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Abstract Density functional theory (DFT) finds increas-

ing use in applications related to biological systems.

Advancements in methodology and implementations have

reached a point where predicted properties of reasonable to

high quality can be obtained. Thus, DFT studies can com-

plement experimental investigations, or even venture with

some confidence into experimentally unexplored territory.

In the present contribution, we provide an overview of the

properties that can be calculated with DFT, such as geom-

etries, energies, reaction mechanisms, and spectroscopic

properties. A wide range of spectroscopic parameters is

nowadays accessible with DFT, including quantities related

to infrared and optical spectra, X-ray absorption and

Mössbauer, as well as all of the magnetic properties con-

nected with electron paramagnetic resonance spectroscopy

except relaxation times. We highlight each of these fields of

application with selected examples from the recent litera-

ture and comment on the capabilities and limitations of

current methods.
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Introduction

The present contribution is devoted to the use of density

functional theory (DFT) in bioinorganic chemistry and

more specifically in the modeling of structures, properties,

and processes related to photosynthesis. DFT has been

established as a valuable research tool because it can serve

either to validate the conclusions that have been reached

from the analysis of the experiments or to distinguish

between those possibilities that were left open. The calcu-

lation of a wide range of molecular properties with DFT

allows a close connection between theory and experiment

and often leads to important clues about the geometric,

electronic, and spectroscopic properties of the systems

being studied. Here, we will first introduce briefly the

general theoretical principles that constitute the basis of the

DFT approach. Our priority in this paper is to describe what

can be achieved through the practical use of DFT; therefore,

we will then focus on the properties that can be computed

and mention selected applications of DFT for molecular

property calculations, drawn principally from examples

relevant to photosynthetic research. We will comment not

only on the strengths but also on the technical pitfalls

and the current limitations of the technique, discussing the

performance of DFT and the foreseeable achievements in

the near future.

Theoretical background

To appreciate the special place of DFT in the modern

arsenal of quantum chemical methods, it is useful first to

have a look into the more traditional wavefunction-based

approaches. These attempt to provide approximate solutions

to the Schrödinger equation, the fundamental equation of
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quantum mechanics that describes any given chemical

system. The most fundamental of these approaches origi-

nates from the pioneering work of Hartree and Fock in the

1920s (Szabo and Ostlund 1989). The HF method assumes

that the exact N-body wavefunction of the system can be

approximated by a single Slater determinant of N spin-

orbitals. By invoking the variational principle, one can

derive a set of N-coupled equations for the N spin orbitals.

Solution of these equations yields the Hartree–Fock wave-

function and energy of the system, which are upper-bound

approximations of the exact ones. The main shortcoming of

the HF method is that it treats electrons as if they were

moving independently of each other; in other words, it

neglects electron correlation. For this reason, the efficiency

and simplicity of the HF method are offset by poor

performance for systems of relevance to bioinorganic

chemistry. Thus, HF is now principally used merely as a

starting point for more elaborate ‘‘post-HF’’ ab initio

quantum chemical approaches, such as coupled cluster or

configuration interaction methods, which provide different

ways of recovering the correlation missing from HF and

approximating the exact wavefunction. Unfortunately, post-

HF methods usually present difficulties in their application

to bioinorganic and biological systems, and their cost is

currently still prohibitive for molecules containing more

than about 20 atoms.

Density functional theory attempts to address both the

inaccuracy of HF and the high computational demands of

post-HF methods by replacing the many-body electronic

wavefunction with the electronic density as the basic

quantity (Koch and Holthausen 2000; Parr and Yang 1989).

Whereas the wavefunction of an N electron system is

dependent on 3N variables (three spatial variables for each

of the N electrons), the density is a function of only three

variables and is a simpler quantity to deal with both con-

ceptually and practically, while electron correlation is

included in an indirect way from the outset. Modern DFT

rests on two theorems by Hohenberg and Kohn (1964). The

first theorem states that the ground-state electron density

uniquely determines the electronic wavefunction and hence

all ground-state properties of an electronic system. The

second theorem establishes that the energy of an electron

distribution can be described as a functional of the electron

density, and this functional is a minimum for the ground-

state density. Thus, the problem of solving the many-body

Schrödinger equation is bypassed, and now the objective

becomes to minimize a density functional. Note, however,

that although the Hohenberg–Kohn theorems assure us that

the density functional is a universal quantity; they do not

specify its form.

In practice, the common current realization of DFT is

through the Kohn–Sham (KS) approach (Kohn and Sham

1965a). The KS method is operationally a variant of the HF

approach, on the basis of the construction of a noninter-

acting system yielding the same density as the original

problem. Noninteracting systems are relatively easy to

solve because the wavefunction can be exactly represented

as a Slater determinant of orbitals, in this setting often

referred to as a Kohn–Sham determinant. The form of the

kinetic energy functional of such a system is known exactly

and the only unknown term is the exchange–correlation

functional. Here lies the major problem of DFT: the exact

functionals for exchange and correlation are not known

except for the free electron gas. However, many approxi-

mations exist which permit the calculation of molecular

properties at various levels of accuracy.

The most fundamental and simplest approximation is the

local-density approximation (LDA), in which the energy

depends only on the density at the point where the func-

tional is evaluated (Kohn and Sham 1965b). LDA, which in

essence assumes that the density corresponds to that of an

homogeneous electron gas, proved to be an improvement

over HF. While LDA remains a major workhorse in solid

state physics, its success in chemistry is at best moderate

due to its strong tendency for overbinding. The first real

breakthrough came with the creation of functionals

belonging to the so-called generalized gradient approxi-

mation (GGA) that incorporates a dependence not only on

the electron density but also on its gradient, thus being able

to better describe the inhomogeneous nature of molecular

densities. GGA functionals such as BP86 (Becke 1988) or

PBE (Perdew et al. 1996) can be implemented efficiently

and yield good results, particularly for structural parame-

ters, but are often less accurate for other properties. The

next major step in the development of DFT was the intro-

duction of hybrid functionals, which mix GGA with exact

Hartree–Fock exchange (Becke 1993). Nowadays, hybrid

DFT with the use of the B3LYP functional (Becke 1988;

Lee et al. 1988) is the dominant choice for the treatment of

transition metal containing molecules (Siegbahn 2003).

This method has shown good performance for a truly wide

variety of chemical systems and properties, although

specific limitations and failures have also been identified.

More recent theoretical and methodological develop-

ments include the ‘‘meta-GGA’’ functionals, which extend

the GGA corrections to higher derivatives, and the ‘‘double

hybrid’’ functionals (Grimme 2006a, b; Neese et al.

2007a), which contain not only a fraction of exact

exchange but also a fraction of orbital-dependent nonlocal

correlation energy estimated at the level of second-order

many-body perturbation theory. These new functionals,

such as TPSSh (Staroverov et al. 2003) and B2PLYP

(Grimme 2006a, b), respectively, yield improved energet-

ics and spectroscopic properties, and will likely see more

use in the future as their performance and range of appli-

cability is established.
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Properties and applications

Geometries

Optimizing the geometry of the species under investigation

is the first step in most theoretical studies. Geometries

predicted by DFT tend to be quite reliable and the optimized

structures usually agree closely with X-ray diffraction

(XRD) or extended X-ray absorption fine structure (EX-

AFS) data. From our experience, the achievable accuracy

for short and strong metal-ligand bonds is excellent,

whereas intra-ligand bonds are predicted typically within

2 pm of experiment. Weaker metal-ligand bonds are usually

overestimated by up to 5 pm (Neese 2006a, b). A reason-

able choice of basis set has to be made, although this

condition does not pose particularly stringent requirements

since the structures predicted by all DFT methods generally

converge quickly with basis set size, thus making geometry

optimization rather economical. Basis sets of valence triple-

f quality plus polarization are usually enough to get almost

converged results for geometries; however, results obtained

with smaller basis sets should be viewed with caution.

An extended study of the performance of various modern

functionals and basis sets for the geometries of all first-,

second-, and third-row transition metals has recently

appeared (Bühl et al. 2008). Weak interactions are not

satisfactorily treated with current density functionals owing

to the wrong asymptotic behavior of the exchange-corre-

lation potential, but this deficiency can be overcome to

some extent by inclusion of functional-specific empirical

dispersion corrections (Grimme 2006a, b).

Concerning the choice of method, the differences

between density functionals are usually small for structural

parameters making the choice of functional not critical for

the success of a geometry optimization. GGA functionals

provide good geometries and are sometimes even better

than hybrid functionals, which also tend to be more

expensive (Neese 2006a, 2008a). The computational effi-

ciency of GGA in practical applications stems from the

density fitting approximation (Baerends et al. 1973; Vahtras

et al. 1993; Eichkorn et al. 1997) that is implemented in

many quantum chemistry programs and significantly speeds

up GGA calculations. This allows for fast optimizations, an

important advantage especially when many different prob-

able structures have to be considered. This has been the

case, for example, in a recent computational study focusing

on possible models of the oxygen evolving complex (OEC)

in photosystem II (PSII), which used Mn4Ox topologies

derived from accurate polarized EXAFS measurements

(Yano et al. 2005). The great number of possible protein

ligation patterns and the additional potential for a multitude

of protonation and hydration states (Fig. 1) creates the

need for efficient geometry optimizations which can be

performed with GGA functionals such as BP86. Once

optimized structures have been obtained, other molecular

properties can be evaluated using a potentially more accu-

rate hybrid functional (Zein et al. 2008a). Exploring many

structural alternatives and their corresponding spectro-

scopic properties in this way is an important step in cross-

validating theory and experiment, forming the basis for

further elaboration toward more realistic models.

Despite the overall good performance of GGA func-

tionals, it is still likely that for certain systems high accuracy

can be achieved only with hybrid functionals. In this case,

the obvious choice has traditionally been the B3LYP func-

tional. More recent studies, however, have accumulated

evidence that the hybrid PBE0 and TPSSh functionals are

superior performers for systems within the field of inorganic

and bioinorganic chemistry (Bühl et al. 2008; Jensen 2008),

the latter yielding improved energies as well. The particu-

larly promising performance of TPSSh has been attributed

in part to the use of 10% exact exchange, a value half-way

between GGA and B3LYP (20%). It should be noted at this

point that the computational disadvantage of hybrid func-

tionals mentioned earlier will likely be diminished with the

arrival of new state-of-the-art and potentially linear-scaling

procedures such as the ‘chain of spheres’ (COSX) approx-

imation to HF exchange (Neese et al. 2008).

Energetics and reaction mechanisms

Locating transition state structures is a more compli-

cated task for the researcher, but in many ways it is

computationally the same as optimizing a geometry; the

difference is simply that the target now is not a minimum

Fig. 1 Optimized geometry of an OEC model constructed on top of a

polarized EXAFS topology for the Mn4O5Ca cluster; side-chain and

water ligation shown are one out of many possibilities (Zein et al.

2008a)
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on the potential energy surface but rather a saddle point.

Once this stationary point is found and its energy is com-

puted, one gains immediate access to energy barriers and is

therefore able to study reaction mechanisms. However, if

this effort is to have any real value, the calculated relative

energies must be reasonably accurate. A great number of

studies over the years have converged to the conclusion

that energetic predictions with the B3LYP functional tend

to be systematically more accurate and reliable than GGA

functionals. Hence, this hybrid functional is widely used

for predicting and/or elucidating the major features of

various mechanisms in bioinorganic chemistry (Siegbahn

2006b). The estimated error of B3LYP is approximately

2–3 kcal mol-1 for the G2 reference set of molecules, but

this figure is probably too optimistic when one is faced

with electronically complicated open-shell transition metal

systems like those encountered in almost any bioinorganic

setting. It is safe to say that there is no consensus regarding

the optimal choice of method when one considers addi-

tionally the prediction of energies for electronically distinct

states of the same species, such as those arising from dif-

ferent electronic configurations of a metal center, from a

different distribution of oxidation states within a metal

cluster, or even from the interplay between metal-centered

and ligand-centered redox processes. When these factors

come into play, the error margin can easily exceed by far

the optimistic range mentioned earlier.

Nevertheless, even if the estimated errors may be

already too large for quantitative predictions in cases of

small activation energies such as those observed during

the catalytic cycle of the OEC (Sproviero et al. 2007),

the simulation of reaction pathways is a fundamentally

important application of DFT. A representative example

that stands out in the field of photosynthesis research is the

systematic work that has been focused on elucidating

mechanistic aspects in the catalytic cycle of OEC (Lund-

berg and Siegbahn 2004; Siegbahn 2006a, 2008a, b;

Sproviero et al. 2008a, b). This line of work demonstrates

that DFT calculations can offer significant input to mech-

anistic investigations, sometimes revealing possibilities

that were not previously considered. It should be kept in

mind, however, that a reaction mechanism predicted by

DFT cannot be validated on the basis of computed energies

alone, especially when the structure of the principal com-

ponent is itself debatable. All such efforts should attempt

to combine and incorporate many lines of evidence, taking

into account additional criteria such as the spectroscopic

properties of the putative intermediates.

Vibrational frequencies

Closely connected in research practice to the procedure

of structural optimization is the calculation of vibrational

frequencies. They are used not only for simulating infrared

(IR) or Raman spectra but also for characterizing the nature

of stationary points as minima or transition states. More-

over, the information obtained from such a calculation is

used to compute statistical thermodynamic corrections to

the electronic energy and thus to make direct comparisons

with experimentally determined free energies. It is well

established that the predicted harmonic frequencies with

GGA functionals such as BP86 and PBE typically agree

well with measured vibrational fundamentals if basis sets

of polarized triple-f quality are used (Murray et al. 1992;

Sosa et al. 1992; Stratmann et al. 1997). It has been shown,

however, that this excellent accuracy is a result of error

cancelation between the neglect of anharmonicity and

systematic errors in the prediction of the correct harmonic

frequencies (Neugebauer and Hess 2003). We note that the

effects of anharmonicity are practically impossible to be

computed with DFT for large systems of interest to biol-

ogy. Intensities of IR as well as Raman modes can,

however, be obtained straightforwardly.

Theoretical studies on a model of the oxygen evolving

complex of PS II have demonstrated how computed

vibrational frequencies can provide valuable feedback for

the interpretation of experimental data. Specifically, cal-

culations by Gascon et al. (2007) suggested that the

vibrational modes of carboxylate groups ligated to man-

ganese ions of the OEC might be insensitive to changes in

the formal oxidation states of the ions because of electron

delocalization within the cluster. At the same time, it was

shown that the charge rearrangement associated with the S-

state transitions in the OEC might induce shifts in the

vibrational frequency of carboxylate groups that do not

function as direct ligands to the manganese ions. These

theoretical results imply that the vibrational frequency

shifts observed in experimental FTIR measurements do not

necessarily have to be interpreted as reflecting changes in

the first coordination sphere of the Mn cluster, thus pro-

viding ways to reconcile the perceived discrepancies

between FTIR and XRD data (Sproviero et al. 2008b).

Optical spectra

Density functional theory is restricted from its foundations

to ground states only; therefore, the calculation of excited

states and their properties has to be approached indirectly.

This is achieved using time-dependent linear response

theory, in which one studies the frequency dependence of a

time-dependent electric field perturbation, the poles of

which provide excitation energies. Thus, time-dependent

DFT (TD-DFT) calculations yield the transition energy

rather than the total energy of the excited state, which

therefore is never explicitly calculated (Bauernschmitt and

Ahlrichs 1996; Casida et al. 1998; Stratmann et al. 1998).
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It should be noted that the TD-DFT approach allows also

for a full determination of the central quantities involved in

the calculation of both absorption and circular dichroism

(CD) spectra. It is also possible to predict magnetic circular

dichroism (MCD) spectra through TD-DFT calculations

(Seth et al. 2004, 2005; Seth and Ziegler 2006), although

ab initio multireference approaches are preferred in this

respect since they explicitly cover the correct physics

involved (Ganyushin and Neese 2008).

Optical spectra predicted by TD-DFT with the use of

either the BP86 or B3LYP functionals may occasionally be

of acceptable quality (Fiedler et al. 2005; Jackson et al.

2005; Schenker et al. 2005; Stich et al. 2005) even though

many problematic cases and a multitude of artifacts plague

this methodology (Grapperhaus et al. 2001; Neese 2008a).

TD-DFT problems arise principally from the shortcomings

of current functionals and include the erroneous treatment

of states with ionic or charge transfer character, poor pre-

diction of highly excited Rydberg states, entirely missing

states when double excitations are involved, and the

inability to obtain the correct multiplet structures for open-

shell systems. In general, one has to apply TD-DFT cal-

culations with utmost caution and it is imperative to seek

critical feedback from experimental data. With this provi-

sion, TD-DFT can be a useful interpretative tool, as was

recently demonstrated by Sun et al. (2007) in their study of

the P700 system found in the reaction center (Fig. 2) of

photosystem I (PSI). The authors used TD-DFT in con-

junction with the statistical average of different orbital

potentials (SAOP) model (Gritsenko et al. 1999) to

examine the excitation processes in the pair of chlorophylls

that comprise P700. The detailed analysis of the individual

excitations in terms of molecular orbital contributions

and transition dipole moments revealed that, despite the

apparent symmetric disposition of its two branches of

cofactors, the P700 pair is intrinsically excited in an

asymmetric fashion. On the basis of the TD-DFT results

the authors were further able to establish connections with

the experimentally observed asymmetric electron transfer

process in PSI and propose a charge separation mechanism

for P700 (Sun et al. 2007).

X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) is a powerful probe

of the electronic and geometric structure of metal sites in

inorganic and biological systems since it provides valuable

information on the oxidation state, geometry, and, in some

cases, spin state of the metal centre (Roe et al. 1984; Westre

et al. 1997). The shape, position, and intensity of absorption

peaks in the X-ray absorption near-edge structure (XANES)

of the metal result from core electron excitations to valence

orbitals below the ionization threshold and carry informa-

tion on the oxidation state, coordination, and character of

the bonding with the ligands. As with optical spectra, TD-

DFT can be used for the computation of metal or ligand pre-

edge features, by allowing excitations into the virtual orbital

space only out of localized core-holes (Ray et al. 2007;

DeBeer George et al. 2008a). Although absolute transition

energies are not predicted accurately, this simple and

effective protocol yields relative transition energies for a

series of related complexes or for a sequence of transitions

to within a few tenths of an electron volt (DeBeer George

et al. 2008a; Neese 2008a).

Applications to inorganic molecules have shown that

good agreement between theory and experiment can be

achieved with TD-DFT calculations using the BP86 func-

tional in conjunction with a large decontracted doubly

polarized triple-f basis set for the metal (Neese 2002) and

polarized triple-f basis set for the remaining atoms (Ray

et al. 2007; DeBeer George et al. 2008a, b). With relevance

to potential catalytic intermediates involved in the water

oxidation chemistry of PSII, Yano et al. (2007) have suc-

cessfully correlated TD-DFT and experimental pre-edge

spectra (1s to 3d excitations) of mononuclear Mn(V) nitr-

ido and oxo compounds. More recently, Jaszewski et al.

(2008) performed TD-DFT calculations of Mn core exci-

tations in a series of Mn complexes with nitrogen and

oxygen donor ligands. Excitations were allowed not only

from 1s but also from 2p orbitals, yielding results that

could be compared with 1s2p resonant inelastic X-ray

scattering (RIXS) studies. The computed values at the

BP86/TZP level were found to agree well with the exper-

imental correlation between Mn oxidation state and the Mn

Fig. 2 A view of the electron-transfer chain in the reaction center of

photosystem I. Chlorophyll pairs are arranged in two symmetric

branches that diverge at P700 and reconverge at the iron–sulfur

cluster. TD-DFT calculations have probed the nature of the excitation

at the P700 pair
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K-edge and L-edge energies, confirming that TD-DFT is a

robust method for analysis of XAS features. It remains to

be seen how this approach extends to larger clusters such as

the OEC.

Mössbauer spectroscopy

Mössbauer spectroscopy is an invaluable spectroscopic

technique in bioinorganic chemistry, since it is able to probe

selectively the charge and spin distribution around iron

centers (Gütlich et al. 1978; see also, the contribution by

Krebs and Bollinger in the present issue). The combination

of DFT calculations with 57Fe-Mössbauer spectroscopy has

emerged as a particularly fruitful strategy for the study of

the ground-state properties of iron-containing enzymes

(Schünemann and Winkler 2000; Gütlich and Ensling

1999). In the zero-applied magnetic field, the two main

quantities that are extracted for a given iron site are the

quadrupole splitting (DEQ) and the isomer shift (d). Both

quantities are related to the total electron density and are

sensitive reporters of the spin state, valence state, and

covalency of iron sites. The estimation of DEQ requires the

calculation of the electric gradient field at the iron nucleus,

which can be done with basis sets of sufficient flexibility in

the core region (Neese 2002). Many studies at the B3LYP

level have demonstrated that the sign and the magnitude of

DEQ is predicted accurately, although absolute errors

ranging from 0.3 to 1.00 mm s-1 are not uncommon (Berry

et al. 2008; Godbout et al. 1999; Han et al. 2006; Salzmann

et al. 1999; Sinnecker et al. 2005). Moreover, it has been

shown that the computed DEQ values react fairly sensitively

to details of the surrounding, such as counter ions.

The isomer shift is known from basic principles to be

directly proportional to the electron density at the iron

nucleus. Thus, it can be determined to good accuracy (often

better than 0.1 mm s-1) from ground-state DFT calcula-

tions using a suitable method-specific calibration procedure

on the basis of a linear correlation between the calculated

electron density at the nucleus versus the measured d (Han

et al. 2006; Liu et al. 2003; Neese 2002; Sinnecker et al.

2005; Zhang et al. 2002). The predicted d is in good

agreement with experimental data when using B3LYP-

calibrated curves in combination with basis sets that are

flexible in the core region and extensively polarized (Berry

et al. 2008; Schoneboom et al. 2005; Sinnecker et al. 2005).

Exchange couplings

In the case of bioinorganic systems which contain two or

more interacting open-shell magnetic ions, the interaction

is typically described in terms of the phenomenological

Heisenberg–Dirac–van Vleck Hamiltonian. Thus, the main

problem from the theoretical point of view becomes the

evaluation of the exchange coupling constants (J) that

measure the ‘‘strength’’ of the supposed interactions

between local spins. Such systems are presently handled

in the DFT framework by the broken symmetry (BS)

approach, which gives access to exchange coupling con-

stants, geometries, and total energies (Noodleman 1981).

Experience indicates that hybrid functionals such as B3LYP

may be slightly more accurate than GGAs for the prediction

of exchange coupling constants. The finer details on the

procedure are a subject of ongoing controversy, but among

the different formalisms to extract the J values from sepa-

rate high-spin and BS calculations, Yamaguchi’s method

appears to be most suitable since it correctly reproduces the

limit of both weak and strong interaction (Yamaguchi et al.

1986). It is worth emphasizing that the BS method pro-

vides excellent electron densities owing to the variational

adjustment of the ionic and neutral components of the

wavefunction (Neese 2004). Therefore, this approach

should be able to predict geometries that faithfully reflect

those of the true low-spin states. On the other hand, the spin

density remains unphysical and thus for the prediction of

magnetic properties based on the BS-DFT approach, it is

mandatory to use spin-projection techniques (Mouesca et al.

1995; Sinnecker et al. 2004). Several computational studies

of biomimetic oxomanganese complexes have been dedi-

cated to the prediction of J values and valuable correlations

between theory and experiment were found on the basis of

BS-DFT calculations (Sinnecker et al. 2004, 2006).

On extension to oligonuclear systems, complications in

the application of BS-DFT might arise due to the inherent

indeterminacy in the values of the exchange coupling

parameters. In a recent contribution (Pantazis et al. 2009),

we investigate the magnetic properties of a tetramanganese

complex bearing resemblance to the OEC of PSII (Fig. 3).

Our results reveal that the absolute values of the exchange

coupling constants J are not a safe criterion for comparing

theory and experiment owing to their indeterminacy when

more than a few interactions among the metals exist.

Instead, one should use the J values computed with BS-

DFT to extract the actual energies of the magnetic levels by

diagonalizing the Hamiltonian. These energy levels can

subsequently be used for constructing magnetic suscepti-

bility curves and form a more physically meaningful basis

for comparison with experimental data. Following this

approach, the energetic levels computed with the TPSSh

hybrid meta-GGA functional are found to agree well with

experiment despite discrepancies in the fitted exchange

coupling constants. Similar observations were made by

Cauchy et al. (2008) in their study of a pentanuclear iron

complex. The authors point out that many different sets of

J values can reproduce the experimental data and proceed

to exact diagonalization of the Hamiltonian and construc-

tion of a theoretical magnetic susceptibility curve to make
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comparisons to experiment. This approach clearly emerges

as the only credible way of studying magnetic interactions

with BS-DFT in oligonuclear clusters similar to the oxygen

evolving complex in PSII (Pantazis et al. 2009).

EPR spectroscopy

Electron paramagnetic resonance (EPR) spectra are

parameterized in terms of an effective spin Hamiltonian

(SH) which contains adjustable numerical parameters that

are fitted to experiments. These SH parameters are the

g-tensor, the zero-field splitting (ZFS), and the hyperfine

coupling (HFC). The accuracy of EPR parameter calcula-

tions with DFT is somewhat variable. For organic radicals

and biradicals (including amino acid radicals) usually good

results are obtained for the g-tensor, the hyperfine and

quadrupole coupling and also for the ZFS (Neese 2008b).

In all DFT investigations of EPR parameters specifically

developed basis sets with extra flexibility in the core region

such as Barone’s EPR-II and EPR-III (Barone 1997) or the

CP(PPP) basis sets (Neese 2002) should be employed. As

regards the choice of functional, it is by now established

that hybrid functionals are more accurate than GGA

functionals (Neese 2008a). For transition metal complexes,

the situation turns out to be more complicated. The g-

values are usually underestimated by standard functionals,

and errors of a factor of two are not uncommon. The per-

formance of different density functionals is similar

although hybrid functionals like B3LYP tend again to be

slightly more accurate than GGAs like BP86 (Neese

2001a). The modeling of ZFS parameters with DFT is

particularly difficult owing to the complicated spin

dependence of this property (Neese 2006b). For transition

metal complexes, it was shown that DFT predicts the ZFS

parameter with the correct sign but tends to underestimate

its magnitude, often by a factor of 2 (Neese 2003).

Meanwhile, a certain number of applications have dem-

onstrated the usefulness of ab initio treatments for the

calculation of the ZFS (Ganyushin and Neese 2006; Neese

et al. 2007b).

The intricacies in the application of DFT in this area are

highlighted in a detailed evaluation of DFT performance

for the prediction of ZFS in Mn(II) coordination complexes

(Zein et al. 2008b). The study revealed that regardless of

whether the spin–orbit coupling (SOC) part of the ZFS was

estimated with the Pederson–Khanna or the quasi-restricted

orbitals approach, accounting for the spin–spin (SS) inter-

action always improves the results. The physical necessity

of accounting for the SS interaction is shown from its 30%

contribution to the axial D parameters. In general, the

calculations were found to overestimate systematically the

experimental D values by 60%. The authors call attention

to the fact that the signs of calculated axial ZFS parameters

are unreliable once E/D [ 0.2. Calculated D and E/D

values were found to be highly sensitive to small structural

changes; disconcertingly, the use of optimized geometries

was found to lead to a significant deterioration of theoret-

ical predictions relative to experimental XRD geometries.

A subsequent study (Zein and Neese 2008) showed that

using the coupled-perturbed spin–orbit coupling (CP-SOC)

approach (Neese 2007) together with hybrid DFT func-

tionals leads to a slope of the correlation line between

experimental and calculated D values that is essentially

unity, provided that the direct SS interaction is properly

included in the treatment.

For the case of the hyperfine coupling to the metal, DFT

performance is not entirely satisfactory (Munzarova and

Kaupp 1999; Munzarova et al. 2000). Since this property

involves three contributions (Fermi contact, spin–dipolar,

and spin–orbit coupling) which feature different physical

mechanisms, it is difficult to calculate all of them simul-

taneously with quantitative accuracy. Ligand HFCs are

easier to compute but, again, results are less accurate than

for organic radicals, and errors of 30% must be tolerated

(Neese 2001b). Kossmann et al. (2007) investigated the

performance of modern DFT functionals for the prediction

Fig. 3 The tetranuclear manganese complex [Mn4O6(bipyridine)6]4?

and magnetic susceptibility curves constructed from BS-DFT results

with various functionals. A direct comparison of computed and

experimentally fitted exchange coupling constants is not meaningful

for such systems owing to the indeterminacy of the exchange

parameters
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of molecular hyperfine couplings in extended test calcula-

tions for a series of small radicals and transition metal

complexes. It was shown that for the prediction of metal

and ligand HFCs, TPSS is better than BP86, but more

importantly, that the hybrid variant TPSSh is significantly

superior to TPSS and probably even better than the ‘‘de

facto standard’’ B3LYP functional. The double-hybrid

B2PLYP functional also affords accurate predictions, par-

ticularly for HFCs of metal nuclei, but the existence of

outliers suggests that this method may lack stability. The

reliable performance of the TPSSh functional has since

received additional confirmation in our recent study

(Pantazis et al. 2009) aimed at the analysis of hyperfine

coupling parameters in tetramanganese models of the OEC.

A topical application of DFT for the determination of

EPR parameters, highlighting the capabilities of the bro-

ken-symmetry approach, was the study of the trapped-

valence, exchange-coupled [MnIIIMnIV(l-O)2(l-OAc)

DTNE]2? complex (Sinnecker et al. 2006). Interestingly,

BP86-optimized geometries were better than those

obtained from B3LYP; however, B3LYP yielded exchange

coupling constants in excellent agreement with experiment.

The coupled perturbed Kohn–Sham equations were

employed for the g-tensor calculations, and a strategy for

the computation of g-tensor site values was presented that

provided single-site g-tensors in good agreement with the

expectations for the respective Mn formal oxidation states.

Spin projection gave the g-tensor of the coupled manga-

nese complex in good agreement with the experimental

results. Small values were found for the nuclear quadrupole

splitting of 55Mn. Hyperfine tensors were furthermore

calculated and spin-projected. 14N and 1H ligand hyperfine

data were found to compare well with experiment. 55Mn

HFCs were qualitatively in line with experimental results,

tracing the source of anisotropy to the MnIII center. How-

ever, isotropic 55Mn HFCs were distinctly underestimated.

The authors indicated that this deficiency is systematic in

character and does not originate from the broken symmetry

approach. Similar deviations were found between theory

and experiment for DFT calculations on mononuclear Mn

complexes, suggesting that the use of a universal scaling

factor of approximately 1.5 might be appropriate.

Summary and perspectives

Density functional theory methods have already been

established as a valuable research tool both in independent

applications and as a complement of experimental inves-

tigations. In favorable cases, the calculated properties are

sufficiently accurate to discriminate between structural

alternatives for reaction intermediates or other species that

are not amenable to experimental structure elucidation.

DFT appears generally reliable for geometries, vibrational

frequencies, and total energies, having over wavefunction-

based methods the advantage of quick convergence to the

basis set limit. DFT appears to be quite successful for the

prediction of molecular properties as well, since a number

of spectroscopic properties of interest to the bioinorganic

community can be predicted with good accuracy. Hybrid

functionals are in most cases better performers, with the

TPSSh functional emerging as a potential new standard.

There are still cases, however, where quantitative accuracy

may be difficult to achieve, especially for the prediction of

EPR parameters or optical spectra, necessitating a cautious

and critical approach from the part of the researcher.

It is important for both practitioners of DFT and the

nontechnical audience of DFT studies to keep in mind that

errors do arise and they can be significant. Despite the

enormous advances in density functional implementations

and the sufficiently documented accuracy of results for

many applications, there is no systematic way of improving

DFT or converging its results to the ‘‘correct’’ answer, in

contrast to some of the traditional wavefunction-based

methods. Moreover, the success of a particular functional

in one setting does not guarantee its performance in a

different one. Therefore, to enhance their credibility, DFT

applications must include some form of validation or

estimation of the error range on the basis of careful com-

parison between calculated and measured observables.

A final point of interest is that DFT studies of bioinor-

ganic systems have usually employed simplified models in

vacuo. Therefore, the issue of modeling the interaction of

the active site with the protein environment and the solvent

comes into play (Noodleman and Han 2006; Noodleman

et al. 2004, Schoneboom et al. 2005). A realistic and

computationally feasible modeling of these effects can be

achieved at present by combining the DFT treatment of the

active site with a classical force-field description of the

surrounding protein. This is the concept behind quantum

mechanics/molecular mechanics (QM/MM) approaches

(Senn and Thiel 2007), which are discussed by Batista and

coworkers in the present issue. In a broader theoretical

context, many issues can be identified that warrant further

developments. We anticipate that in the future we will

witness developments regarding functionals that provide a

consistent treatment of exact exchange, improvements in

the treatment of electronic relaxation and excited states,

and a more proper treatment of magnetic and relativistic

effects. A longer term target is certainly the reliable, con-

sistent and efficient treatment of system dynamics or of

very large systems.
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Mössbauer properties. Curr Opin Chem Biol 7:125–135. doi:

10.1016/S1367-5931(02)00006-6

Neese F (2004) Definition of corresponding orbitals and the diradical

character in broken symmetry DFT calculations on spin coupled

systems. J Phys Chem Solids 65:781–785. doi:10.1016/j.jpcs.

2003.11.015

Neese F (2006a) A critical evaluation of DFT including time-

dependent DFT, applied to bioinorganic chemistry. J Biol Inorg

Chem 11:702–711. doi:10.1007/s00775-006-0138-1

Neese F (2006b) Importance of direct spin-spin coupling and spin-flip

excitations for the zero-field splittings of transition metal

complexes: a case study. J Am Chem Soc 128:10213–10222.

doi:10.1021/ja061798a

Neese F (2007) Calculation of the zero-field splitting tensor on the

basis of hybrid density functional and Hartree-Fock theory.

J Chem Phys 127:164112. doi:10.1063/1.2772857

Neese F (2008a) Calculation of molecular spectra and molecular

properties with density functional theory: from fundamental

theory to exchange coupling. Coord Chem Rev doi:10.1016/

j.ccr.2008.05.014

Neese F (2008b) Spin Hamiltonian parameters from first principle

calculations: theory and application. In: Hanson G, Berliner L

(eds) High resolution EPR: applications to metalloenzymes and

metals in medicine. Biological magnetic resonance, vol 28.

Springer, Berlin, pp 175–232

Neese F, Schwabe T, Grimme S (2007a) Analytic derivatives for

perturbatively corrected ‘‘double hybrid’’ density functionals:

theory, implementation, and applications. J Chem Phys

126:124115. doi:10.1063/1.2712433

Neese F, Petrenko T, Ganyushin D, Olbrich G (2007b) Advanced

aspects of ab initio theoretical optical spectroscopy of transition

metal complexes: multiplets, spin-orbit coupling and resonance

Raman intensities. Coord Chem Rev 251:288–327. doi:10.1016/

j.ccr.2006.05.019

Neese F, Wennmohs F, Hansen A, Becker U (2008) Efficient,

approximate and parallel Hartree–Fock and hybrid DFT calcu-

lations. A ‘Chain-of-Spheres’ algorithm for the Hartree-Fock

exchange. Chem Phys doi:10.1016/j.chemphys.2008.10.036

Neugebauer J, Hess BA (2003) Fundamental vibrational frequencies

of small polyatomic molecules from density-functional calcula-

tions and vibrational perturbation theory. J Chem Phys

118:7215–7225. doi:10.1063/1.1561045

Noodleman L (1981) Valence bond description of antiferromagnetic

coupling in transition metal dimers. J Chem Phys 74:5737–5743.

doi:10.1063/1.440939

Noodleman L, Han WG (2006) Structure, redox, pK(a), spin. A

golden tetrad for understanding metalloenzyme energetics and

reaction pathways. J Biol Inorg Chem 11:674–694. doi:

10.1007/s00775-006-0136-3

Noodleman L, Lovell T, Han WG, Li J, Himo F (2004) Quantum

chemical studies of intermediates and reaction pathways in

selected enzymes and catalytic synthetic systems. Chem Rev

104:459–508. doi:10.1021/cr020625a

Pantazis DA, Orio M, Petrenko T, Zein S, Bill E, Lubitz W,

Messinger J, Neese F (2009) A new quantum chemical approach

to the magnetic properties of oligonuclear transition metal

clusters: application to a model for the tetranuclear manganese

cluster of photosystem II. Chem Eur J. doi:10.1002/chem.

200802456

Parr RG, Yang W (1989) Density functional theory of atoms and

molecules. Oxford University Press, Oxford

Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient

approximation made simple. Phys Rev Lett 77:3865–3868. doi:

10.1103/PhysRevLett.77.3865

Ray K, DeBeer George S, Solomon E, Wieghardt K, Neese F (2007)

Description of the ground-state covalencies of the bis(dithiolato)

transition-metal complexes from X-ray absorption spectroscopy

and time-dependent density-functional calculations. Chem Eur J

13:2783–2797. doi:10.1002/chem.200601425

Roe AL, Schneider DJ, Mayer RJ, Pyrz JW, Widom J, Que L (1984)

X-ray absorption spectroscopy of iron-tyrosinate proteins. J Am

Chem Soc 106:1676–1681. doi:10.1021/ja00318a021

Salzmann R, McMahon MT, Godbout N, Sanders LK, Wojdelski M,

Oldfield E (1999) Solid-state NMR, crystallographic and density

functional theory investigation of Fe-CO and Fe-CO analogue

metalloporphyrins and metalloproteins. J Am Chem Soc

121:3818–3828. doi:10.1021/ja9832818

Schenker R, Mock MT, Kieber-Emmons MT, Riordan CG, Brunold

TC (2005) Spectroscopic and computational studies on [Ni(tmc)-

CH3]OTf: implications for Ni-methyl bonding in the A cluster of

acetyl-CoA synthase. Inorg Chem 44:3605–3617. doi:10.1021/

ic0483996

Schoneboom JC, Neese F, Thiel W (2005) Toward identification of

the compound I reactive intermediate in cytochrome P450

chemistry: A QM/MM study of its EPR and Mössbauer
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