computer simulation*
studies is developed in Sec. V, whereas the final section
(Sec. VI) contains our conclusions. A preliminary ac-
count of the present investigation has already been
presented elsewhere,'? whereas some related liquid-
crystal studies'® should also be mentioned here.

Il. THE DFT IN THE HELMHOLTZ
FREE-ENERGY LANGUAGE

In the traditional approach to equilibrium statistical
mechanics one starts from a set of equations (usually the
Born-Green-Yvon hierarchy'®) for the structural func-
tions (the n-body densities) which once solved are used to
compute the thermodynamic data from which the phase
coexistence can then eventually be inferred. In the more
modern approach this rather lengthy procedure is
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shortcut by considering directly the relevant thermo-
dynamic data (free energy, pressure, chemical potential)
as given functionals of the structural functions. This now
widely used so called “density-functional theory” can be
presented in various ways (see Ref. 6 for an extensive list
of references). In the early presentations of the DFT
the starting point was taken to be the grand-canonical
thermodynamic potential or Landau free -energy,
Q=0(u,V,T), for which the chemical potential u, the
volume ¥, and the temperature T are the natural vari-
ables. This set of variables together with the Gibbs-
Duhem relation 2= —pV, between £ and the pressure p,
make ) a very convenient potential for the study of
phase coexistence. This certainly is the case as far as the
exact manipulations are concerned but becomes more
questionable once approximations to {2 and hence to p
are introduced because then the two-phase equilibrium
conditions of constancy of p and constancy of u are no
longer treated on the same level of approximation since p
is approximated while u remains an independent variable.
For this reason we have favored a presentation of the
DFT based on the canonical thermodynamic potential or
Helmholtz free energy, F=F(p,V,T), for which the
number of particles N or the (average number) density
p=N/V is the natural variable besides ¥V and T. It is this
approach, in which F is the quantity to be approximated
and both p and u are deduced from it, which will be used
here. Details can be found elsewhere®'* but for conveni-
ence a summary is included here.

In the DFT the Helmholtz free energy F is viewed,
moreover, as a functional of the local (average number)
density p(x), F=F(p,V,T;[p]), or omitting as usual the
thermodynamic variables (p, ¥V, T) and focusing our atten-
tion on this functional dependence, indicated by square
brackets, we write briefly F =F[p]. The related Landau
free energy 2=11[p] and Gibbs free energy G =G|[p] can
then be obtained from F[p] by a functional Legendre
transformation as

Glpl= fdxp(x)—lﬂl : (2.1)

Qp]=Flp)-Glp] . 2.2)

where x stands for all (one-body) degrees of freedom with
dx normalized over the volume, [dx=V, so that

p=lyfdxp(x) (2.3)
represents the average density. The reduced thermo-
dynamic potentials will be denoted f[p]=F[p]/V for the
Helmholtz free energy density, p[p]=—Q[p]/V for the
pressure, and u[p]=G|[p]/pV¥ for the chemical potential
(the latter two interpretations follow from the Gibbs-
Duhem relations’). The above expressions still corre-
spond to arbitrary (metastable) states p(x). The equilibri-
um state can be selected by using the extremum principle
of the given potential. For the Helmholtz free energy,
used here as basic potential, this principle reads

5F Pyr_fdx_lel

Bp(x) (2.4)

8p(x)—
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which implies
A1) (2.5)

=ulp]
Sp(x) |,y p
since at constant p we have
f%&p(x)z&pso :

Indeed, using (2.5) in (2.4) leads to 8F =uV 6p=0. From
the chain rule

_ 1, 8F[p] dp(x)
=[x S(x) 3 (2.6)

and (2.5) we find that, at equilibrium, the chemical poten-
tial can be obtained from the free-energy density as

_
ulpl= apf[pl ;

whereas from (2.1) p is also seen to be the Gibbs free-
energy per particle G /pV so that, at equilibrium, (2.2)
yields also the pressure p in terms of f as

lp] _
w flpl,

2.7

rlpl=p (2.8)
and both p (2.8) and p (2.7) can thus be expressed in
terms of the same (approximate) free-energy density f.

Besides satisfying the extremum condition (2.5), the
true equilibrium state p(x) should also make F[p] a
minimum. In other words, at equilibrium, the following
expression (8=1/kgT):

82F[P] 5(! x’) :
6p(x)8p(x )~ plx) —c(x,x";[p]) ,

defining the (two-body) direct correlation function (DCF)
c(x,x’;[p]) should be a positive definite functional. Both
sides of (2.9) can then be integrated twice along a linear
path in density space'® at a constant average densnty and
starting from a known reference state p, to yield"*

Bf(p)=Bflpol+; [ dxp(x)inlp(x) /p,)
— [ax fax ['ana-2)

Xelx,x';[po+Aldp])
x Ap(x)Ap(x'),  (2.10)

where Ap(x)=p(x)—py po=p, and f[p,] is the free-
energy density of the reference state. The property (2.10),
which is the central relation of DFT, is exact [notice that
for simplicity the contributions from external symmetry
breaking potentials have not been written down explicitly
since they are assumed to yield a negligible contribution
to the bulk thermodynamics in the limit of a large system
whereas, as usual, the reference state has been considered
to be a fully disordered state, py(x)=p,]. The way in
which (2.10) will be used by us is then as follows: (1) For
cach phase an approximate expression of the function-
al c(x,x";[p]) is sought for in terms of the disordered
reference system DCF (for which the functional depen-
dence on p degenerates into an ordinary function

2.9)




2024

clx,x";[po])=c(x,x";py)); (2) for each phase, the local
density p(x) is suitably parametrized and these parame-
ters are then determined by minimizing f[p] as given by
the previous approximation to the rhs of (2.10); (3) for
each phase, the value of p(x) and of f[p] for the parame-
ter values corresponding to the minimum are used to
compute the thermodynamics of the given phase from
(2.7) and (2.8); (4) the two-phase coexistence is then locat-
ed by equating the chemical potentials and the pressures
of a given pair of phases (the temperature T is considered
as a constant parameter throughout). The underlying
physics is thus completely contained in the first two steps
whereas the last two steps are purely technical. We now
work out the above program for the /-N transition of a
system of HE (alternative approaches to the DFT are dis-
cussed in Ref. 6).

III. THE ISOTROPIC PHASE

For the I phase several simplifications occur because of
its translational and rotational invariance. The local den-
sity p(x) of a uniform and isotropic (fluid) phase is a con-
stant, equal to the average density p, and all the function-
als of p(x) degenerate into ordinary functions of p.
Hence we have for the I phase p(x)=p and
c(x,x’;[p])=c(x,x";p). If we locate the ellipsoid in space
with the aid of the position of its center (r) and a unit vec-
tor (u) along the axes of revolution x=(r,u), we can
write, moreover, ¢(x,x’,p)=c(r—r’;u,u’;p) for the DCF
of the I phase. The basic theories of HE, or of convex
bodies in general,™'* are not at present sufficiently ad-
vanced to provide us with the necessary analytic expres-
sion of the DCF (see Ref. 15 for a review of this ques-
tion). As a possible alternative, Pynn first suggested'® to
use a HS DCF with an orientation-dependent HS diame-
ter. The consequences of this model were worked out by
Lado and found'” to yield good results for both the ther-
modynamics and the structure. The main drawback of
Pynn's model appears to be that it predicts an isotropic
DCF at the origin and at contact, which is unphysical.'’
The alternative we propose here is based on the idea of
factorizing the translational (r,r’) and the angular (u,u’)
variables:

clr—riuu’;p)=2(uw'leyl | r—r'|,p)+ -+ (3.1)
or, in other words, of expressing the DCF of the HE in
terms of those of a reference HS system. For the latter
we take HS of the same volume as the HE and describe
the DCF of these HS within the Percus-Yevick (PY) ap-
proximation:'

drl

’ 2
Ta . (3.2)

ol |r|.p)=cpy

where 0, is the HS diameter and 7=(7/6)ogp the cor-
responding packing fraction of either the HS or the
HE since both have the same molecular volume
Vot =(7/6)03=(m/6)a 0} for ellipsoids of revolution
with diameter o along the axis of revolution and diame-
ter o, perpendicular to this axis. While (3.2) takes care
of the translational correlations of the HE, which on the
average cannot be very different from those of HS of the

COLOT, WU, XU, AND BAUS 38

same volume with o, playing the role of a rotationally
averaged HE diameter, it still remains to determine the
angular correlations described here by Z(u-u’) of (3.1)
and which result from the intrinsically anisotropic HE in-
teractions, as opposed to the isotropic HS interactions.
Assuming that the density effects are sufficiently well tak-
en care of by the translational term cy[( | r—r'| ),p], we
now evaluate the angular term Z(u-u’) to lowest order in
density. In this case Z(u-u’) represents the volume ex-
cluded to two HE of given orientations u and u’, aver-
aged over the orientations of their center-to-center posi-
tion r—r', and divided by the HE volume:

a8

E(n-n')=f -

%a’(ﬁ;u.n'l/%o'of <R

where W=(r—r’')/|r—r’| is a unit vector along the line
joining the centers and o(W;u,u’) is the contact distance
of two HE of orientations u and u’. The precise deter-
mination of the contact distance of two HE, o(W;u,u’'), is
a complicated geometrical problem."® An interesting, ap-
proximate but analytic, expression for it can however be
obtained from the Gaussian overlap method'® of Berne
and Pechukas. In this method each ellipsoid is replaced
by a Gaussian distribution

gin, A)=e—"A ")z} | A| )2 (3.4)

with the center at r=0 and anisotropic width matrix
given by

A=cjuu+oi(1—uu) (3.5)

so that the distribution g(r; A) is essentially concentrated
inside an ellipsoid of revolution with u as unit vector
along the symmetry axis and with a diameter o along u
and a diameter o in any direction perpendicular to u.
Convoluting two such ellipsoidal Gaussian distributions
and using the result

Jdrgie, Agw+r, Al =g(w, A+ A"), (3.6

one can finally estimate the contact distance o(W;u,u’)
from the relation

wilA+A) "w=w'/204W;u,0'), (3.7

yielding, after some algebra,

o

o¥(W;u,u’)
—y [(®%-u)4 (%0 )P —2X(¥-u)@u')uu')]
[1—=X*u-u')) ¢

=]

(3.8)

where X is the eccentricity parameter defined in terms of
the aspect ratio of the ellipsoids k =0, /0 by
172

2 o, ‘
=— (3.9
g,

2
5 k-1 -

. k241 ¥ 0:+af

1+X
1-X

v k=

so that k> 1 (or 0 <X < 1) corresponds to prolate (rod-
like) ellipsoids, 0 <k <1 (or —1 <X <0) to oblate (disk-
like) ellipsoids, and k =1 (or X=0) to a sphere. Using,
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finally, expression (3.8) into (3.3), one finds after some
algebra for the Berne and Pechukas (BP) approximation
to (3.3),

RO o L

1-Ytew) =Zgplu-u’),

1-=x?

which is the desired analytic expression of the excluded
volume to two identical ellipsoids of aspect ratio k and
orientations u and u’. Notice that (3.10) is an even func-
tion of X, and hence invariant for the interchange of o,
and o, so that oblate and prolate ellipsoids of the same
molecular volume will have identical excluded volumes
(this property will be referred to below as the oblate-
prolate symmetry of £). Combining the results (3.10) and
(3.2) we arrive at the following approximate expression:

|r—r'| 3
0

Z(uw')= (3.10)

clr—ru,u';p)=Zgplu-u’)cpy (3.11)

for the DCF of the I phase of the HE system. To test ex-
pression (3.11) we compute the thermodynamics of the
I phase from (2.10) or directly from the equivalent
compressibility equation for the pressure p,

B%—:l—pfdrfdufdu’c(r;u.u';p) 3 (3.12)
which, with the use of approximation (3.11), yields

B—az-=l-—H(X)‘ql(‘q) * (3.13)

dp

or integrating (3.13) with respect to the density,

% =Z(nX)=1+HXO[Zo(m~1] , (3.14)
where H(X)

HOO= [du [dw’ ng(u-n‘)=% 1+ ﬁ%,;

(3.15)

is the orientationally averaged excluded volume (see Fig.
1) and Z(7,X) the compressibility factor of the HE,
whereas I(9),

1m=p [ drey [LL |, :
nl(n)=p [dre, ol (3.16)
and Z(9),
l " ’ ’ ’
Zy(g)=1- ﬂfo dy' w1ty (.17

are related, respectively, to the inverse isothermal
compressibility and the compressibility factor of the
reference HS system. As a result of the factorization ap-
proximation (3.11) it is sufficient to know the HS
compressibility factor Zy(#n) in order to obtain from
(3.14) and (3.15) the equation of state of the HE fluid for
arbitrary eccentricities X. For the HS equation of state
we can use

Iin)=—[8—-2n+41—am?—(1—am’}/(1—9)*,
(3.18a)
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FIG. 1. Average excluded volume H(X) of (3.15) and the as-
pect ratio k as a function of the eccentricity parameter X of
(3.9). Notice the rapid increase of H for k > 3.

Zyp)=(14n+n'—an ) /(1—=7), (3.18b)

which for a =0 corresponds to the PY result (3.2) and for
a =1 to the more accurate Carnahan-Starling (CS) ex-
pression.' In Fig. 2 we compare the predictions of (3.14)
to the available computer simulation results of Frenkel
and Mulder.* The oblate-prolate symmetry is not perfect
but the overall agreement is quite remarkable especially
in view of the analytic simplicity of (3.14). The only al-
ternative analytic equations of state for HE fluids known
to us are those corresponding to the extensions'® of scaled
particle theory to convex bodies but these equations are
more complicated and less accurate than (3.14) (see Fig. 1
of Ref. 12).

1IV. THE NEMATIC PHASE

In the uniform N phase the local density of HE,
p(x)=pl(r,u), is no longer a constant but a function of the
orientation variable u which can be written p(x)=ph(u),
with p the average density and h(u) the normalized
( f duh(u)=1) angular distribution. For HE of revolu-
tion we expect the N phase to be uniaxial with a cylindri-
cal symmetry around some director n (n’= 1) and a plane
of symmetry perpendicular to +n. In this case hl(u) can
depend only on the angle 6 between n and u or
equivalently on u'n=cos@=m. Let us write therefore
hiu)=hlun)=him)=h(—m) with the normalization




FIG. 2. Reduced pressure p* =fpv,,, vs the packing fraction
7)=pU o for the isotropic phase of hard ellipsoids of various as-
pect ratios k as obtained from (3.14) with @ =0 (dashed lines,
PY) and a =1 (solid lines, CS) and compared to all the available
computer simulation results of Frenkel and Mulder (Ref. 4) for
k (> 1) (circles, prolate HE) and k'=1/k (squares, oblate HE)
with, from bottom to top, k =1.25, 2, 2.75, and 3. (To separate
the curves the p* scales have been shifted by three units be-
tween each curve: The scale shown corresponds to the bottom
curve k =1.25.) The oblate-prolate symmetry of the simulation
results is clearly apparent.

condition [idm h(m)=1. A completely general param-
etrization of h(m)=h(—m) is provided by h(m)
=3 ,ayPylm) with Py (m)=P,(—m) the even-order
Legendre polynomials.'” This expression has, however,
the disadvantage that the positiveness of & (m) cannot be
guaranteed a priori once the series h(m)=T3,a,, Py (m) is
truncated. One can avoid this by writing
h(m)=exp[3,7yPy(m)] and angular distributions of
nematics have indeed been determined in this form in the
literature.”® To determine h (m) accurately several terms
(up to / =7 in Ref. 20) have to be retained in the series
3. Y2 Py m). Here, our purpose however is not to deter-
mine h (m) accurately but instead to use h(m) in the ex-
pression (2.10) of the free energy where many of the de-
tailed features of h(m) are integrated out. For the
present purpose it will therefore be sufficient to retain
only one term (/ =1) besides the normalization constant
(1 =0) and we will hence parametrize h (m) as follows:

rPytm)
him)m=E e g

1
Z(y) Z(y)—fodme
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with Py(m)=4(3m?*—1) the second Legendre polynomi-
al. Notice that in Ref. 12, & (m) was written as

h(m)=e"""/fldm e""" s
0

which is equivalent to (4.1) with y'=]y. We have
checked that adding more terms (/ > 2) generally changes
the free-energy minimum by less than 1% (see also Sec.
V A). This shows once more® that it is much easier to
determine the free-energy minimum variationally than to
solve the corresponding Euler-Lagrange equation for
h(m) and substitute this result into the free-energy ex-
pression. The one order-parameter (y) trial function (4.1)
is thus both mathematically convenient and physically
reasonable. For y =0 it corresponds to an isotropic dis-
tribution [h(m)= 1], whereas for y > 0 the angular distri-
bution h(m) is peaked around m =+*1 (or 6=0 and =,
see Fig. 3) and corresponds to an N phase. The form (4.1)
was also used in the classic work of Maier and Saupe®' as
a mean-field distribution corresponding to a quadrupole
attraction, and since then it has become customary to dis-
cuss the nematic phase in terms of the quadrupole order-

parameter g:

1
g=[ dm Py(m)him)=q(y) 4.2)

which has the advantage over ¥ (0<y < @) of (4.1) to be
a bounded order parameter (0 <gq <1). The relation be-

L 4 10
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e

FIG. 3. Angular distributions A (cosf) of (4.1) as a function
of @ for, from top to bottom, y =4 (¢ =0.712), y =3 (¢ =0.605),
y=2(g=0.439), and y =1 (g=0.220).
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FIG. 4. Relation between the two order parameters y of (4.1)

and g of (4.2).

tween y and ¢ =q(y) (see Fig. 4) is easily obtained from
(4.1) as

o
(y)=-—[InZ(y)], (4.3)
qly i,Y[ v

where Z(y) of (4.1) is related to Dawson’s integral'’
e P i
Fix)=e = [‘dte",

and the properties of Z(y) can easily be deduced from
the known properties'® of F(x).

To complete our program for the N phase we still
have to find an approximation for the DCF
c(x,x";[py+AAp]), appearing in the exact free-energy ex-
pressions (2.10). In related contexts, several authors®
have expanded this DCF in a perturbation series with
respect to Ap(x). The convergence of this expansion
however is slow,’ e.g., in lowest order no HS freezing can
be predicted in this way,'* whereas the higher-order
terms involve the largely unknown triplet and higher-
order direct correlation functions. This is a fortiori the
case for the HE system for which even the pair correla-
tions are not known accurately.'” The alternative to such
a perturbation expansion we propose® is to replace the
DCEF c(x,x";[p;]) by the DCF of some reference I phase,
c(x,x;p,), with p,(x)=p,+AAp(x) the local density of
the N phase and 5, the corresponding (average) density of
the reference / phase. The rationale behind this approxi-
mation is similar to the one used for the trial function

2027

(4.1): In the free-energy expression (2.10) the details of
the DCF are integrated out, which should result in fairly
similar averaged pair correlations for the N phase and the
I phase. Moreover, when j, is expanded around p, the
first term reproduces exactly the first term of the pertur-
bation series in Ap(x) whereas the remainder corresponds
to a partial infinite resummation of the higher-order
terms of the perturbation expansion. The only drawback
of this method is that there appears to be no general re-
cipe for the determination of the density g, of the refer-
ence I phase, except for the use of some physical insight,
the latter cumulating usually® into some geometric scal-
ing argument. Such an argument leads then to a relation
between g, and p;, the average density corresponding to
pi(x). [Notice that when working at constant average
density (p=p,) both p, and p, become independent of A
and the resulting approximation to the free energy (2.10)
acquires the form of a renormalized second-order, in
Aplx), theory.] To implement these ideas for the N phase
we first approximate its DCF c(x,x";[p]) by the approxi-
mate DCF of the I phase proposed in (3.11), evaluated at
a reference density p,

c(x,x;[p])=c(r—r',u-u’,p)

]

 Lad 5

o~ ZBP( u-u’ )C" N (4.4)

Tg

with 7j=(m/6)ap the packing fraction of the equivalent
HS system (see Sec. III). To find the geometric constraint
leading to a structural scaling relation we first observe
that, if the DCF of the I phase at the reference density p
is to describe, in some averaged sense, the pair structure
of the N phase of average density p, then g will have to be
lower than p so as to take into account the lowering of the
interactions as a result of the increased ordering of the
HE in the N phase compared to the disordered / phase.
From the geometry of the molecular arrangements it is
clear that in the I phase any HE can be freely rotated
around any axes whereas in the N phase it can be freely
rotated only around its symmetry axes. As a conse-
quence the average contact distance between two neigh-
boring ellipsoids will be smaller in the N phase than in
the / phase. In the / phase this average contact distance
is oy, the diameter of the equivalent HS system intro-
duced in Sec. 11 to describe the translational correlations
of the HE. In the N phase the average contact distance
will thus be reduced to x times o, with x < 1. Estimating
x by comparing the volumes occupied by the freely rotat-
ing HE in either phase, one finds that for ellipsoids of re-
volution x scales like the aspect ratio k when k < 1 or like
1/k when k > 1, or in terms of the eccentricity parameter
X of (3.9),

i—x |7 | Kk ifk<t
0= | Tk igks. @.5)

This geometric constraint on the average contact distance
is finally translated into a structural scaling relation by
switching from the HE to the equivalent HS system used
in Sec. 111 to describe the translational correlations of the
HE system. Scaling accordingly the equivalent HS sys-
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tem af contact we obtain
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fusfcnp]—f{mnzfw—m :

il dr]
c =19 |=¢ =x(X), " (4.6)
s Ll i L 7 %Af:fduh(u)lnh(n)
which for each X defines the packing fraction 7 of the / p ]
phase to be used in (4.4) to describe the correlations of =% f drcpy = 77, X)
the N-phase of packing fraction 7. The relation 0
#=1(n,X) resulting from (4.6) is shown in Fig. 5. Com- A )
bining now (2.10) with (4.1) and (4.4) we arrive finally at x [ du [ du’ Zgp(u-u')[h(w)—1]
the following expression for the reduced free-energy den- x[h(u')—1] @.7
sity of the N phase relative to that of the / phase of the
same density (p=py), or
J
gAf= foldm h(m)lnh(m)—-g-l(ﬂ(n.X))[H(r,X)—H(X)] ; (4.8)
1—=Xmm'+£(1—m?*)' (1 —=m"?) 2cos( Lmx )] M
1 1 1 3
WX)= ! : y 4.9)
H(y, 0= [ dm [ dm’ h(mh(m )fodx‘:;l PR

and H(X)=H(y=0,X) is given by (3.15), whereas [see
(3.16)-(3.18))

2l(f)=p [ drecpy

»
Ty

JLL;,]

=—n(8=29+47 7 ) /(1) , (4.10)

0.2 0.4 0.6

FIG. 5. Relation between 7 and % as obtained from (4.6) for
various aspect ratios, with from top to bottom, k =1.3,2,3,5, 10.
Also shown (dashed curves) are the two extreme cases k = | and
k=,

f

with f=7(n,X) determined from (4.6). Notice also that
from (4.1) and (4.12) the ideal term can be simply written
interms of Z(y) as

'foldmh(m)lnh(m)=rq—ln2(y)

InZ(y), 4.11)

r—a-—l
dy

whereas (4.9) has to be computed numerically. Physical-
ly, the first term in the rhs of (4.8) represents the
difference in orientational entropy between the two
phases and the second term, which is proportional to
Hily,X)—H(X), the difference in average excluded
volume. It is only when the average excluded volume in
the N phase, H(y,X), is lower than the average excluded
volume in the J phase, H(X), that this excluded volume
term can compete with the entropy term and stabilize the
nematic.

Minimizing now (4.8) with respect to ¥ we obtain, for
each 7 and X, the free-energy density of the correspond-
ing N phase. Because of the prolate-oblate symmetry of
the present theory (all expressions are even functions of
X) it is sufficient to do this for k> 1. At low density
(small %) the only free-energy minimum corresponds to
the I phase (y=0). Above a threshold density 7, a
second minimum appears at a value of y which we denote
Yol50). The corresponding N phase is thus marginally
stable. Its physical characteristics 7, and go=¢(¥,) have
a very different k dependence (see Table I). Whereas 7,
decreases rapidly with increasing k (> 1), roughly as 1/k,
the order parameter at threshold, g,, remains practically
constant, go~ 4. This corresponds to a Lindemann rule'
for orientational freezing: For quadrupole moments ¢
below g~ the nematic phase is always unstable. Once
the N-phase is stabilized (9>, ¢ > ¢q,) a very small in-
crease in density (i.e., a few percent increase in 7)) lowers
rapidly the free energy of the nematic below that of the 7
phase of the same density. Some values (7,,¢4,) corre-
sponding to this state of marginal thermodynamic stabili-
ty (Af =0) are given in Table II. A further slight in-
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TABLE 1. The reduced free-energy difference (8/p)Af, the
packing fraction 7, and order parameter g, for the marginally
stable nematic phase of hard ellipsoids of various aspect ratios k
as obtained from the density-functional theory.

k B
Mo 90 5 Af
1.3 0.7701 0.325 0.004 26
1.8 0.6499 0.331 0.004 49
2 0.6125 0.334 0.004 60
2.75 0.5031 0.344 0.00503
3 0.4746 0.347 0.005 16
4 0.3867 0.357 0.005 64
5 0.3263 0.366 0.00602
7 0.2491 0.376 0.006 55
10 0.1846 0.385 0.00701
15 0.1295 0.392 0.007 37
20 0.1000 0.395 0.007 53

crease of the density quickly transforms the free-energy
minimum corresponding to the I phase into a maximum,
leaving the N phase as the only stable phase at higher
densities. This rapid evolution is a manifestation of the
weakly first-order character of the /-N transition which is
seen to involve only a very small region of metastability
of the low-density nematic phase and the high-density
isotropic phase. An example of this scenario is shown in
Fig. 6.

The I-N phase transition point can be obtained by solv-
ing the conditions of equality of the pressure and the
chemical potential of the two phases. These conditions
are equivalent to solving numerically Maxwell's double
tangent construction for the free energies:

i n In—1i

d%; d%n pPx—pr'
where we have used (2.7) and (2.8). There are other
ways'® to express the two-phase coexistence conditions
but in the present context these would involve additional
numerical calculations and have therefore been discarded
here. The advantage of the Maxwell construction is that
(4.12) requires only the free energies as input. Needless
to say, these different routes to the coexistence conditions
are not strictly equivalent once the approximations have
been introduced. This problem of the thermodynamic in-
consistency of these different routes is unavoidable here

(4.12)

TABLE II. The packing fraction %, and the order parameter
g, for various k values of the nematic phase at marginal ther-
modynamic stability (Af=0) as obtained from the density-
functional theory.

k A 9
2 0.6144 0.45
275 0.5055 0.44
3 04771 0.45
5 0.3291 043
10 0.1869 0.44
20 0.1016 0.43

2029
0.005
Q
; 0
.
-0.005

FIG. 6. Reduced frec-energy difference (8/p)Af of Eq. (4.8)
vs the order parameter y for hard ellipsoids of aspect ratio
k=3 and packing fraction, from top to bottom, 5=0.4725,
0.4746, 0.4771, 0.4800, and 0.4950. Notice the very rapid
changes with respect to 7 in this region and also the small free-
energy scale.

since the corresponding problem has as yet not even been
solved for the much simpler I-phase description. The re-
sults obtained from (4.12) and (4.8) for the I-N coex-
istence are shown in Table III. The /-N transition is seen
there to be always rather narrow (involving only a very
small density change) but not always very weak since the
jump in the order parameter g increases rapidly with k
even for the intermediate k values considered here. It
should finally be emphasized that the present calculation
does not take into account the fact that in certain regions
(e.g., the high-density small-k region) the J-N transition
can be preempted by other phase transitions not con-
sidered here.

V. SOME RELATED RESULTS

The above DFT is seen to yield physically very reason-
able results for the /-N transition. One should not forget
however that it is based on the simple but fairly rough
approximation (4.4) to the DCF of the N phase. Before
testing the results of the DFT against the computer simu-
lations,* which is our final goal, it may thus be of interest
to compare it also to a number of alternative theoretical
attempts to describe the 7-N transition of a system of HE.
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TABLE II1. The isotropic-nematic coexistence data for various k values as obtained from the

density-functional theory (p* =Bpv o, u* =Bp).

3 m N P M q
2 0.6120 0.6175 24.3 50.2 0.50
2.75 0.5012 0.5117 9.62 25.7 0.55
3 0.4722 0.4843 1.76 223 0.56
5 0.3213 0.3423 2.78 122 0.64
10 0.1787 0.2037 1.03 .77 0.72
20 0.0957 0.1157 0.47 5.99 0.77

A. The Onsager theory

As seen from Table III the above DFT predicts that
the coexisting densities decrease rapidly with increasing
aspect ratio k, roughly as 1/k. This is consistent with
the fundamental idea behind Onsager’s theory®? of the
I-N transition which states that for very large aspect ra-
tios this transition should occur already in a dilute sys-
tem. It is rather exceptional that a phase transition can
be studied with the aid of a virial expansion and it re-
quired Onsager’s insight to observe that the virial expan-
sion (p—0) combined with the large aspect ratio limit
(k — ) would not destroy the I-N transition. In this
so-called Onsager limit (p—0, k — o, kn=const) the
Onsager theory becomes, moreover, exact and it is thus
interesting to inquire whether the above DFT is con-
sistent with this exact limiting case. Returning to (4.8)
we see that the ideal term remains unchanged in this limit
whereas the Onsager limit of the excess term can be taken
in two steps. First we expand #/(7}) for small . From
(4.6) it follows that 7j—0 as n—0, whereas (4.10) implies
I(0)=—8 and hence nl(7])— —87n. Next we compute
the large-k limit, i.e., X — 1, of (4.9) by returning to (3.10)
and (3.9):

3 . [1=X}u-u'))'?
lim —2 u')=
k.l-ﬂ el xlfl—'?l 1+X
=4{1-(uw')]'"?, (5.1)
and using u-u’'=cosw, [1 —(u-w')?)"?= |sinw |, with @
the angle between u and u’, we obtain finally the Onsager
limit of (4.1) in the form
Brf| = [duhtwinh(w)
P loms

+c({ |sinw | )y—{(|sinw| ),), (52

which is precisely Onsager's result.*’ In Eq. (5.2),
( +++ )y, denotes an average over the angular distribu-
tion hN,l(u)'

( | sin | )N_,=%fdufdn'h,v_,(u)h,v_,(u')

x[1—=(u-u')]'?, (5.3)

with h;(u)=1 and hence ( |sinw| ),=1. We have also
put ¢ =4pv. in (5.2) with v, the average excluded
volume which when measured in terms of the molecular
volume v, yields ¢ =(w/2)kn for HE and hence differs

by a factor /2 from the hard cylinder expression origi-
nally considered by Onsager (this is only one of the subtle
differences in geometric packing properties which exist
between cylinders and ellipsoids, see also Ref. 4 on this
point). The Onsager limit of the above DFT reproduces
thus exactly Onsager’s theory. This fact can now be used
here to test the approximation involved in usin; the trial
function (4.1). Although in his original paper” Onsager
did use a one parameter trial function similar to (4.1),
namely, & (m)=y(coshym )/(2sinhy ), which is physical-
ly similar but mathematically less convenient than (4.1),
his equation has subsequently been solved numerical-
1y**?23 for an arbitrary angular distribution h(m).
These high-precision calculations, using either seven
Legendre polynomials®® or a grid of 250 points in m
space,”’ have established that Onsager’s theory predicts
an [-N transition between an [-phase corresponding to
¢;=3.290 and an N-phase corresponding to ¢y =4.189.
The transition is thus fairly wide, Ac/cy=A4An/ny
=0.215, and also quite strong, ¢ =0.792. Using our sim-
ple trial function (4.1) we find, instead, c¢,=3.315,
Ac /ey =0.216, and ¢=0.799, whereas the original On-
sager values are ¢;=3.340, Ac/cy=0.256, and
g=0.848. The above DFT based on (4.1) reproduces
thus the exact result to within 1%, which for the present
purpose is largely enough. Having established that in the
Onsager limit the results of the DFT do reproduce the re-
sults of Onsager’s theory we can now in turn inquire how
rapidly the Onsager limit will in fact be approached. In
other words we can look for the k value below which
both theories start to deviate appreciably. To this end we
use the low density or virial expansion of the DFT, i.e.,
Eq. (4.8) with I(7) replaced by /{0)= —8, and compare
its results for large but finite k values to those of the full
DFT. This is equivalent to using Onsager’s theory for
the study of dilute systems of HE of finite elongation.
The results are compared in Fig. 7. It is seen there that
the approach to the Onsager regime is in fact very slow.
The coexisting densities reach their Onsager limit for
k > 100 while the order parameter g reaches its limiting
value for k > 300. The k values found here are large but
nevertheless consistent with those often quoted in the ex-
perimental literature.?*

B. The Landau theory

In the opposite limit where k —+ 1 the above DFT pre-
dicts that the /-N transition is pushed towards the high-
density region where Onsager’s virial expansion argu-
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FIG. 7. Order parameter ¢ and the Onsager variable k7 at
the I-N coexistence in the large-k domain: DFT (solid lines)
and the virial expansion of the DFT (dashed lines). Notice the
very slow approach to the limiting situation described by
Onsager’s theory and also the breakdown of the virial expansion
for the smaller k values.

ment is no longer applicable. Nevertheless, as k — 1, the
transition also becomes weakly first order (An—0) and
one enters the realm of Landau’s phenomenological
theory”® of phase transitions. The basic idea behind
Landau’s theory is to approximate the free energy by a
truncated expansion of it with respect to some order pa-
rameter. Since our original order parameter y of (4.1) is
unbounded (0 <y < =) there is little hope that expan-
sions with respect to ¥ will lead to a convergent series.
The physical order parameter which imposes itself in the
present context is the Maier-Saupe quadrupole order pa-
rameter ¢ of (4.2). This order parameter is bounded
(0 < g < 1) and belongs to an irreducible representation of
the rotational symmetry group.” In terms of g the Lan-
dau approximation to (4.8) can then be written

&
=3 a,q"+0(g*), (5.4)

By
P L n=0

where the expansion has been truncated at the minimal
order which guarantees the existence of a two-minima (or
three-extrema) free energy (one at ¢ =0 for the / phase
and one at ¢-#0 corresponding to the N phase). The
physical consequences of the Landau theory are easily
worked out on the basis of (5.4) and are well known."*
In the present context we have the advantage over the
phenomenological theory that the coefficients a,, of (5.4)

can be computed explicitly as functions of % and k
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whereas in the original Landau theory they have to be
treated as phenomenological parameters. In other words,
comparing the Landau approximation (5.4) with the orig-
inal DFT expression (4.8) we are able here to test explicit-
ly the assumptions behind Landau’s theory. In order to
obtain the expressions of the coefficients a, of (5.4) we
proceed as follows. We first expand (4.8) with respect to
s

N
fAf= S b y"+0(y"), (5.5)

and next expand similarly ¢ =g(y) of (4.3),

AR A s
9="g+35 7175 " 3g5 tOIr)-

Inversion of the series (5.6) yields y =y(q),

25 g1e 325 0 S18T5
S t o Tam Y

and subsmutmg (5.7) in (5.5) yields finally (5.4). The ex-
plicit evaluation of (5.5) involves some lengthy but ele-
mentary algebra which will be skipped here but which is
most easily performed with the aid of some computer
algebra method. The final result for the Landau free-
energy density is expression (5.4) with

(5.6)

¢*+0(g>), (5.7

ag=a,=0, (5.8a)
=3—(n/2M(FHSH,(X)-15H,(X)] , (5.8b)
ay=-3, (5.8¢)
ag=18 —(n/DHNEH(X)- 5P H,(X)
+ 42 H (X)), (5.8d)
where the H,(X) are given by
1 arcsin |
”l(X)=7X— x+mﬁ =H(X), (5.9a)
L 2o x =8
e e e e 9
H,(X) e |2 +4+“_x2)marcsmx (5.9b)
e TN v P el ¢
H,(X)= e | 3 + lzX 3
x!
Sl s _
+Warcsmx ? (5.9¢)
H 1
'(X)z xlll ~|‘l_x2)|n
Y
x [ dy, .

y
[ a2,
(5.9d)

¥a
Xfo @Yy 1 Va-r "

while 7 (%) is still given by (4.10). Although one does not
expect the Landau theory to be applicable in the strongly
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first-order Onsager limit, for further reference it will be
useful to quote here also the value of the expansion
coefficient a, of (5.8) in the Onsager limit [7—0, k — o,
(m/2)kn=c],

ag™=34—c), 5:100)
aQm s, (5.10b)

whereas a,, a,, and a; remain unchanged. Having now
at our disposal the explicit expression of a, =a,(7,X), the
Landau free energy (5.4) can be worked out analytically.
The three extrema of (5.4) with respect to g correspond to

90=0, (5.11a)
—3ay+(9a3 —32a,a,)'?

gi= 804 ’ (5.11b)

which are easily computed from (5.8) for each n and X. It
can also be verified from (5.8) that a; <0, whereas at low
density one has a, >0, a, >0, and 9a} < 32a,a,, so that
at low density the only real extremum (5.11) corresponds
to an I phase (g,=0) and it is a minimum. At higher
densities, when 9a3} > 32a,a,, there will be three real ex-
trema, go<¢_ <q,, with g_ corresponding to a max-
imum and g;,¢, to the two minima describing, respec-
tively, the I phase (g,) and the N phase (g, ). The density
of marginal stability of the N phase as a function of the
aspect ratio k or the eccentricity X, say n,=1,(X), is
given by the solution of the equation 9a§=320204. In-
creasing the density further one reaches a point, say,
m=mn,(X), where the N phase reaches thermodynamical
equilibrium with the J phase, Af(g,)=0=Af(q,) or,
explicitly,

a;(9a}—32a,a,)' ?=3a} —16a,a, .

At still higher densities, say, 7,=1,(X), we reach a point
where a, changes sign. Above this point the extremum
at g =g, becomes a maximum and only the N phase cor-
responding to g =g, survives as a stable phase whereas
the I phase is unstable. The Landau approximation
reproduces thus qualitatively quite closely the scenario
observed above for the DFT. From Tables IV-VII and
Fig. 8 we see that the quantitative trends are also fairly
well reproduced except for two features. First, the g
values predicted by the Landau theory are too low
(roughly by a factor of 2). The DFT predicts hence a
transition which is much stronger than the one predicted
by its Landau approximation. The density change at
coexistence (An) and the overall density change from
marginal stability of the N phase (77,) to marginal stabili-
ty of the I phase (1,) is too small. Hence the Landau
theory predicts a transition which is also too narrow
compared to the full DFT. Notice however that since
ay#0 the transition predicted by the Landau theory
remains everywhere of first order. If we add the Onsager
limit to the Landau approximation, i.e., use (5.10) in (5.4),
then these defects become dramatic. In this combined
approximation the width of the J-N transition is
An/ny=0.042 and its strength ¢=0.386 whereas the
corresponding DFT values are A%n/7y=0.216 and
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TABLE IV. The same as Table I but obtained from the Lan-
dau theory. Notice the good agreement for 7, but not for g,.

B

k o 90 = Af

2 0.6177 0.210 0.0014
2,75 0.5097 0.214 0.0015

3 04815 0.216 0.0015

5 0.3338 0.223 0.0016
10 0.1907 0.231 0.0018
20 0.1040 0.234 0.0019
100 0.0227 0.236 0.0019
200 0.0115 0.238 0.0019

¢=0.799. Notice, however, that even in this extreme
case the prediction for the midpoint of the transition,
(qx+1;)/2ny=0.979 for the Landau theory and 0.892
for the DFT, remains reasonable, Since the only
difference between the present DFT and its Landau ap-
proximation (5.4) stems from the use of a truncated ex-
pansion with respect to the order parameter, it is fair to
conclude on this example that the Landau theory yields a
fair description and a fair location of the I-N transition
but very poor predictions for the width and the strength
of the phase transition, and this remains true even in re-
gions where the transition is weak as originally assumed
in the derivation® of the Landau theory.

C. Related density-functional theories

It is clearly not possible to discuss here the large num-
ber of theoretical attempts concerned with the /-N transi-
tion (some background information can however be ob-
tained from Refs. 9-11,13,21-25). Some recent publica-
tions’~'" will nevertheless be considered here since they
are both based on the density-functional theory and ex-
plicitly concerned with HE, and hence closely related to
the present work.

The theory of Mulder and Frenkel® starts from what is
essentially a diagrammatic approach to the DFT de-
scribed in Sec. II. They perform a virial expansion of the
free-energy functional F[p] and speed up its convergence
properties by going over to a y expansion,?® i.e., an ex-
pansion with respect to 5/(1—7), and truncate the latter
at third order requiring as input the second and third
virial coefficients of the N phase. The second virial
coefficient is expressed in terms of the excluded volume of

TABLE V. The same as Table II but obtained from the Lan-
dau theory.

k I q1
2 0.6191 0.280
2.75 0.5114 0.285
3 0.4832 0.287
) 0.3356 0.296
10 0.1921 0.306
20 0.1049 0.311
100 0.0229 0.313
200 0.0116 0.313
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TABLE VI. The point of marginal stability of the 7 phase
(@, =0) as obtained from the Landau theory.

k 2
275 0.5245
3 0.4968
5 0.3499
10 0.2034
20 0.1121
100 0.0247
200 0.0125

two HE of fixed orientation, i.e., Z(u-u’) of (3.3), for
which they use Isihara’s exact but complicated threefold
infinite series representation?’ instead of the simple ap-
proximation (3.10). The evaluation of the third virial
coefficient presents, however, a formidable mathematical
problem which is partly bypassed by performing numeri-
cal MC (Monte Carlo) estimates for it but even this can
be done with reasonable computer time only for some
orientationally averaged quantity.’ The final results ob-
tained for the equation of state of the I phase are in good
agreement with those obtained in Sec. III from the much
simpler expression (3.14). The results obtained for the /-
N transition are again in qualitative agreement with those
obtained here except that the transition is predicted to
occur at much lower densities and with a larger width. It
is our impression that the y expansion used by Mulder
and Frenkel carried with it some of the defects of the
original virial expansion on which it is based.

In the recent theory of Singh and Singh'’ one starts
from the DFT expression for the free energy of the or-
dered (N) phase and expands it around the disordered (/)
phase to third order in the local density change. The re-
sulting equation involves the two- and three-particle
DCF. The latter is neglected except for those contribu-
tions which can be expressed as a density derivative of
the two-particle DCF. For the latter Pynn's approxima-
tion'® is used. As observed by Lado'” this approximation
has the disadvantage to predict an isotropic DCF at the
origin and also at contact. This local defect disappears in
integrated quantities and indeed the equation of state ob-
tained for the / phase by Singh and Singh'® turns out to
be identical®® to the one presented in Sec. 1I1. The equa-
tions for the N phase are finally solved by using a two-
order-parameter approximation for the orientational dis-
tribution h(m) of the form him)=I1+a,P(m)
+a,P,(m). The qualitative predictions of this theory are
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again in agreement with those found here. The /-N tran-
sition however is found to occur at much lower densities
than predicted by the other attempts. It is not unreason-
able to think that the very poor approximation used for
h(m), which does not guarantee positivity, could be re-
sponsible for this.

In a very recent publication'' Marko proposes a DFT
based on a second-order expansion in Ap(x) of the free
energy of the nematic phase around that of the coexisting
isotropic phase. The DCF of the I phase is approximated
by a variational modification of Pynn’s model'® and the
angular distribution h(m) is taken to be of the form
xexp[y2Py(m)+y4Py{m)]. The I-N transition densities
are comparable to the present results but the width and
the order parameter g of the transition are more than one
order of magnitude smaller (see Table VIII).

D. Computer simulation results

Having checked the predictions of our DFT against
the available theoretical results we now turn to the ulti-
mate goal, namely, a direct comparison with the comput-
er simulations of Frenkel and Mulder* which prompted
the present investigation. These authors have performed
constant-volume and constant-pressure Monte Carlo
simulations of a system of ~10? HE. The aspect ratios
considered are k =1.25, 2, 2.75, and 3 together with the
corresponding oblate systems (k'=1/k). They have
found a remarkable symmetry between the prolate (k)
and oblate (1/k) systems of HE of the same molecular
volume. This symmetry is not perfect but could presum-
ably be reinforced by taking into account the finite-size
effects. The occurrence of this symmetry is a clear mani-
festation of the dominance of geometric packing effects
which is also witnessed here by the fact that the exact
pair excluded volume of (3.10) possesses this oblate-
prolate invariance property. The DFT proposed here,
and hence also the Landau theory of Sec. V B, has this
symmetry built in exactly [cf. Sec. III and the X — —X in-
variance of (4.8)], a property not shared by the theories
discussed in Sec. VC. In Sec. IIl we have already com-
pared all the available computer generated equations of
state of the I phase to the present DFT. The agreement
is not perfect but quite reasonable in view of the very
simple analytic expression (3.14) proposed here. The
overall agreement obtained here is also better than the
one obtained from other theoretical attempts, e.g., the ex-
tensions of scaled particle theory to the / phase of convex
bodies proposed by Gibbons®®'* and Boublik*'* (see Fig.
1 of Ref. 12). The N-phase branch of the equation of
state together with the 7-N coexistence region is shown in

TABLE VIL. The same as Table 111 but obtained from the Landau theory.

k M Nw P I3 q
2 0.6182 0.6201 259 528 0.30
2.75 0.5098 0.5132 104 273 0.32
3 04816 0.4853 8.45 23.7 0.32
5 0.3332 0.3389 3.1 13.2 0.35
10 0.1898 0.1955 1.19 8.62 0.37
20 0.1034 0.1072 0.55 6.80 0.38
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FIG. 8. Order parameter ¢ and the coexisting densities (; /
phase is the lower curve, N phase is the upper curve) of the I-N
coexistence in the small-k domain: DFT (solid lines) and Lan-
dau approximation (dashed lines).

Fig. 9 for k=2.75=1/k’ and in Fig. 10 for k =3=1/k".
The agreement is again fair and better than with the oth-
er theories. The I-N coexistence data are compared in
Table VIII. For k=2=1/k' and k=1.25=1/k' the
simulations have shown that the I-N transition is
preempted by an isotropic-solid transition. This possibili-
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ty has not been considered here but the fact that for these
aspect ratios the DFT predicts the /-N transition to
occur at a density above the HS isotropic-solid transition
is consistent with these computer findings.

V1. CONCLUSIONS

The density-functional theory, in the Helmholtz free-
energy language (see Sec. II), has been used to formulate
an approximate theory of the orientational freezing tran-
sition of a system of hard ellipsoids as a first approxima-
tion to the isotropic-nematic transition of more realistic
liquid crystals by focusing our attention solely on the an-
isotropic steric effects produced by the anisotropy of the
molecular shape. Above a minimal quadrupole moment,
providing an orientational Lindemann rule, the theory
predicts a stable nematic phase, both for rodlike and
disklike molecules, as a result of a competition between
the orientational entropy and the anisotropic excluded
volume effects. The latter have been described within an
approximation which factorizes the translational and
orientational direct correlations. The orientational
correlations have been described in a manner first sug-
gested by Onsager for infinitely elongated molecules®
while Onsager’s original virial expansion is corrected for
finite density effects by assimilating the translational
correlations of the hard ellipsoids to those of hard
spheres of the same volume.

The mathematical implementation of the theory has
been kept as simple as possible by resorting to a realistic
one-order-parameter angular distribution of the Maier-
Saupe form®' in order to minimize the free energy for a
wide range of densities and of length to breadth ratios.
Further simplifications are provided by using an approxi-
mate but closed analytic form of the pair excluded
volume due to Berne and Pechukas'® together with the
Percus-Yevick' hard-sphere direct correlation function.

The results of the theory reproduce all the qualitative
features provided by the computer simulations of Frenkel
and Mulder* with good quantitative agreement between
theory and simulation for the isotropic phase and fair
agreement for the nematic phase and the isotropic-

TABLE VIIL The isotropic-nematic coexistence data.

k ul An P 3 q
2.75 0.561° 0.009 15.7 35.7
0.517* 0.001 0.010
0.501° 0.011 9.62 25.7 0.548
0.449* 0.015 6.55 0.553
0.329 0.018 0.532
3 0.507* 0.010 9.79 25.1
0.493° 0.001 0.017
0.472¢ 0.012 7.76 22.3 0.561
0.420° 0.018 5.31 0.568
0.309 0.021 0.547

*Frenkel and Mulder (MC) (Ref. 4).
"Marko (Ref. 11).

“Present calculation.

“Mulder and Frenkel (Ref. 9).
“Singh and Singh (Ref. 10).
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FIG. 9. Pressure (p* =Bpv,q) density (9=pv,) phase dia-
gram in the isotropic-nematic two-phase coexistence region as
obtained from the density-functional theory (solid line, stable
branches; dashed line, metastable / branch; metastable N
branch, not visible on this scale) and from the computer simula-
tions of Frenkel and Mulder (Ref. 4) [/ phase: k=2.75 (trian-
gles), k=1/2.75 (squares); N-phase: k=2.75 (inverted trian-
gles), k =1/2.75 (circles)]. The transition density and the range
of metastability is underestimated while the width is slightly
overestimated by the theory.

0.60

nematic coexistence. The theory also imrroves consider-
ably on previous theoretical attempts.” '

Finally, the simplicity of the theoretical expressions
has been further exploited to test some of the historic
milestone theories of phase transitions. It has been
shown explicitly that the truncated order-parameter ex-
pansion of the free energy, which is at the basis of
Landau’s phenomenological theory of phase transitions,”
largely underscores the width and the strength of the
isotropic-nematic transition but yields results which are
otherwise quite comparable to those obtained from the
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full free-energy expression. The virial expansion at the
basis of Onsager's asymptotic theory® is, in turn, shown
to become applicable only for very anisotropic molecules.
These conclusions are independent of the validity of the
approximations underlying the present density-functional
theory and rest only on the use of truncated order param-
eter or virial expansions.
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